forked from OSchip/llvm-project
987 lines
42 KiB
C++
987 lines
42 KiB
C++
//===- Inliner.cpp - Code common to all inliners --------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the mechanics required to implement inlining without
|
|
// missing any calls and updating the call graph. The decisions of which calls
|
|
// are profitable to inline are implemented elsewhere.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/Inliner.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/InlineCost.h"
|
|
#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "inline"
|
|
|
|
STATISTIC(NumInlined, "Number of functions inlined");
|
|
STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
|
|
STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
|
|
STATISTIC(NumMergedAllocas, "Number of allocas merged together");
|
|
|
|
// This weirdly named statistic tracks the number of times that, when attempting
|
|
// to inline a function A into B, we analyze the callers of B in order to see
|
|
// if those would be more profitable and blocked inline steps.
|
|
STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
|
|
|
|
/// Flag to disable manual alloca merging.
|
|
///
|
|
/// Merging of allocas was originally done as a stack-size saving technique
|
|
/// prior to LLVM's code generator having support for stack coloring based on
|
|
/// lifetime markers. It is now in the process of being removed. To experiment
|
|
/// with disabling it and relying fully on lifetime marker based stack
|
|
/// coloring, you can pass this flag to LLVM.
|
|
static cl::opt<bool>
|
|
DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
|
|
cl::init(false), cl::Hidden);
|
|
|
|
namespace {
|
|
enum class InlinerFunctionImportStatsOpts {
|
|
No = 0,
|
|
Basic = 1,
|
|
Verbose = 2,
|
|
};
|
|
|
|
cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
|
|
"inliner-function-import-stats",
|
|
cl::init(InlinerFunctionImportStatsOpts::No),
|
|
cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
|
|
"basic statistics"),
|
|
clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
|
|
"printing of statistics for each inlined function")),
|
|
cl::Hidden, cl::desc("Enable inliner stats for imported functions"));
|
|
} // namespace
|
|
|
|
LegacyInlinerBase::LegacyInlinerBase(char &ID)
|
|
: CallGraphSCCPass(ID), InsertLifetime(true) {}
|
|
|
|
LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
|
|
: CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
|
|
|
|
/// For this class, we declare that we require and preserve the call graph.
|
|
/// If the derived class implements this method, it should
|
|
/// always explicitly call the implementation here.
|
|
void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<ProfileSummaryInfoWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
getAAResultsAnalysisUsage(AU);
|
|
CallGraphSCCPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
typedef DenseMap<ArrayType *, std::vector<AllocaInst *>> InlinedArrayAllocasTy;
|
|
|
|
/// Look at all of the allocas that we inlined through this call site. If we
|
|
/// have already inlined other allocas through other calls into this function,
|
|
/// then we know that they have disjoint lifetimes and that we can merge them.
|
|
///
|
|
/// There are many heuristics possible for merging these allocas, and the
|
|
/// different options have different tradeoffs. One thing that we *really*
|
|
/// don't want to hurt is SRoA: once inlining happens, often allocas are no
|
|
/// longer address taken and so they can be promoted.
|
|
///
|
|
/// Our "solution" for that is to only merge allocas whose outermost type is an
|
|
/// array type. These are usually not promoted because someone is using a
|
|
/// variable index into them. These are also often the most important ones to
|
|
/// merge.
|
|
///
|
|
/// A better solution would be to have real memory lifetime markers in the IR
|
|
/// and not have the inliner do any merging of allocas at all. This would
|
|
/// allow the backend to do proper stack slot coloring of all allocas that
|
|
/// *actually make it to the backend*, which is really what we want.
|
|
///
|
|
/// Because we don't have this information, we do this simple and useful hack.
|
|
static void mergeInlinedArrayAllocas(
|
|
Function *Caller, InlineFunctionInfo &IFI,
|
|
InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) {
|
|
SmallPtrSet<AllocaInst *, 16> UsedAllocas;
|
|
|
|
// When processing our SCC, check to see if CS was inlined from some other
|
|
// call site. For example, if we're processing "A" in this code:
|
|
// A() { B() }
|
|
// B() { x = alloca ... C() }
|
|
// C() { y = alloca ... }
|
|
// Assume that C was not inlined into B initially, and so we're processing A
|
|
// and decide to inline B into A. Doing this makes an alloca available for
|
|
// reuse and makes a callsite (C) available for inlining. When we process
|
|
// the C call site we don't want to do any alloca merging between X and Y
|
|
// because their scopes are not disjoint. We could make this smarter by
|
|
// keeping track of the inline history for each alloca in the
|
|
// InlinedArrayAllocas but this isn't likely to be a significant win.
|
|
if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
|
|
return;
|
|
|
|
// Loop over all the allocas we have so far and see if they can be merged with
|
|
// a previously inlined alloca. If not, remember that we had it.
|
|
for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e;
|
|
++AllocaNo) {
|
|
AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
|
|
|
|
// Don't bother trying to merge array allocations (they will usually be
|
|
// canonicalized to be an allocation *of* an array), or allocations whose
|
|
// type is not itself an array (because we're afraid of pessimizing SRoA).
|
|
ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
|
|
if (!ATy || AI->isArrayAllocation())
|
|
continue;
|
|
|
|
// Get the list of all available allocas for this array type.
|
|
std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
|
|
|
|
// Loop over the allocas in AllocasForType to see if we can reuse one. Note
|
|
// that we have to be careful not to reuse the same "available" alloca for
|
|
// multiple different allocas that we just inlined, we use the 'UsedAllocas'
|
|
// set to keep track of which "available" allocas are being used by this
|
|
// function. Also, AllocasForType can be empty of course!
|
|
bool MergedAwayAlloca = false;
|
|
for (AllocaInst *AvailableAlloca : AllocasForType) {
|
|
|
|
unsigned Align1 = AI->getAlignment(),
|
|
Align2 = AvailableAlloca->getAlignment();
|
|
|
|
// The available alloca has to be in the right function, not in some other
|
|
// function in this SCC.
|
|
if (AvailableAlloca->getParent() != AI->getParent())
|
|
continue;
|
|
|
|
// If the inlined function already uses this alloca then we can't reuse
|
|
// it.
|
|
if (!UsedAllocas.insert(AvailableAlloca).second)
|
|
continue;
|
|
|
|
// Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
|
|
// success!
|
|
DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI
|
|
<< "\n\t\tINTO: " << *AvailableAlloca << '\n');
|
|
|
|
// Move affected dbg.declare calls immediately after the new alloca to
|
|
// avoid the situation when a dbg.declare precedes its alloca.
|
|
if (auto *L = LocalAsMetadata::getIfExists(AI))
|
|
if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
|
|
for (User *U : MDV->users())
|
|
if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
|
|
DDI->moveBefore(AvailableAlloca->getNextNode());
|
|
|
|
AI->replaceAllUsesWith(AvailableAlloca);
|
|
|
|
if (Align1 != Align2) {
|
|
if (!Align1 || !Align2) {
|
|
const DataLayout &DL = Caller->getParent()->getDataLayout();
|
|
unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
|
|
|
|
Align1 = Align1 ? Align1 : TypeAlign;
|
|
Align2 = Align2 ? Align2 : TypeAlign;
|
|
}
|
|
|
|
if (Align1 > Align2)
|
|
AvailableAlloca->setAlignment(AI->getAlignment());
|
|
}
|
|
|
|
AI->eraseFromParent();
|
|
MergedAwayAlloca = true;
|
|
++NumMergedAllocas;
|
|
IFI.StaticAllocas[AllocaNo] = nullptr;
|
|
break;
|
|
}
|
|
|
|
// If we already nuked the alloca, we're done with it.
|
|
if (MergedAwayAlloca)
|
|
continue;
|
|
|
|
// If we were unable to merge away the alloca either because there are no
|
|
// allocas of the right type available or because we reused them all
|
|
// already, remember that this alloca came from an inlined function and mark
|
|
// it used so we don't reuse it for other allocas from this inline
|
|
// operation.
|
|
AllocasForType.push_back(AI);
|
|
UsedAllocas.insert(AI);
|
|
}
|
|
}
|
|
|
|
/// If it is possible to inline the specified call site,
|
|
/// do so and update the CallGraph for this operation.
|
|
///
|
|
/// This function also does some basic book-keeping to update the IR. The
|
|
/// InlinedArrayAllocas map keeps track of any allocas that are already
|
|
/// available from other functions inlined into the caller. If we are able to
|
|
/// inline this call site we attempt to reuse already available allocas or add
|
|
/// any new allocas to the set if not possible.
|
|
static bool InlineCallIfPossible(
|
|
CallSite CS, InlineFunctionInfo &IFI,
|
|
InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
|
|
bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
|
|
ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
|
|
Function *Callee = CS.getCalledFunction();
|
|
Function *Caller = CS.getCaller();
|
|
|
|
AAResults &AAR = AARGetter(*Callee);
|
|
|
|
// Try to inline the function. Get the list of static allocas that were
|
|
// inlined.
|
|
if (!InlineFunction(CS, IFI, &AAR, InsertLifetime))
|
|
return false;
|
|
|
|
if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
|
|
ImportedFunctionsStats.recordInline(*Caller, *Callee);
|
|
|
|
AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
|
|
|
|
if (!DisableInlinedAllocaMerging)
|
|
mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return true if inlining of CS can block the caller from being
|
|
/// inlined which is proved to be more beneficial. \p IC is the
|
|
/// estimated inline cost associated with callsite \p CS.
|
|
/// \p TotalSecondaryCost will be set to the estimated cost of inlining the
|
|
/// caller if \p CS is suppressed for inlining.
|
|
static bool
|
|
shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC,
|
|
int &TotalSecondaryCost,
|
|
function_ref<InlineCost(CallSite CS)> GetInlineCost) {
|
|
|
|
// For now we only handle local or inline functions.
|
|
if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage())
|
|
return false;
|
|
// Try to detect the case where the current inlining candidate caller (call
|
|
// it B) is a static or linkonce-ODR function and is an inlining candidate
|
|
// elsewhere, and the current candidate callee (call it C) is large enough
|
|
// that inlining it into B would make B too big to inline later. In these
|
|
// circumstances it may be best not to inline C into B, but to inline B into
|
|
// its callers.
|
|
//
|
|
// This only applies to static and linkonce-ODR functions because those are
|
|
// expected to be available for inlining in the translation units where they
|
|
// are used. Thus we will always have the opportunity to make local inlining
|
|
// decisions. Importantly the linkonce-ODR linkage covers inline functions
|
|
// and templates in C++.
|
|
//
|
|
// FIXME: All of this logic should be sunk into getInlineCost. It relies on
|
|
// the internal implementation of the inline cost metrics rather than
|
|
// treating them as truly abstract units etc.
|
|
TotalSecondaryCost = 0;
|
|
// The candidate cost to be imposed upon the current function.
|
|
int CandidateCost = IC.getCost() - 1;
|
|
// This bool tracks what happens if we do NOT inline C into B.
|
|
bool callerWillBeRemoved = Caller->hasLocalLinkage();
|
|
// This bool tracks what happens if we DO inline C into B.
|
|
bool inliningPreventsSomeOuterInline = false;
|
|
for (User *U : Caller->users()) {
|
|
CallSite CS2(U);
|
|
|
|
// If this isn't a call to Caller (it could be some other sort
|
|
// of reference) skip it. Such references will prevent the caller
|
|
// from being removed.
|
|
if (!CS2 || CS2.getCalledFunction() != Caller) {
|
|
callerWillBeRemoved = false;
|
|
continue;
|
|
}
|
|
|
|
InlineCost IC2 = GetInlineCost(CS2);
|
|
++NumCallerCallersAnalyzed;
|
|
if (!IC2) {
|
|
callerWillBeRemoved = false;
|
|
continue;
|
|
}
|
|
if (IC2.isAlways())
|
|
continue;
|
|
|
|
// See if inlining of the original callsite would erase the cost delta of
|
|
// this callsite. We subtract off the penalty for the call instruction,
|
|
// which we would be deleting.
|
|
if (IC2.getCostDelta() <= CandidateCost) {
|
|
inliningPreventsSomeOuterInline = true;
|
|
TotalSecondaryCost += IC2.getCost();
|
|
}
|
|
}
|
|
// If all outer calls to Caller would get inlined, the cost for the last
|
|
// one is set very low by getInlineCost, in anticipation that Caller will
|
|
// be removed entirely. We did not account for this above unless there
|
|
// is only one caller of Caller.
|
|
if (callerWillBeRemoved && !Caller->hasOneUse())
|
|
TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus;
|
|
|
|
if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Return true if the inliner should attempt to inline at the given CallSite.
|
|
static bool shouldInline(CallSite CS,
|
|
function_ref<InlineCost(CallSite CS)> GetInlineCost,
|
|
OptimizationRemarkEmitter &ORE) {
|
|
using namespace ore;
|
|
InlineCost IC = GetInlineCost(CS);
|
|
Instruction *Call = CS.getInstruction();
|
|
Function *Callee = CS.getCalledFunction();
|
|
Function *Caller = CS.getCaller();
|
|
|
|
if (IC.isAlways()) {
|
|
DEBUG(dbgs() << " Inlining: cost=always"
|
|
<< ", Call: " << *CS.getInstruction() << "\n");
|
|
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call)
|
|
<< NV("Callee", Callee)
|
|
<< " should always be inlined (cost=always)");
|
|
return true;
|
|
}
|
|
|
|
if (IC.isNever()) {
|
|
DEBUG(dbgs() << " NOT Inlining: cost=never"
|
|
<< ", Call: " << *CS.getInstruction() << "\n");
|
|
ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
|
|
<< NV("Callee", Callee) << " not inlined into "
|
|
<< NV("Caller", Caller)
|
|
<< " because it should never be inlined (cost=never)");
|
|
return false;
|
|
}
|
|
|
|
if (!IC) {
|
|
DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost()
|
|
<< ", thres=" << (IC.getCostDelta() + IC.getCost())
|
|
<< ", Call: " << *CS.getInstruction() << "\n");
|
|
ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call)
|
|
<< NV("Callee", Callee) << " not inlined into "
|
|
<< NV("Caller", Caller) << " because too costly to inline (cost="
|
|
<< NV("Cost", IC.getCost()) << ", threshold="
|
|
<< NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")");
|
|
return false;
|
|
}
|
|
|
|
int TotalSecondaryCost = 0;
|
|
if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) {
|
|
DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction()
|
|
<< " Cost = " << IC.getCost()
|
|
<< ", outer Cost = " << TotalSecondaryCost << '\n');
|
|
ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts",
|
|
Call)
|
|
<< "Not inlining. Cost of inlining " << NV("Callee", Callee)
|
|
<< " increases the cost of inlining " << NV("Caller", Caller)
|
|
<< " in other contexts");
|
|
return false;
|
|
}
|
|
|
|
DEBUG(dbgs() << " Inlining: cost=" << IC.getCost()
|
|
<< ", thres=" << (IC.getCostDelta() + IC.getCost())
|
|
<< ", Call: " << *CS.getInstruction() << '\n');
|
|
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBeInlined", Call)
|
|
<< NV("Callee", Callee) << " can be inlined into "
|
|
<< NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost())
|
|
<< " (threshold="
|
|
<< NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")");
|
|
return true;
|
|
}
|
|
|
|
/// Return true if the specified inline history ID
|
|
/// indicates an inline history that includes the specified function.
|
|
static bool InlineHistoryIncludes(
|
|
Function *F, int InlineHistoryID,
|
|
const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
|
|
while (InlineHistoryID != -1) {
|
|
assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
|
|
"Invalid inline history ID");
|
|
if (InlineHistory[InlineHistoryID].first == F)
|
|
return true;
|
|
InlineHistoryID = InlineHistory[InlineHistoryID].second;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
|
|
if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
|
|
ImportedFunctionsStats.setModuleInfo(CG.getModule());
|
|
return false; // No changes to CallGraph.
|
|
}
|
|
|
|
bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
|
|
if (skipSCC(SCC))
|
|
return false;
|
|
return inlineCalls(SCC);
|
|
}
|
|
|
|
static bool
|
|
inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
|
|
std::function<AssumptionCache &(Function &)> GetAssumptionCache,
|
|
ProfileSummaryInfo *PSI, TargetLibraryInfo &TLI,
|
|
bool InsertLifetime,
|
|
function_ref<InlineCost(CallSite CS)> GetInlineCost,
|
|
function_ref<AAResults &(Function &)> AARGetter,
|
|
ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
|
|
SmallPtrSet<Function *, 8> SCCFunctions;
|
|
DEBUG(dbgs() << "Inliner visiting SCC:");
|
|
for (CallGraphNode *Node : SCC) {
|
|
Function *F = Node->getFunction();
|
|
if (F)
|
|
SCCFunctions.insert(F);
|
|
DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
|
|
}
|
|
|
|
// Scan through and identify all call sites ahead of time so that we only
|
|
// inline call sites in the original functions, not call sites that result
|
|
// from inlining other functions.
|
|
SmallVector<std::pair<CallSite, int>, 16> CallSites;
|
|
|
|
// When inlining a callee produces new call sites, we want to keep track of
|
|
// the fact that they were inlined from the callee. This allows us to avoid
|
|
// infinite inlining in some obscure cases. To represent this, we use an
|
|
// index into the InlineHistory vector.
|
|
SmallVector<std::pair<Function *, int>, 8> InlineHistory;
|
|
|
|
for (CallGraphNode *Node : SCC) {
|
|
Function *F = Node->getFunction();
|
|
if (!F || F->isDeclaration())
|
|
continue;
|
|
|
|
OptimizationRemarkEmitter ORE(F);
|
|
for (BasicBlock &BB : *F)
|
|
for (Instruction &I : BB) {
|
|
CallSite CS(cast<Value>(&I));
|
|
// If this isn't a call, or it is a call to an intrinsic, it can
|
|
// never be inlined.
|
|
if (!CS || isa<IntrinsicInst>(I))
|
|
continue;
|
|
|
|
// If this is a direct call to an external function, we can never inline
|
|
// it. If it is an indirect call, inlining may resolve it to be a
|
|
// direct call, so we keep it.
|
|
if (Function *Callee = CS.getCalledFunction())
|
|
if (Callee->isDeclaration()) {
|
|
using namespace ore;
|
|
ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
|
|
<< NV("Callee", Callee) << " will not be inlined into "
|
|
<< NV("Caller", CS.getCaller())
|
|
<< " because its definition is unavailable"
|
|
<< setIsVerbose());
|
|
continue;
|
|
}
|
|
|
|
CallSites.push_back(std::make_pair(CS, -1));
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
|
|
|
|
// If there are no calls in this function, exit early.
|
|
if (CallSites.empty())
|
|
return false;
|
|
|
|
// Now that we have all of the call sites, move the ones to functions in the
|
|
// current SCC to the end of the list.
|
|
unsigned FirstCallInSCC = CallSites.size();
|
|
for (unsigned i = 0; i < FirstCallInSCC; ++i)
|
|
if (Function *F = CallSites[i].first.getCalledFunction())
|
|
if (SCCFunctions.count(F))
|
|
std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
|
|
|
|
InlinedArrayAllocasTy InlinedArrayAllocas;
|
|
InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI);
|
|
|
|
// Now that we have all of the call sites, loop over them and inline them if
|
|
// it looks profitable to do so.
|
|
bool Changed = false;
|
|
bool LocalChange;
|
|
do {
|
|
LocalChange = false;
|
|
// Iterate over the outer loop because inlining functions can cause indirect
|
|
// calls to become direct calls.
|
|
// CallSites may be modified inside so ranged for loop can not be used.
|
|
for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
|
|
CallSite CS = CallSites[CSi].first;
|
|
|
|
Function *Caller = CS.getCaller();
|
|
Function *Callee = CS.getCalledFunction();
|
|
|
|
// If this call site is dead and it is to a readonly function, we should
|
|
// just delete the call instead of trying to inline it, regardless of
|
|
// size. This happens because IPSCCP propagates the result out of the
|
|
// call and then we're left with the dead call.
|
|
if (isInstructionTriviallyDead(CS.getInstruction(), &TLI)) {
|
|
DEBUG(dbgs() << " -> Deleting dead call: " << *CS.getInstruction()
|
|
<< "\n");
|
|
// Update the call graph by deleting the edge from Callee to Caller.
|
|
CG[Caller]->removeCallEdgeFor(CS);
|
|
CS.getInstruction()->eraseFromParent();
|
|
++NumCallsDeleted;
|
|
} else {
|
|
// We can only inline direct calls to non-declarations.
|
|
if (!Callee || Callee->isDeclaration())
|
|
continue;
|
|
|
|
// If this call site was obtained by inlining another function, verify
|
|
// that the include path for the function did not include the callee
|
|
// itself. If so, we'd be recursively inlining the same function,
|
|
// which would provide the same callsites, which would cause us to
|
|
// infinitely inline.
|
|
int InlineHistoryID = CallSites[CSi].second;
|
|
if (InlineHistoryID != -1 &&
|
|
InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
|
|
continue;
|
|
|
|
// Get DebugLoc to report. CS will be invalid after Inliner.
|
|
DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
|
|
BasicBlock *Block = CS.getParent();
|
|
// FIXME for new PM: because of the old PM we currently generate ORE and
|
|
// in turn BFI on demand. With the new PM, the ORE dependency should
|
|
// just become a regular analysis dependency.
|
|
OptimizationRemarkEmitter ORE(Caller);
|
|
|
|
// If the policy determines that we should inline this function,
|
|
// try to do so.
|
|
if (!shouldInline(CS, GetInlineCost, ORE))
|
|
continue;
|
|
|
|
// Attempt to inline the function.
|
|
using namespace ore;
|
|
if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
|
|
InlineHistoryID, InsertLifetime, AARGetter,
|
|
ImportedFunctionsStats)) {
|
|
ORE.emit(
|
|
OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block)
|
|
<< NV("Callee", Callee) << " will not be inlined into "
|
|
<< NV("Caller", Caller));
|
|
continue;
|
|
}
|
|
++NumInlined;
|
|
|
|
// Report the inline decision.
|
|
ORE.emit(OptimizationRemark(DEBUG_TYPE, "Inlined", DLoc, Block)
|
|
<< NV("Callee", Callee) << " inlined into "
|
|
<< NV("Caller", Caller));
|
|
|
|
// If inlining this function gave us any new call sites, throw them
|
|
// onto our worklist to process. They are useful inline candidates.
|
|
if (!InlineInfo.InlinedCalls.empty()) {
|
|
// Create a new inline history entry for this, so that we remember
|
|
// that these new callsites came about due to inlining Callee.
|
|
int NewHistoryID = InlineHistory.size();
|
|
InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
|
|
|
|
for (Value *Ptr : InlineInfo.InlinedCalls)
|
|
CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
|
|
}
|
|
}
|
|
|
|
// If we inlined or deleted the last possible call site to the function,
|
|
// delete the function body now.
|
|
if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
|
|
// TODO: Can remove if in SCC now.
|
|
!SCCFunctions.count(Callee) &&
|
|
|
|
// The function may be apparently dead, but if there are indirect
|
|
// callgraph references to the node, we cannot delete it yet, this
|
|
// could invalidate the CGSCC iterator.
|
|
CG[Callee]->getNumReferences() == 0) {
|
|
DEBUG(dbgs() << " -> Deleting dead function: " << Callee->getName()
|
|
<< "\n");
|
|
CallGraphNode *CalleeNode = CG[Callee];
|
|
|
|
// Remove any call graph edges from the callee to its callees.
|
|
CalleeNode->removeAllCalledFunctions();
|
|
|
|
// Removing the node for callee from the call graph and delete it.
|
|
delete CG.removeFunctionFromModule(CalleeNode);
|
|
++NumDeleted;
|
|
}
|
|
|
|
// Remove this call site from the list. If possible, use
|
|
// swap/pop_back for efficiency, but do not use it if doing so would
|
|
// move a call site to a function in this SCC before the
|
|
// 'FirstCallInSCC' barrier.
|
|
if (SCC.isSingular()) {
|
|
CallSites[CSi] = CallSites.back();
|
|
CallSites.pop_back();
|
|
} else {
|
|
CallSites.erase(CallSites.begin() + CSi);
|
|
}
|
|
--CSi;
|
|
|
|
Changed = true;
|
|
LocalChange = true;
|
|
}
|
|
} while (LocalChange);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
|
|
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
|
|
ACT = &getAnalysis<AssumptionCacheTracker>();
|
|
PSI = getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
|
|
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
|
|
return ACT->getAssumptionCache(F);
|
|
};
|
|
return inlineCallsImpl(SCC, CG, GetAssumptionCache, PSI, TLI, InsertLifetime,
|
|
[this](CallSite CS) { return getInlineCost(CS); },
|
|
LegacyAARGetter(*this), ImportedFunctionsStats);
|
|
}
|
|
|
|
/// Remove now-dead linkonce functions at the end of
|
|
/// processing to avoid breaking the SCC traversal.
|
|
bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
|
|
if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
|
|
ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
|
|
InlinerFunctionImportStatsOpts::Verbose);
|
|
return removeDeadFunctions(CG);
|
|
}
|
|
|
|
/// Remove dead functions that are not included in DNR (Do Not Remove) list.
|
|
bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
|
|
bool AlwaysInlineOnly) {
|
|
SmallVector<CallGraphNode *, 16> FunctionsToRemove;
|
|
SmallVector<Function *, 16> DeadFunctionsInComdats;
|
|
|
|
auto RemoveCGN = [&](CallGraphNode *CGN) {
|
|
// Remove any call graph edges from the function to its callees.
|
|
CGN->removeAllCalledFunctions();
|
|
|
|
// Remove any edges from the external node to the function's call graph
|
|
// node. These edges might have been made irrelegant due to
|
|
// optimization of the program.
|
|
CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
|
|
|
|
// Removing the node for callee from the call graph and delete it.
|
|
FunctionsToRemove.push_back(CGN);
|
|
};
|
|
|
|
// Scan for all of the functions, looking for ones that should now be removed
|
|
// from the program. Insert the dead ones in the FunctionsToRemove set.
|
|
for (const auto &I : CG) {
|
|
CallGraphNode *CGN = I.second.get();
|
|
Function *F = CGN->getFunction();
|
|
if (!F || F->isDeclaration())
|
|
continue;
|
|
|
|
// Handle the case when this function is called and we only want to care
|
|
// about always-inline functions. This is a bit of a hack to share code
|
|
// between here and the InlineAlways pass.
|
|
if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
|
|
continue;
|
|
|
|
// If the only remaining users of the function are dead constants, remove
|
|
// them.
|
|
F->removeDeadConstantUsers();
|
|
|
|
if (!F->isDefTriviallyDead())
|
|
continue;
|
|
|
|
// It is unsafe to drop a function with discardable linkage from a COMDAT
|
|
// without also dropping the other members of the COMDAT.
|
|
// The inliner doesn't visit non-function entities which are in COMDAT
|
|
// groups so it is unsafe to do so *unless* the linkage is local.
|
|
if (!F->hasLocalLinkage()) {
|
|
if (F->hasComdat()) {
|
|
DeadFunctionsInComdats.push_back(F);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
RemoveCGN(CGN);
|
|
}
|
|
if (!DeadFunctionsInComdats.empty()) {
|
|
// Filter out the functions whose comdats remain alive.
|
|
filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
|
|
// Remove the rest.
|
|
for (Function *F : DeadFunctionsInComdats)
|
|
RemoveCGN(CG[F]);
|
|
}
|
|
|
|
if (FunctionsToRemove.empty())
|
|
return false;
|
|
|
|
// Now that we know which functions to delete, do so. We didn't want to do
|
|
// this inline, because that would invalidate our CallGraph::iterator
|
|
// objects. :(
|
|
//
|
|
// Note that it doesn't matter that we are iterating over a non-stable order
|
|
// here to do this, it doesn't matter which order the functions are deleted
|
|
// in.
|
|
array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
|
|
FunctionsToRemove.erase(
|
|
std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
|
|
FunctionsToRemove.end());
|
|
for (CallGraphNode *CGN : FunctionsToRemove) {
|
|
delete CG.removeFunctionFromModule(CGN);
|
|
++NumDeleted;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
|
|
CGSCCAnalysisManager &AM, LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
const ModuleAnalysisManager &MAM =
|
|
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager();
|
|
bool Changed = false;
|
|
|
|
assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
|
|
Module &M = *InitialC.begin()->getFunction().getParent();
|
|
ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M);
|
|
|
|
// We use a single common worklist for calls across the entire SCC. We
|
|
// process these in-order and append new calls introduced during inlining to
|
|
// the end.
|
|
//
|
|
// Note that this particular order of processing is actually critical to
|
|
// avoid very bad behaviors. Consider *highly connected* call graphs where
|
|
// each function contains a small amonut of code and a couple of calls to
|
|
// other functions. Because the LLVM inliner is fundamentally a bottom-up
|
|
// inliner, it can handle gracefully the fact that these all appear to be
|
|
// reasonable inlining candidates as it will flatten things until they become
|
|
// too big to inline, and then move on and flatten another batch.
|
|
//
|
|
// However, when processing call edges *within* an SCC we cannot rely on this
|
|
// bottom-up behavior. As a consequence, with heavily connected *SCCs* of
|
|
// functions we can end up incrementally inlining N calls into each of
|
|
// N functions because each incremental inlining decision looks good and we
|
|
// don't have a topological ordering to prevent explosions.
|
|
//
|
|
// To compensate for this, we don't process transitive edges made immediate
|
|
// by inlining until we've done one pass of inlining across the entire SCC.
|
|
// Large, highly connected SCCs still lead to some amount of code bloat in
|
|
// this model, but it is uniformly spread across all the functions in the SCC
|
|
// and eventually they all become too large to inline, rather than
|
|
// incrementally maknig a single function grow in a super linear fashion.
|
|
SmallVector<std::pair<CallSite, int>, 16> Calls;
|
|
|
|
// Populate the initial list of calls in this SCC.
|
|
for (auto &N : InitialC) {
|
|
// We want to generally process call sites top-down in order for
|
|
// simplifications stemming from replacing the call with the returned value
|
|
// after inlining to be visible to subsequent inlining decisions.
|
|
// FIXME: Using instructions sequence is a really bad way to do this.
|
|
// Instead we should do an actual RPO walk of the function body.
|
|
for (Instruction &I : instructions(N.getFunction()))
|
|
if (auto CS = CallSite(&I))
|
|
if (Function *Callee = CS.getCalledFunction())
|
|
if (!Callee->isDeclaration())
|
|
Calls.push_back({CS, -1});
|
|
}
|
|
if (Calls.empty())
|
|
return PreservedAnalyses::all();
|
|
|
|
// Capture updatable variables for the current SCC and RefSCC.
|
|
auto *C = &InitialC;
|
|
auto *RC = &C->getOuterRefSCC();
|
|
|
|
// When inlining a callee produces new call sites, we want to keep track of
|
|
// the fact that they were inlined from the callee. This allows us to avoid
|
|
// infinite inlining in some obscure cases. To represent this, we use an
|
|
// index into the InlineHistory vector.
|
|
SmallVector<std::pair<Function *, int>, 16> InlineHistory;
|
|
|
|
// Track a set vector of inlined callees so that we can augment the caller
|
|
// with all of their edges in the call graph before pruning out the ones that
|
|
// got simplified away.
|
|
SmallSetVector<Function *, 4> InlinedCallees;
|
|
|
|
// Track the dead functions to delete once finished with inlining calls. We
|
|
// defer deleting these to make it easier to handle the call graph updates.
|
|
SmallVector<Function *, 4> DeadFunctions;
|
|
|
|
// Loop forward over all of the calls. Note that we cannot cache the size as
|
|
// inlining can introduce new calls that need to be processed.
|
|
for (int i = 0; i < (int)Calls.size(); ++i) {
|
|
// We expect the calls to typically be batched with sequences of calls that
|
|
// have the same caller, so we first set up some shared infrastructure for
|
|
// this caller. We also do any pruning we can at this layer on the caller
|
|
// alone.
|
|
Function &F = *Calls[i].first.getCaller();
|
|
LazyCallGraph::Node &N = *CG.lookup(F);
|
|
if (CG.lookupSCC(N) != C)
|
|
continue;
|
|
if (F.hasFnAttribute(Attribute::OptimizeNone))
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");
|
|
|
|
// Get a FunctionAnalysisManager via a proxy for this particular node. We
|
|
// do this each time we visit a node as the SCC may have changed and as
|
|
// we're going to mutate this particular function we want to make sure the
|
|
// proxy is in place to forward any invalidation events. We can use the
|
|
// manager we get here for looking up results for functions other than this
|
|
// node however because those functions aren't going to be mutated by this
|
|
// pass.
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG)
|
|
.getManager();
|
|
std::function<AssumptionCache &(Function &)> GetAssumptionCache =
|
|
[&](Function &F) -> AssumptionCache & {
|
|
return FAM.getResult<AssumptionAnalysis>(F);
|
|
};
|
|
auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & {
|
|
return FAM.getResult<BlockFrequencyAnalysis>(F);
|
|
};
|
|
|
|
auto GetInlineCost = [&](CallSite CS) {
|
|
Function &Callee = *CS.getCalledFunction();
|
|
auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee);
|
|
return getInlineCost(CS, Params, CalleeTTI, GetAssumptionCache, {GetBFI},
|
|
PSI);
|
|
};
|
|
|
|
// Get the remarks emission analysis for the caller.
|
|
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
|
|
// Now process as many calls as we have within this caller in the sequnece.
|
|
// We bail out as soon as the caller has to change so we can update the
|
|
// call graph and prepare the context of that new caller.
|
|
bool DidInline = false;
|
|
for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) {
|
|
int InlineHistoryID;
|
|
CallSite CS;
|
|
std::tie(CS, InlineHistoryID) = Calls[i];
|
|
Function &Callee = *CS.getCalledFunction();
|
|
|
|
if (InlineHistoryID != -1 &&
|
|
InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory))
|
|
continue;
|
|
|
|
// Check whether we want to inline this callsite.
|
|
if (!shouldInline(CS, GetInlineCost, ORE))
|
|
continue;
|
|
|
|
// Setup the data structure used to plumb customization into the
|
|
// `InlineFunction` routine.
|
|
InlineFunctionInfo IFI(
|
|
/*cg=*/nullptr, &GetAssumptionCache, PSI,
|
|
&FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())),
|
|
&FAM.getResult<BlockFrequencyAnalysis>(Callee));
|
|
|
|
if (!InlineFunction(CS, IFI))
|
|
continue;
|
|
DidInline = true;
|
|
InlinedCallees.insert(&Callee);
|
|
|
|
// Add any new callsites to defined functions to the worklist.
|
|
if (!IFI.InlinedCallSites.empty()) {
|
|
int NewHistoryID = InlineHistory.size();
|
|
InlineHistory.push_back({&Callee, InlineHistoryID});
|
|
for (CallSite &CS : reverse(IFI.InlinedCallSites))
|
|
if (Function *NewCallee = CS.getCalledFunction())
|
|
if (!NewCallee->isDeclaration())
|
|
Calls.push_back({CS, NewHistoryID});
|
|
}
|
|
|
|
// Merge the attributes based on the inlining.
|
|
AttributeFuncs::mergeAttributesForInlining(F, Callee);
|
|
|
|
// For local functions, check whether this makes the callee trivially
|
|
// dead. In that case, we can drop the body of the function eagerly
|
|
// which may reduce the number of callers of other functions to one,
|
|
// changing inline cost thresholds.
|
|
if (Callee.hasLocalLinkage()) {
|
|
// To check this we also need to nuke any dead constant uses (perhaps
|
|
// made dead by this operation on other functions).
|
|
Callee.removeDeadConstantUsers();
|
|
if (Callee.use_empty()) {
|
|
Calls.erase(
|
|
std::remove_if(Calls.begin() + i + 1, Calls.end(),
|
|
[&Callee](const std::pair<CallSite, int> &Call) {
|
|
return Call.first.getCaller() == &Callee;
|
|
}),
|
|
Calls.end());
|
|
// Clear the body and queue the function itself for deletion when we
|
|
// finish inlining and call graph updates.
|
|
// Note that after this point, it is an error to do anything other
|
|
// than use the callee's address or delete it.
|
|
Callee.dropAllReferences();
|
|
assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
|
|
"Cannot put cause a function to become dead twice!");
|
|
DeadFunctions.push_back(&Callee);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Back the call index up by one to put us in a good position to go around
|
|
// the outer loop.
|
|
--i;
|
|
|
|
if (!DidInline)
|
|
continue;
|
|
Changed = true;
|
|
|
|
// Add all the inlined callees' edges as ref edges to the caller. These are
|
|
// by definition trivial edges as we always have *some* transitive ref edge
|
|
// chain. While in some cases these edges are direct calls inside the
|
|
// callee, they have to be modeled in the inliner as reference edges as
|
|
// there may be a reference edge anywhere along the chain from the current
|
|
// caller to the callee that causes the whole thing to appear like
|
|
// a (transitive) reference edge that will require promotion to a call edge
|
|
// below.
|
|
for (Function *InlinedCallee : InlinedCallees) {
|
|
LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
|
|
for (LazyCallGraph::Edge &E : *CalleeN)
|
|
RC->insertTrivialRefEdge(N, E.getNode());
|
|
}
|
|
InlinedCallees.clear();
|
|
|
|
// At this point, since we have made changes we have at least removed
|
|
// a call instruction. However, in the process we do some incremental
|
|
// simplification of the surrounding code. This simplification can
|
|
// essentially do all of the same things as a function pass and we can
|
|
// re-use the exact same logic for updating the call graph to reflect the
|
|
// change..
|
|
C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR);
|
|
DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
|
|
RC = &C->getOuterRefSCC();
|
|
}
|
|
|
|
// Now that we've finished inlining all of the calls across this SCC, delete
|
|
// all of the trivially dead functions, updating the call graph and the CGSCC
|
|
// pass manager in the process.
|
|
//
|
|
// Note that this walks a pointer set which has non-deterministic order but
|
|
// that is OK as all we do is delete things and add pointers to unordered
|
|
// sets.
|
|
for (Function *DeadF : DeadFunctions) {
|
|
// Get the necessary information out of the call graph and nuke the
|
|
// function there. Also, cclear out any cached analyses.
|
|
auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG)
|
|
.getManager();
|
|
FAM.clear(*DeadF);
|
|
AM.clear(DeadC);
|
|
auto &DeadRC = DeadC.getOuterRefSCC();
|
|
CG.removeDeadFunction(*DeadF);
|
|
|
|
// Mark the relevant parts of the call graph as invalid so we don't visit
|
|
// them.
|
|
UR.InvalidatedSCCs.insert(&DeadC);
|
|
UR.InvalidatedRefSCCs.insert(&DeadRC);
|
|
|
|
// And delete the actual function from the module.
|
|
M.getFunctionList().erase(DeadF);
|
|
}
|
|
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
|
|
}
|