llvm-project/llvm/lib/Transforms/IPO/Inliner.cpp

614 lines
26 KiB
C++

//===- Inliner.cpp - Code common to all inliners --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the mechanics required to implement inlining without
// missing any calls and updating the call graph. The decisions of which calls
// are profitable to inline are implemented elsewhere.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "inline"
#include "llvm/Transforms/IPO/InlinerPass.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(NumInlined, "Number of functions inlined");
STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
STATISTIC(NumMergedAllocas, "Number of allocas merged together");
// This weirdly named statistic tracks the number of times that, when attempting
// to inline a function A into B, we analyze the callers of B in order to see
// if those would be more profitable and blocked inline steps.
STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
static cl::opt<int>
InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
cl::desc("Control the amount of inlining to perform (default = 225)"));
static cl::opt<int>
HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
cl::desc("Threshold for inlining functions with inline hint"));
// Threshold to use when optsize is specified (and there is no -inline-limit).
const int OptSizeThreshold = 75;
Inliner::Inliner(char &ID)
: CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {}
Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
: CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
InlineLimit : Threshold),
InsertLifetime(InsertLifetime) {}
/// getAnalysisUsage - For this class, we declare that we require and preserve
/// the call graph. If the derived class implements this method, it should
/// always explicitly call the implementation here.
void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
CallGraphSCCPass::getAnalysisUsage(AU);
}
typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
InlinedArrayAllocasTy;
/// \brief If the inlined function had a higher stack protection level than the
/// calling function, then bump up the caller's stack protection level.
static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) {
// If upgrading the SSP attribute, clear out the old SSP Attributes first.
// Having multiple SSP attributes doesn't actually hurt, but it adds useless
// clutter to the IR.
AttrBuilder B;
B.addAttribute(Attribute::StackProtect)
.addAttribute(Attribute::StackProtectStrong);
AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(),
AttributeSet::FunctionIndex,
B);
AttributeSet CallerAttr = Caller->getAttributes(),
CalleeAttr = Callee->getAttributes();
if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
Attribute::StackProtectReq)) {
Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
Caller->addFnAttr(Attribute::StackProtectReq);
} else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
Attribute::StackProtectStrong) &&
!CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
Attribute::StackProtectReq)) {
Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
Caller->addFnAttr(Attribute::StackProtectStrong);
} else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
Attribute::StackProtect) &&
!CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
Attribute::StackProtectReq) &&
!CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
Attribute::StackProtectStrong))
Caller->addFnAttr(Attribute::StackProtect);
}
/// InlineCallIfPossible - If it is possible to inline the specified call site,
/// do so and update the CallGraph for this operation.
///
/// This function also does some basic book-keeping to update the IR. The
/// InlinedArrayAllocas map keeps track of any allocas that are already
/// available from other functions inlined into the caller. If we are able to
/// inline this call site we attempt to reuse already available allocas or add
/// any new allocas to the set if not possible.
static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
InlinedArrayAllocasTy &InlinedArrayAllocas,
int InlineHistory, bool InsertLifetime) {
Function *Callee = CS.getCalledFunction();
Function *Caller = CS.getCaller();
// Try to inline the function. Get the list of static allocas that were
// inlined.
if (!InlineFunction(CS, IFI, InsertLifetime))
return false;
AdjustCallerSSPLevel(Caller, Callee);
// Look at all of the allocas that we inlined through this call site. If we
// have already inlined other allocas through other calls into this function,
// then we know that they have disjoint lifetimes and that we can merge them.
//
// There are many heuristics possible for merging these allocas, and the
// different options have different tradeoffs. One thing that we *really*
// don't want to hurt is SRoA: once inlining happens, often allocas are no
// longer address taken and so they can be promoted.
//
// Our "solution" for that is to only merge allocas whose outermost type is an
// array type. These are usually not promoted because someone is using a
// variable index into them. These are also often the most important ones to
// merge.
//
// A better solution would be to have real memory lifetime markers in the IR
// and not have the inliner do any merging of allocas at all. This would
// allow the backend to do proper stack slot coloring of all allocas that
// *actually make it to the backend*, which is really what we want.
//
// Because we don't have this information, we do this simple and useful hack.
//
SmallPtrSet<AllocaInst*, 16> UsedAllocas;
// When processing our SCC, check to see if CS was inlined from some other
// call site. For example, if we're processing "A" in this code:
// A() { B() }
// B() { x = alloca ... C() }
// C() { y = alloca ... }
// Assume that C was not inlined into B initially, and so we're processing A
// and decide to inline B into A. Doing this makes an alloca available for
// reuse and makes a callsite (C) available for inlining. When we process
// the C call site we don't want to do any alloca merging between X and Y
// because their scopes are not disjoint. We could make this smarter by
// keeping track of the inline history for each alloca in the
// InlinedArrayAllocas but this isn't likely to be a significant win.
if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
return true;
// Loop over all the allocas we have so far and see if they can be merged with
// a previously inlined alloca. If not, remember that we had it.
for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
AllocaNo != e; ++AllocaNo) {
AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
// Don't bother trying to merge array allocations (they will usually be
// canonicalized to be an allocation *of* an array), or allocations whose
// type is not itself an array (because we're afraid of pessimizing SRoA).
ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
if (ATy == 0 || AI->isArrayAllocation())
continue;
// Get the list of all available allocas for this array type.
std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
// Loop over the allocas in AllocasForType to see if we can reuse one. Note
// that we have to be careful not to reuse the same "available" alloca for
// multiple different allocas that we just inlined, we use the 'UsedAllocas'
// set to keep track of which "available" allocas are being used by this
// function. Also, AllocasForType can be empty of course!
bool MergedAwayAlloca = false;
for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
AllocaInst *AvailableAlloca = AllocasForType[i];
// The available alloca has to be in the right function, not in some other
// function in this SCC.
if (AvailableAlloca->getParent() != AI->getParent())
continue;
// If the inlined function already uses this alloca then we can't reuse
// it.
if (!UsedAllocas.insert(AvailableAlloca))
continue;
// Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
// success!
DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
<< *AvailableAlloca << '\n');
AI->replaceAllUsesWith(AvailableAlloca);
AI->eraseFromParent();
MergedAwayAlloca = true;
++NumMergedAllocas;
IFI.StaticAllocas[AllocaNo] = 0;
break;
}
// If we already nuked the alloca, we're done with it.
if (MergedAwayAlloca)
continue;
// If we were unable to merge away the alloca either because there are no
// allocas of the right type available or because we reused them all
// already, remember that this alloca came from an inlined function and mark
// it used so we don't reuse it for other allocas from this inline
// operation.
AllocasForType.push_back(AI);
UsedAllocas.insert(AI);
}
return true;
}
unsigned Inliner::getInlineThreshold(CallSite CS) const {
int thres = InlineThreshold; // -inline-threshold or else selected by
// overall opt level
// If -inline-threshold is not given, listen to the optsize attribute when it
// would decrease the threshold.
Function *Caller = CS.getCaller();
bool OptSize = Caller && !Caller->isDeclaration() &&
Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
Attribute::OptimizeForSize);
if (!(InlineLimit.getNumOccurrences() > 0) && OptSize &&
OptSizeThreshold < thres)
thres = OptSizeThreshold;
// Listen to the inlinehint attribute when it would increase the threshold
// and the caller does not need to minimize its size.
Function *Callee = CS.getCalledFunction();
bool InlineHint = Callee && !Callee->isDeclaration() &&
Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
Attribute::InlineHint);
if (InlineHint && HintThreshold > thres
&& !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
Attribute::MinSize))
thres = HintThreshold;
return thres;
}
/// shouldInline - Return true if the inliner should attempt to inline
/// at the given CallSite.
bool Inliner::shouldInline(CallSite CS) {
InlineCost IC = getInlineCost(CS);
if (IC.isAlways()) {
DEBUG(dbgs() << " Inlining: cost=always"
<< ", Call: " << *CS.getInstruction() << "\n");
return true;
}
if (IC.isNever()) {
DEBUG(dbgs() << " NOT Inlining: cost=never"
<< ", Call: " << *CS.getInstruction() << "\n");
return false;
}
Function *Caller = CS.getCaller();
if (!IC) {
DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost()
<< ", thres=" << (IC.getCostDelta() + IC.getCost())
<< ", Call: " << *CS.getInstruction() << "\n");
return false;
}
// Try to detect the case where the current inlining candidate caller (call
// it B) is a static or linkonce-ODR function and is an inlining candidate
// elsewhere, and the current candidate callee (call it C) is large enough
// that inlining it into B would make B too big to inline later. In these
// circumstances it may be best not to inline C into B, but to inline B into
// its callers.
//
// This only applies to static and linkonce-ODR functions because those are
// expected to be available for inlining in the translation units where they
// are used. Thus we will always have the opportunity to make local inlining
// decisions. Importantly the linkonce-ODR linkage covers inline functions
// and templates in C++.
//
// FIXME: All of this logic should be sunk into getInlineCost. It relies on
// the internal implementation of the inline cost metrics rather than
// treating them as truly abstract units etc.
if (Caller->hasLocalLinkage() ||
Caller->getLinkage() == GlobalValue::LinkOnceODRLinkage) {
int TotalSecondaryCost = 0;
// The candidate cost to be imposed upon the current function.
int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
// This bool tracks what happens if we do NOT inline C into B.
bool callerWillBeRemoved = Caller->hasLocalLinkage();
// This bool tracks what happens if we DO inline C into B.
bool inliningPreventsSomeOuterInline = false;
for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end();
I != E; ++I) {
CallSite CS2(*I);
// If this isn't a call to Caller (it could be some other sort
// of reference) skip it. Such references will prevent the caller
// from being removed.
if (!CS2 || CS2.getCalledFunction() != Caller) {
callerWillBeRemoved = false;
continue;
}
InlineCost IC2 = getInlineCost(CS2);
++NumCallerCallersAnalyzed;
if (!IC2) {
callerWillBeRemoved = false;
continue;
}
if (IC2.isAlways())
continue;
// See if inlining or original callsite would erase the cost delta of
// this callsite. We subtract off the penalty for the call instruction,
// which we would be deleting.
if (IC2.getCostDelta() <= CandidateCost) {
inliningPreventsSomeOuterInline = true;
TotalSecondaryCost += IC2.getCost();
}
}
// If all outer calls to Caller would get inlined, the cost for the last
// one is set very low by getInlineCost, in anticipation that Caller will
// be removed entirely. We did not account for this above unless there
// is only one caller of Caller.
if (callerWillBeRemoved && Caller->use_begin() != Caller->use_end())
TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) {
DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() <<
" Cost = " << IC.getCost() <<
", outer Cost = " << TotalSecondaryCost << '\n');
return false;
}
}
DEBUG(dbgs() << " Inlining: cost=" << IC.getCost()
<< ", thres=" << (IC.getCostDelta() + IC.getCost())
<< ", Call: " << *CS.getInstruction() << '\n');
return true;
}
/// InlineHistoryIncludes - Return true if the specified inline history ID
/// indicates an inline history that includes the specified function.
static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
while (InlineHistoryID != -1) {
assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
"Invalid inline history ID");
if (InlineHistory[InlineHistoryID].first == F)
return true;
InlineHistoryID = InlineHistory[InlineHistoryID].second;
}
return false;
}
bool Inliner::runOnSCC(CallGraphSCC &SCC) {
CallGraph &CG = getAnalysis<CallGraph>();
const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
const TargetLibraryInfo *TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
SmallPtrSet<Function*, 8> SCCFunctions;
DEBUG(dbgs() << "Inliner visiting SCC:");
for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
Function *F = (*I)->getFunction();
if (F) SCCFunctions.insert(F);
DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
}
// Scan through and identify all call sites ahead of time so that we only
// inline call sites in the original functions, not call sites that result
// from inlining other functions.
SmallVector<std::pair<CallSite, int>, 16> CallSites;
// When inlining a callee produces new call sites, we want to keep track of
// the fact that they were inlined from the callee. This allows us to avoid
// infinite inlining in some obscure cases. To represent this, we use an
// index into the InlineHistory vector.
SmallVector<std::pair<Function*, int>, 8> InlineHistory;
for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
Function *F = (*I)->getFunction();
if (!F) continue;
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
CallSite CS(cast<Value>(I));
// If this isn't a call, or it is a call to an intrinsic, it can
// never be inlined.
if (!CS || isa<IntrinsicInst>(I))
continue;
// If this is a direct call to an external function, we can never inline
// it. If it is an indirect call, inlining may resolve it to be a
// direct call, so we keep it.
if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
continue;
CallSites.push_back(std::make_pair(CS, -1));
}
}
DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
// If there are no calls in this function, exit early.
if (CallSites.empty())
return false;
// Now that we have all of the call sites, move the ones to functions in the
// current SCC to the end of the list.
unsigned FirstCallInSCC = CallSites.size();
for (unsigned i = 0; i < FirstCallInSCC; ++i)
if (Function *F = CallSites[i].first.getCalledFunction())
if (SCCFunctions.count(F))
std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
InlinedArrayAllocasTy InlinedArrayAllocas;
InlineFunctionInfo InlineInfo(&CG, TD);
// Now that we have all of the call sites, loop over them and inline them if
// it looks profitable to do so.
bool Changed = false;
bool LocalChange;
do {
LocalChange = false;
// Iterate over the outer loop because inlining functions can cause indirect
// calls to become direct calls.
for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
CallSite CS = CallSites[CSi].first;
Function *Caller = CS.getCaller();
Function *Callee = CS.getCalledFunction();
// If this call site is dead and it is to a readonly function, we should
// just delete the call instead of trying to inline it, regardless of
// size. This happens because IPSCCP propagates the result out of the
// call and then we're left with the dead call.
if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) {
DEBUG(dbgs() << " -> Deleting dead call: "
<< *CS.getInstruction() << "\n");
// Update the call graph by deleting the edge from Callee to Caller.
CG[Caller]->removeCallEdgeFor(CS);
CS.getInstruction()->eraseFromParent();
++NumCallsDeleted;
} else {
// We can only inline direct calls to non-declarations.
if (Callee == 0 || Callee->isDeclaration()) continue;
// If this call site was obtained by inlining another function, verify
// that the include path for the function did not include the callee
// itself. If so, we'd be recursively inlining the same function,
// which would provide the same callsites, which would cause us to
// infinitely inline.
int InlineHistoryID = CallSites[CSi].second;
if (InlineHistoryID != -1 &&
InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
continue;
// If the policy determines that we should inline this function,
// try to do so.
if (!shouldInline(CS))
continue;
// Attempt to inline the function.
if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
InlineHistoryID, InsertLifetime))
continue;
++NumInlined;
// If inlining this function gave us any new call sites, throw them
// onto our worklist to process. They are useful inline candidates.
if (!InlineInfo.InlinedCalls.empty()) {
// Create a new inline history entry for this, so that we remember
// that these new callsites came about due to inlining Callee.
int NewHistoryID = InlineHistory.size();
InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
for (unsigned i = 0, e = InlineInfo.InlinedCalls.size();
i != e; ++i) {
Value *Ptr = InlineInfo.InlinedCalls[i];
CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
}
}
}
// If we inlined or deleted the last possible call site to the function,
// delete the function body now.
if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
// TODO: Can remove if in SCC now.
!SCCFunctions.count(Callee) &&
// The function may be apparently dead, but if there are indirect
// callgraph references to the node, we cannot delete it yet, this
// could invalidate the CGSCC iterator.
CG[Callee]->getNumReferences() == 0) {
DEBUG(dbgs() << " -> Deleting dead function: "
<< Callee->getName() << "\n");
CallGraphNode *CalleeNode = CG[Callee];
// Remove any call graph edges from the callee to its callees.
CalleeNode->removeAllCalledFunctions();
// Removing the node for callee from the call graph and delete it.
delete CG.removeFunctionFromModule(CalleeNode);
++NumDeleted;
}
// Remove this call site from the list. If possible, use
// swap/pop_back for efficiency, but do not use it if doing so would
// move a call site to a function in this SCC before the
// 'FirstCallInSCC' barrier.
if (SCC.isSingular()) {
CallSites[CSi] = CallSites.back();
CallSites.pop_back();
} else {
CallSites.erase(CallSites.begin()+CSi);
}
--CSi;
Changed = true;
LocalChange = true;
}
} while (LocalChange);
return Changed;
}
// doFinalization - Remove now-dead linkonce functions at the end of
// processing to avoid breaking the SCC traversal.
bool Inliner::doFinalization(CallGraph &CG) {
return removeDeadFunctions(CG);
}
/// removeDeadFunctions - Remove dead functions that are not included in
/// DNR (Do Not Remove) list.
bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
SmallVector<CallGraphNode*, 16> FunctionsToRemove;
// Scan for all of the functions, looking for ones that should now be removed
// from the program. Insert the dead ones in the FunctionsToRemove set.
for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
CallGraphNode *CGN = I->second;
Function *F = CGN->getFunction();
if (!F || F->isDeclaration())
continue;
// Handle the case when this function is called and we only want to care
// about always-inline functions. This is a bit of a hack to share code
// between here and the InlineAlways pass.
if (AlwaysInlineOnly &&
!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
Attribute::AlwaysInline))
continue;
// If the only remaining users of the function are dead constants, remove
// them.
F->removeDeadConstantUsers();
if (!F->isDefTriviallyDead())
continue;
// Remove any call graph edges from the function to its callees.
CGN->removeAllCalledFunctions();
// Remove any edges from the external node to the function's call graph
// node. These edges might have been made irrelegant due to
// optimization of the program.
CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
// Removing the node for callee from the call graph and delete it.
FunctionsToRemove.push_back(CGN);
}
if (FunctionsToRemove.empty())
return false;
// Now that we know which functions to delete, do so. We didn't want to do
// this inline, because that would invalidate our CallGraph::iterator
// objects. :(
//
// Note that it doesn't matter that we are iterating over a non-stable order
// here to do this, it doesn't matter which order the functions are deleted
// in.
array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
FunctionsToRemove.end()),
FunctionsToRemove.end());
for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(),
E = FunctionsToRemove.end();
I != E; ++I) {
delete CG.removeFunctionFromModule(*I);
++NumDeleted;
}
return true;
}