forked from OSchip/llvm-project
518 lines
17 KiB
C++
518 lines
17 KiB
C++
//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the X86 specific subclass of TargetMachine.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86TargetMachine.h"
|
|
#include "MCTargetDesc/X86MCTargetDesc.h"
|
|
#include "X86.h"
|
|
#include "X86CallLowering.h"
|
|
#include "X86LegalizerInfo.h"
|
|
#include "X86MacroFusion.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86TargetObjectFile.h"
|
|
#include "X86TargetTransformInfo.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/ExecutionDomainFix.h"
|
|
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
|
|
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
|
|
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
|
|
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
|
|
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
|
|
#include "llvm/CodeGen/MachineScheduler.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
|
|
cl::desc("Enable the machine combiner pass"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
namespace llvm {
|
|
|
|
void initializeWinEHStatePassPass(PassRegistry &);
|
|
void initializeFixupLEAPassPass(PassRegistry &);
|
|
void initializeShadowCallStackPass(PassRegistry &);
|
|
void initializeX86CallFrameOptimizationPass(PassRegistry &);
|
|
void initializeX86CmovConverterPassPass(PassRegistry &);
|
|
void initializeX86ExecutionDomainFixPass(PassRegistry &);
|
|
void initializeX86DomainReassignmentPass(PassRegistry &);
|
|
void initializeX86AvoidSFBPassPass(PassRegistry &);
|
|
void initializeX86SpeculativeLoadHardeningPassPass(PassRegistry &);
|
|
void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
|
|
|
|
} // end namespace llvm
|
|
|
|
extern "C" void LLVMInitializeX86Target() {
|
|
// Register the target.
|
|
RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
|
|
RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
|
|
|
|
PassRegistry &PR = *PassRegistry::getPassRegistry();
|
|
initializeGlobalISel(PR);
|
|
initializeWinEHStatePassPass(PR);
|
|
initializeFixupBWInstPassPass(PR);
|
|
initializeEvexToVexInstPassPass(PR);
|
|
initializeFixupLEAPassPass(PR);
|
|
initializeShadowCallStackPass(PR);
|
|
initializeX86CallFrameOptimizationPass(PR);
|
|
initializeX86CmovConverterPassPass(PR);
|
|
initializeX86ExecutionDomainFixPass(PR);
|
|
initializeX86DomainReassignmentPass(PR);
|
|
initializeX86AvoidSFBPassPass(PR);
|
|
initializeX86SpeculativeLoadHardeningPassPass(PR);
|
|
initializeX86FlagsCopyLoweringPassPass(PR);
|
|
}
|
|
|
|
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
|
|
if (TT.isOSBinFormatMachO()) {
|
|
if (TT.getArch() == Triple::x86_64)
|
|
return llvm::make_unique<X86_64MachoTargetObjectFile>();
|
|
return llvm::make_unique<TargetLoweringObjectFileMachO>();
|
|
}
|
|
|
|
if (TT.isOSFreeBSD())
|
|
return llvm::make_unique<X86FreeBSDTargetObjectFile>();
|
|
if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
|
|
return llvm::make_unique<X86LinuxNaClTargetObjectFile>();
|
|
if (TT.isOSSolaris())
|
|
return llvm::make_unique<X86SolarisTargetObjectFile>();
|
|
if (TT.isOSFuchsia())
|
|
return llvm::make_unique<X86FuchsiaTargetObjectFile>();
|
|
if (TT.isOSBinFormatELF())
|
|
return llvm::make_unique<X86ELFTargetObjectFile>();
|
|
if (TT.isOSBinFormatCOFF())
|
|
return llvm::make_unique<TargetLoweringObjectFileCOFF>();
|
|
llvm_unreachable("unknown subtarget type");
|
|
}
|
|
|
|
static std::string computeDataLayout(const Triple &TT) {
|
|
// X86 is little endian
|
|
std::string Ret = "e";
|
|
|
|
Ret += DataLayout::getManglingComponent(TT);
|
|
// X86 and x32 have 32 bit pointers.
|
|
if ((TT.isArch64Bit() &&
|
|
(TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
|
|
!TT.isArch64Bit())
|
|
Ret += "-p:32:32";
|
|
|
|
// Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
|
|
if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
|
|
Ret += "-i64:64";
|
|
else if (TT.isOSIAMCU())
|
|
Ret += "-i64:32-f64:32";
|
|
else
|
|
Ret += "-f64:32:64";
|
|
|
|
// Some ABIs align long double to 128 bits, others to 32.
|
|
if (TT.isOSNaCl() || TT.isOSIAMCU())
|
|
; // No f80
|
|
else if (TT.isArch64Bit() || TT.isOSDarwin())
|
|
Ret += "-f80:128";
|
|
else
|
|
Ret += "-f80:32";
|
|
|
|
if (TT.isOSIAMCU())
|
|
Ret += "-f128:32";
|
|
|
|
// The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
|
|
if (TT.isArch64Bit())
|
|
Ret += "-n8:16:32:64";
|
|
else
|
|
Ret += "-n8:16:32";
|
|
|
|
// The stack is aligned to 32 bits on some ABIs and 128 bits on others.
|
|
if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
|
|
Ret += "-a:0:32-S32";
|
|
else
|
|
Ret += "-S128";
|
|
|
|
return Ret;
|
|
}
|
|
|
|
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
|
|
bool JIT,
|
|
Optional<Reloc::Model> RM) {
|
|
bool is64Bit = TT.getArch() == Triple::x86_64;
|
|
if (!RM.hasValue()) {
|
|
// JIT codegen should use static relocations by default, since it's
|
|
// typically executed in process and not relocatable.
|
|
if (JIT)
|
|
return Reloc::Static;
|
|
|
|
// Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
|
|
// Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
|
|
// use static relocation model by default.
|
|
if (TT.isOSDarwin()) {
|
|
if (is64Bit)
|
|
return Reloc::PIC_;
|
|
return Reloc::DynamicNoPIC;
|
|
}
|
|
if (TT.isOSWindows() && is64Bit)
|
|
return Reloc::PIC_;
|
|
return Reloc::Static;
|
|
}
|
|
|
|
// ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
|
|
// is defined as a model for code which may be used in static or dynamic
|
|
// executables but not necessarily a shared library. On X86-32 we just
|
|
// compile in -static mode, in x86-64 we use PIC.
|
|
if (*RM == Reloc::DynamicNoPIC) {
|
|
if (is64Bit)
|
|
return Reloc::PIC_;
|
|
if (!TT.isOSDarwin())
|
|
return Reloc::Static;
|
|
}
|
|
|
|
// If we are on Darwin, disallow static relocation model in X86-64 mode, since
|
|
// the Mach-O file format doesn't support it.
|
|
if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
|
|
return Reloc::PIC_;
|
|
|
|
return *RM;
|
|
}
|
|
|
|
static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
|
|
bool JIT, bool Is64Bit) {
|
|
if (CM)
|
|
return *CM;
|
|
if (JIT)
|
|
return Is64Bit ? CodeModel::Large : CodeModel::Small;
|
|
return CodeModel::Small;
|
|
}
|
|
|
|
/// Create an X86 target.
|
|
///
|
|
X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
Optional<Reloc::Model> RM,
|
|
Optional<CodeModel::Model> CM,
|
|
CodeGenOpt::Level OL, bool JIT)
|
|
: LLVMTargetMachine(
|
|
T, computeDataLayout(TT), TT, CPU, FS, Options,
|
|
getEffectiveRelocModel(TT, JIT, RM),
|
|
getEffectiveCodeModel(CM, JIT, TT.getArch() == Triple::x86_64), OL),
|
|
TLOF(createTLOF(getTargetTriple())) {
|
|
// Windows stack unwinder gets confused when execution flow "falls through"
|
|
// after a call to 'noreturn' function.
|
|
// To prevent that, we emit a trap for 'unreachable' IR instructions.
|
|
// (which on X86, happens to be the 'ud2' instruction)
|
|
// On PS4, the "return address" of a 'noreturn' call must still be within
|
|
// the calling function, and TrapUnreachable is an easy way to get that.
|
|
// The check here for 64-bit windows is a bit icky, but as we're unlikely
|
|
// to ever want to mix 32 and 64-bit windows code in a single module
|
|
// this should be fine.
|
|
if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() ||
|
|
TT.isOSBinFormatMachO()) {
|
|
this->Options.TrapUnreachable = true;
|
|
this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
|
|
}
|
|
|
|
// Outlining is available for x86-64.
|
|
if (TT.getArch() == Triple::x86_64)
|
|
setMachineOutliner(true);
|
|
|
|
initAsmInfo();
|
|
}
|
|
|
|
X86TargetMachine::~X86TargetMachine() = default;
|
|
|
|
const X86Subtarget *
|
|
X86TargetMachine::getSubtargetImpl(const Function &F) const {
|
|
Attribute CPUAttr = F.getFnAttribute("target-cpu");
|
|
Attribute FSAttr = F.getFnAttribute("target-features");
|
|
|
|
StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
|
|
? CPUAttr.getValueAsString()
|
|
: (StringRef)TargetCPU;
|
|
StringRef FS = !FSAttr.hasAttribute(Attribute::None)
|
|
? FSAttr.getValueAsString()
|
|
: (StringRef)TargetFS;
|
|
|
|
SmallString<512> Key;
|
|
Key.reserve(CPU.size() + FS.size());
|
|
Key += CPU;
|
|
Key += FS;
|
|
|
|
// FIXME: This is related to the code below to reset the target options,
|
|
// we need to know whether or not the soft float flag is set on the
|
|
// function before we can generate a subtarget. We also need to use
|
|
// it as a key for the subtarget since that can be the only difference
|
|
// between two functions.
|
|
bool SoftFloat =
|
|
F.getFnAttribute("use-soft-float").getValueAsString() == "true";
|
|
// If the soft float attribute is set on the function turn on the soft float
|
|
// subtarget feature.
|
|
if (SoftFloat)
|
|
Key += FS.empty() ? "+soft-float" : ",+soft-float";
|
|
|
|
// Keep track of the key width after all features are added so we can extract
|
|
// the feature string out later.
|
|
unsigned CPUFSWidth = Key.size();
|
|
|
|
// Extract prefer-vector-width attribute.
|
|
unsigned PreferVectorWidthOverride = 0;
|
|
if (F.hasFnAttribute("prefer-vector-width")) {
|
|
StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
|
|
unsigned Width;
|
|
if (!Val.getAsInteger(0, Width)) {
|
|
Key += ",prefer-vector-width=";
|
|
Key += Val;
|
|
PreferVectorWidthOverride = Width;
|
|
}
|
|
}
|
|
|
|
// Extract required-vector-width attribute.
|
|
unsigned RequiredVectorWidth = UINT32_MAX;
|
|
if (F.hasFnAttribute("required-vector-width")) {
|
|
StringRef Val = F.getFnAttribute("required-vector-width").getValueAsString();
|
|
unsigned Width;
|
|
if (!Val.getAsInteger(0, Width)) {
|
|
Key += ",required-vector-width=";
|
|
Key += Val;
|
|
RequiredVectorWidth = Width;
|
|
}
|
|
}
|
|
|
|
// Extracted here so that we make sure there is backing for the StringRef. If
|
|
// we assigned earlier, its possible the SmallString reallocated leaving a
|
|
// dangling StringRef.
|
|
FS = Key.slice(CPU.size(), CPUFSWidth);
|
|
|
|
auto &I = SubtargetMap[Key];
|
|
if (!I) {
|
|
// This needs to be done before we create a new subtarget since any
|
|
// creation will depend on the TM and the code generation flags on the
|
|
// function that reside in TargetOptions.
|
|
resetTargetOptions(F);
|
|
I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
|
|
Options.StackAlignmentOverride,
|
|
PreferVectorWidthOverride,
|
|
RequiredVectorWidth);
|
|
}
|
|
return I.get();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Command line options for x86
|
|
//===----------------------------------------------------------------------===//
|
|
static cl::opt<bool>
|
|
UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
|
|
cl::desc("Minimize AVX to SSE transition penalty"),
|
|
cl::init(true));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 TTI query.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TargetTransformInfo
|
|
X86TargetMachine::getTargetTransformInfo(const Function &F) {
|
|
return TargetTransformInfo(X86TTIImpl(this, F));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pass Pipeline Configuration
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// X86 Code Generator Pass Configuration Options.
|
|
class X86PassConfig : public TargetPassConfig {
|
|
public:
|
|
X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
|
|
: TargetPassConfig(TM, PM) {}
|
|
|
|
X86TargetMachine &getX86TargetMachine() const {
|
|
return getTM<X86TargetMachine>();
|
|
}
|
|
|
|
ScheduleDAGInstrs *
|
|
createMachineScheduler(MachineSchedContext *C) const override {
|
|
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
|
|
DAG->addMutation(createX86MacroFusionDAGMutation());
|
|
return DAG;
|
|
}
|
|
|
|
void addIRPasses() override;
|
|
bool addInstSelector() override;
|
|
bool addIRTranslator() override;
|
|
bool addLegalizeMachineIR() override;
|
|
bool addRegBankSelect() override;
|
|
bool addGlobalInstructionSelect() override;
|
|
bool addILPOpts() override;
|
|
bool addPreISel() override;
|
|
void addMachineSSAOptimization() override;
|
|
void addPreRegAlloc() override;
|
|
void addPostRegAlloc() override;
|
|
void addPreEmitPass() override;
|
|
void addPreEmitPass2() override;
|
|
void addPreSched2() override;
|
|
};
|
|
|
|
class X86ExecutionDomainFix : public ExecutionDomainFix {
|
|
public:
|
|
static char ID;
|
|
X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
|
|
StringRef getPassName() const override {
|
|
return "X86 Execution Dependency Fix";
|
|
}
|
|
};
|
|
char X86ExecutionDomainFix::ID;
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
|
|
"X86 Execution Domain Fix", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
|
|
INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
|
|
"X86 Execution Domain Fix", false, false)
|
|
|
|
TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
return new X86PassConfig(*this, PM);
|
|
}
|
|
|
|
void X86PassConfig::addIRPasses() {
|
|
addPass(createAtomicExpandPass());
|
|
|
|
TargetPassConfig::addIRPasses();
|
|
|
|
if (TM->getOptLevel() != CodeGenOpt::None)
|
|
addPass(createInterleavedAccessPass());
|
|
|
|
// Add passes that handle indirect branch removal and insertion of a retpoline
|
|
// thunk. These will be a no-op unless a function subtarget has the retpoline
|
|
// feature enabled.
|
|
addPass(createIndirectBrExpandPass());
|
|
}
|
|
|
|
bool X86PassConfig::addInstSelector() {
|
|
// Install an instruction selector.
|
|
addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
|
|
|
|
// For ELF, cleanup any local-dynamic TLS accesses.
|
|
if (TM->getTargetTriple().isOSBinFormatELF() &&
|
|
getOptLevel() != CodeGenOpt::None)
|
|
addPass(createCleanupLocalDynamicTLSPass());
|
|
|
|
addPass(createX86GlobalBaseRegPass());
|
|
return false;
|
|
}
|
|
|
|
bool X86PassConfig::addIRTranslator() {
|
|
addPass(new IRTranslator());
|
|
return false;
|
|
}
|
|
|
|
bool X86PassConfig::addLegalizeMachineIR() {
|
|
addPass(new Legalizer());
|
|
return false;
|
|
}
|
|
|
|
bool X86PassConfig::addRegBankSelect() {
|
|
addPass(new RegBankSelect());
|
|
return false;
|
|
}
|
|
|
|
bool X86PassConfig::addGlobalInstructionSelect() {
|
|
addPass(new InstructionSelect());
|
|
return false;
|
|
}
|
|
|
|
bool X86PassConfig::addILPOpts() {
|
|
addPass(&EarlyIfConverterID);
|
|
if (EnableMachineCombinerPass)
|
|
addPass(&MachineCombinerID);
|
|
addPass(createX86CmovConverterPass());
|
|
return true;
|
|
}
|
|
|
|
bool X86PassConfig::addPreISel() {
|
|
// Only add this pass for 32-bit x86 Windows.
|
|
const Triple &TT = TM->getTargetTriple();
|
|
if (TT.isOSWindows() && TT.getArch() == Triple::x86)
|
|
addPass(createX86WinEHStatePass());
|
|
return true;
|
|
}
|
|
|
|
void X86PassConfig::addPreRegAlloc() {
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
addPass(&LiveRangeShrinkID);
|
|
addPass(createX86FixupSetCC());
|
|
addPass(createX86OptimizeLEAs());
|
|
addPass(createX86CallFrameOptimization());
|
|
addPass(createX86AvoidStoreForwardingBlocks());
|
|
}
|
|
|
|
addPass(createX86SpeculativeLoadHardeningPass());
|
|
addPass(createX86FlagsCopyLoweringPass());
|
|
addPass(createX86WinAllocaExpander());
|
|
}
|
|
void X86PassConfig::addMachineSSAOptimization() {
|
|
addPass(createX86DomainReassignmentPass());
|
|
TargetPassConfig::addMachineSSAOptimization();
|
|
}
|
|
|
|
void X86PassConfig::addPostRegAlloc() {
|
|
addPass(createX86FloatingPointStackifierPass());
|
|
}
|
|
|
|
void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
|
|
|
|
void X86PassConfig::addPreEmitPass() {
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
addPass(new X86ExecutionDomainFix());
|
|
addPass(createBreakFalseDeps());
|
|
}
|
|
|
|
addPass(createShadowCallStackPass());
|
|
addPass(createX86IndirectBranchTrackingPass());
|
|
|
|
if (UseVZeroUpper)
|
|
addPass(createX86IssueVZeroUpperPass());
|
|
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
addPass(createX86FixupBWInsts());
|
|
addPass(createX86PadShortFunctions());
|
|
addPass(createX86FixupLEAs());
|
|
addPass(createX86EvexToVexInsts());
|
|
}
|
|
}
|
|
|
|
void X86PassConfig::addPreEmitPass2() {
|
|
addPass(createX86RetpolineThunksPass());
|
|
// Verify basic block incoming and outgoing cfa offset and register values and
|
|
// correct CFA calculation rule where needed by inserting appropriate CFI
|
|
// instructions.
|
|
const Triple &TT = TM->getTargetTriple();
|
|
if (!TT.isOSDarwin() && !TT.isOSWindows())
|
|
addPass(createCFIInstrInserter());
|
|
}
|