forked from OSchip/llvm-project
458 lines
14 KiB
C++
458 lines
14 KiB
C++
//===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
|
|
/// FreeBSD-specific code.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "sanitizer_common/sanitizer_platform.h"
|
|
#if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
|
|
|
|
#include "hwasan.h"
|
|
#include "hwasan_dynamic_shadow.h"
|
|
#include "hwasan_interface_internal.h"
|
|
#include "hwasan_mapping.h"
|
|
#include "hwasan_report.h"
|
|
#include "hwasan_thread.h"
|
|
#include "hwasan_thread_list.h"
|
|
|
|
#include <dlfcn.h>
|
|
#include <elf.h>
|
|
#include <link.h>
|
|
#include <pthread.h>
|
|
#include <signal.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/time.h>
|
|
#include <unistd.h>
|
|
#include <unwind.h>
|
|
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "sanitizer_common/sanitizer_procmaps.h"
|
|
|
|
// Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
|
|
//
|
|
// HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
|
|
// Not currently tested.
|
|
// HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
|
|
// Integration tests downstream exist.
|
|
// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
|
|
// Tested with check-hwasan on x86_64-linux.
|
|
// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
|
|
// Tested with check-hwasan on aarch64-linux-android.
|
|
#if !SANITIZER_ANDROID
|
|
SANITIZER_INTERFACE_ATTRIBUTE
|
|
THREADLOCAL uptr __hwasan_tls;
|
|
#endif
|
|
|
|
namespace __hwasan {
|
|
|
|
static void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name) {
|
|
CHECK_EQ((beg % GetMmapGranularity()), 0);
|
|
CHECK_EQ(((end + 1) % GetMmapGranularity()), 0);
|
|
uptr size = end - beg + 1;
|
|
DecreaseTotalMmap(size); // Don't count the shadow against mmap_limit_mb.
|
|
if (!MmapFixedNoReserve(beg, size, name)) {
|
|
Report(
|
|
"ReserveShadowMemoryRange failed while trying to map 0x%zx bytes. "
|
|
"Perhaps you're using ulimit -v\n",
|
|
size);
|
|
Abort();
|
|
}
|
|
}
|
|
|
|
static void ProtectGap(uptr addr, uptr size) {
|
|
if (!size)
|
|
return;
|
|
void *res = MmapFixedNoAccess(addr, size, "shadow gap");
|
|
if (addr == (uptr)res)
|
|
return;
|
|
// A few pages at the start of the address space can not be protected.
|
|
// But we really want to protect as much as possible, to prevent this memory
|
|
// being returned as a result of a non-FIXED mmap().
|
|
if (addr == 0) {
|
|
uptr step = GetMmapGranularity();
|
|
while (size > step) {
|
|
addr += step;
|
|
size -= step;
|
|
void *res = MmapFixedNoAccess(addr, size, "shadow gap");
|
|
if (addr == (uptr)res)
|
|
return;
|
|
}
|
|
}
|
|
|
|
Report(
|
|
"ERROR: Failed to protect shadow gap [%p, %p]. "
|
|
"HWASan cannot proceed correctly. ABORTING.\n", (void *)addr,
|
|
(void *)(addr + size));
|
|
DumpProcessMap();
|
|
Die();
|
|
}
|
|
|
|
static uptr kLowMemStart;
|
|
static uptr kLowMemEnd;
|
|
static uptr kLowShadowEnd;
|
|
static uptr kLowShadowStart;
|
|
static uptr kHighShadowStart;
|
|
static uptr kHighShadowEnd;
|
|
static uptr kHighMemStart;
|
|
static uptr kHighMemEnd;
|
|
|
|
static void PrintRange(uptr start, uptr end, const char *name) {
|
|
Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
|
|
}
|
|
|
|
static void PrintAddressSpaceLayout() {
|
|
PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
|
|
if (kHighShadowEnd + 1 < kHighMemStart)
|
|
PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
|
|
else
|
|
CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
|
|
PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
|
|
if (kLowShadowEnd + 1 < kHighShadowStart)
|
|
PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
|
|
else
|
|
CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
|
|
PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
|
|
if (kLowMemEnd + 1 < kLowShadowStart)
|
|
PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
|
|
else
|
|
CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
|
|
PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
|
|
CHECK_EQ(0, kLowMemStart);
|
|
}
|
|
|
|
static uptr GetHighMemEnd() {
|
|
// HighMem covers the upper part of the address space.
|
|
uptr max_address = GetMaxUserVirtualAddress();
|
|
// Adjust max address to make sure that kHighMemEnd and kHighMemStart are
|
|
// properly aligned:
|
|
max_address |= (GetMmapGranularity() << kShadowScale) - 1;
|
|
return max_address;
|
|
}
|
|
|
|
static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
|
|
__hwasan_shadow_memory_dynamic_address =
|
|
FindDynamicShadowStart(shadow_size_bytes);
|
|
}
|
|
|
|
bool InitShadow() {
|
|
// Define the entire memory range.
|
|
kHighMemEnd = GetHighMemEnd();
|
|
|
|
// Determine shadow memory base offset.
|
|
InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd));
|
|
|
|
// Place the low memory first.
|
|
kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1;
|
|
kLowMemStart = 0;
|
|
|
|
// Define the low shadow based on the already placed low memory.
|
|
kLowShadowEnd = MemToShadow(kLowMemEnd);
|
|
kLowShadowStart = __hwasan_shadow_memory_dynamic_address;
|
|
|
|
// High shadow takes whatever memory is left up there (making sure it is not
|
|
// interfering with low memory in the fixed case).
|
|
kHighShadowEnd = MemToShadow(kHighMemEnd);
|
|
kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1;
|
|
|
|
// High memory starts where allocated shadow allows.
|
|
kHighMemStart = ShadowToMem(kHighShadowStart);
|
|
|
|
// Check the sanity of the defined memory ranges (there might be gaps).
|
|
CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
|
|
CHECK_GT(kHighMemStart, kHighShadowEnd);
|
|
CHECK_GT(kHighShadowEnd, kHighShadowStart);
|
|
CHECK_GT(kHighShadowStart, kLowMemEnd);
|
|
CHECK_GT(kLowMemEnd, kLowMemStart);
|
|
CHECK_GT(kLowShadowEnd, kLowShadowStart);
|
|
CHECK_GT(kLowShadowStart, kLowMemEnd);
|
|
|
|
if (Verbosity())
|
|
PrintAddressSpaceLayout();
|
|
|
|
// Reserve shadow memory.
|
|
ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
|
|
ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");
|
|
|
|
// Protect all the gaps.
|
|
ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
|
|
if (kLowMemEnd + 1 < kLowShadowStart)
|
|
ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
|
|
if (kLowShadowEnd + 1 < kHighShadowStart)
|
|
ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
|
|
if (kHighShadowEnd + 1 < kHighMemStart)
|
|
ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);
|
|
|
|
return true;
|
|
}
|
|
|
|
void InitThreads() {
|
|
CHECK(__hwasan_shadow_memory_dynamic_address);
|
|
uptr guard_page_size = GetMmapGranularity();
|
|
uptr thread_space_start =
|
|
__hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment);
|
|
uptr thread_space_end =
|
|
__hwasan_shadow_memory_dynamic_address - guard_page_size;
|
|
ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1,
|
|
"hwasan threads");
|
|
ProtectGap(thread_space_end,
|
|
__hwasan_shadow_memory_dynamic_address - thread_space_end);
|
|
InitThreadList(thread_space_start, thread_space_end - thread_space_start);
|
|
}
|
|
|
|
static void MadviseShadowRegion(uptr beg, uptr end) {
|
|
uptr size = end - beg + 1;
|
|
SetShadowRegionHugePageMode(beg, size);
|
|
if (common_flags()->use_madv_dontdump)
|
|
DontDumpShadowMemory(beg, size);
|
|
}
|
|
|
|
void MadviseShadow() {
|
|
MadviseShadowRegion(kLowShadowStart, kLowShadowEnd);
|
|
MadviseShadowRegion(kHighShadowStart, kHighShadowEnd);
|
|
}
|
|
|
|
bool MemIsApp(uptr p) {
|
|
CHECK(GetTagFromPointer(p) == 0);
|
|
return p >= kHighMemStart || (p >= kLowMemStart && p <= kLowMemEnd);
|
|
}
|
|
|
|
static void HwasanAtExit(void) {
|
|
if (common_flags()->print_module_map)
|
|
DumpProcessMap();
|
|
if (flags()->print_stats && (flags()->atexit || hwasan_report_count > 0))
|
|
ReportStats();
|
|
if (hwasan_report_count > 0) {
|
|
// ReportAtExitStatistics();
|
|
if (common_flags()->exitcode)
|
|
internal__exit(common_flags()->exitcode);
|
|
}
|
|
}
|
|
|
|
void InstallAtExitHandler() {
|
|
atexit(HwasanAtExit);
|
|
}
|
|
|
|
// ---------------------- TSD ---------------- {{{1
|
|
|
|
extern "C" void __hwasan_thread_enter() {
|
|
hwasanThreadList().CreateCurrentThread()->InitRandomState();
|
|
}
|
|
|
|
extern "C" void __hwasan_thread_exit() {
|
|
Thread *t = GetCurrentThread();
|
|
// Make sure that signal handler can not see a stale current thread pointer.
|
|
atomic_signal_fence(memory_order_seq_cst);
|
|
if (t)
|
|
hwasanThreadList().ReleaseThread(t);
|
|
}
|
|
|
|
#if HWASAN_WITH_INTERCEPTORS
|
|
static pthread_key_t tsd_key;
|
|
static bool tsd_key_inited = false;
|
|
|
|
void HwasanTSDThreadInit() {
|
|
if (tsd_key_inited)
|
|
CHECK_EQ(0, pthread_setspecific(tsd_key,
|
|
(void *)GetPthreadDestructorIterations()));
|
|
}
|
|
|
|
void HwasanTSDDtor(void *tsd) {
|
|
uptr iterations = (uptr)tsd;
|
|
if (iterations > 1) {
|
|
CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1)));
|
|
return;
|
|
}
|
|
__hwasan_thread_exit();
|
|
}
|
|
|
|
void HwasanTSDInit() {
|
|
CHECK(!tsd_key_inited);
|
|
tsd_key_inited = true;
|
|
CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
|
|
}
|
|
#else
|
|
void HwasanTSDInit() {}
|
|
void HwasanTSDThreadInit() {}
|
|
#endif
|
|
|
|
#if SANITIZER_ANDROID
|
|
uptr *GetCurrentThreadLongPtr() {
|
|
return (uptr *)get_android_tls_ptr();
|
|
}
|
|
#else
|
|
uptr *GetCurrentThreadLongPtr() {
|
|
return &__hwasan_tls;
|
|
}
|
|
#endif
|
|
|
|
#if SANITIZER_ANDROID
|
|
void AndroidTestTlsSlot() {
|
|
uptr kMagicValue = 0x010203040A0B0C0D;
|
|
uptr *tls_ptr = GetCurrentThreadLongPtr();
|
|
uptr old_value = *tls_ptr;
|
|
*tls_ptr = kMagicValue;
|
|
dlerror();
|
|
if (*(uptr *)get_android_tls_ptr() != kMagicValue) {
|
|
Printf(
|
|
"ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
|
|
"for dlerror().\n");
|
|
Die();
|
|
}
|
|
*tls_ptr = old_value;
|
|
}
|
|
#else
|
|
void AndroidTestTlsSlot() {}
|
|
#endif
|
|
|
|
Thread *GetCurrentThread() {
|
|
uptr *ThreadLong = GetCurrentThreadLongPtr();
|
|
#if HWASAN_WITH_INTERCEPTORS
|
|
if (!*ThreadLong)
|
|
__hwasan_thread_enter();
|
|
#endif
|
|
auto *R = (StackAllocationsRingBuffer *)ThreadLong;
|
|
return hwasanThreadList().GetThreadByBufferAddress((uptr)(R->Next()));
|
|
}
|
|
|
|
struct AccessInfo {
|
|
uptr addr;
|
|
uptr size;
|
|
bool is_store;
|
|
bool is_load;
|
|
bool recover;
|
|
};
|
|
|
|
static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
|
|
// Access type is passed in a platform dependent way (see below) and encoded
|
|
// as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
|
|
// recoverable. Valid values of Y are 0 to 4, which are interpreted as
|
|
// log2(access_size), and 0xF, which means that access size is passed via
|
|
// platform dependent register (see below).
|
|
#if defined(__aarch64__)
|
|
// Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
|
|
// access size is stored in X1 register. Access address is always in X0
|
|
// register.
|
|
uptr pc = (uptr)info->si_addr;
|
|
const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
|
|
if ((code & 0xff00) != 0x900)
|
|
return AccessInfo{}; // Not ours.
|
|
|
|
const bool is_store = code & 0x10;
|
|
const bool recover = code & 0x20;
|
|
const uptr addr = uc->uc_mcontext.regs[0];
|
|
const unsigned size_log = code & 0xf;
|
|
if (size_log > 4 && size_log != 0xf)
|
|
return AccessInfo{}; // Not ours.
|
|
const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;
|
|
|
|
#elif defined(__x86_64__)
|
|
// Access type is encoded in the instruction following INT3 as
|
|
// NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
|
|
// RSI register. Access address is always in RDI register.
|
|
uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
|
|
uint8_t *nop = (uint8_t*)pc;
|
|
if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
|
|
*(nop + 3) < 0x40)
|
|
return AccessInfo{}; // Not ours.
|
|
const unsigned code = *(nop + 3);
|
|
|
|
const bool is_store = code & 0x10;
|
|
const bool recover = code & 0x20;
|
|
const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
|
|
const unsigned size_log = code & 0xf;
|
|
if (size_log > 4 && size_log != 0xf)
|
|
return AccessInfo{}; // Not ours.
|
|
const uptr size =
|
|
size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;
|
|
|
|
#else
|
|
# error Unsupported architecture
|
|
#endif
|
|
|
|
return AccessInfo{addr, size, is_store, !is_store, recover};
|
|
}
|
|
|
|
static void HandleTagMismatch(AccessInfo ai, uptr pc, uptr frame,
|
|
ucontext_t *uc, uptr *registers_frame = nullptr) {
|
|
InternalMmapVector<BufferedStackTrace> stack_buffer(1);
|
|
BufferedStackTrace *stack = stack_buffer.data();
|
|
stack->Reset();
|
|
stack->Unwind(pc, frame, uc, common_flags()->fast_unwind_on_fatal);
|
|
|
|
// The second stack frame contains the failure __hwasan_check function, as
|
|
// we have a stack frame for the registers saved in __hwasan_tag_mismatch that
|
|
// we wish to ignore. This (currently) only occurs on AArch64, as x64
|
|
// implementations use SIGTRAP to implement the failure, and thus do not go
|
|
// through the stack saver.
|
|
if (registers_frame && stack->trace && stack->size > 0) {
|
|
stack->trace++;
|
|
stack->size--;
|
|
}
|
|
|
|
bool fatal = flags()->halt_on_error || !ai.recover;
|
|
ReportTagMismatch(stack, ai.addr, ai.size, ai.is_store, fatal,
|
|
registers_frame);
|
|
}
|
|
|
|
static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
|
|
AccessInfo ai = GetAccessInfo(info, uc);
|
|
if (!ai.is_store && !ai.is_load)
|
|
return false;
|
|
|
|
SignalContext sig{info, uc};
|
|
HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);
|
|
|
|
#if defined(__aarch64__)
|
|
uc->uc_mcontext.pc += 4;
|
|
#elif defined(__x86_64__)
|
|
#else
|
|
# error Unsupported architecture
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
// Entry point stub for interoperability between __hwasan_tag_mismatch (ASM) and
|
|
// the rest of the mismatch handling code (C++).
|
|
extern "C" void __hwasan_tag_mismatch_stub(uptr addr, uptr access_info,
|
|
uptr *registers_frame) {
|
|
AccessInfo ai;
|
|
ai.is_store = access_info & 0x10;
|
|
ai.recover = false;
|
|
ai.addr = addr;
|
|
ai.size = 1 << (access_info & 0xf);
|
|
|
|
HandleTagMismatch(ai, (uptr)__builtin_return_address(0),
|
|
(uptr)__builtin_frame_address(0), nullptr, registers_frame);
|
|
__builtin_unreachable();
|
|
}
|
|
|
|
static void OnStackUnwind(const SignalContext &sig, const void *,
|
|
BufferedStackTrace *stack) {
|
|
stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
|
|
common_flags()->fast_unwind_on_fatal);
|
|
}
|
|
|
|
void HwasanOnDeadlySignal(int signo, void *info, void *context) {
|
|
// Probably a tag mismatch.
|
|
if (signo == SIGTRAP)
|
|
if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t*)context))
|
|
return;
|
|
|
|
HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
|
|
}
|
|
|
|
|
|
} // namespace __hwasan
|
|
|
|
#endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
|