forked from OSchip/llvm-project
891 lines
35 KiB
C++
891 lines
35 KiB
C++
//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// This file implements classes for searching and anlyzing source code clones.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/CloneDetection.h"
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Lex/Lexer.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/MD5.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace clang;
|
|
|
|
StmtSequence::StmtSequence(const CompoundStmt *Stmt, ASTContext &Context,
|
|
unsigned StartIndex, unsigned EndIndex)
|
|
: S(Stmt), Context(&Context), StartIndex(StartIndex), EndIndex(EndIndex) {
|
|
assert(Stmt && "Stmt must not be a nullptr");
|
|
assert(StartIndex < EndIndex && "Given array should not be empty");
|
|
assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
|
|
}
|
|
|
|
StmtSequence::StmtSequence(const Stmt *Stmt, ASTContext &Context)
|
|
: S(Stmt), Context(&Context), StartIndex(0), EndIndex(0) {}
|
|
|
|
StmtSequence::StmtSequence()
|
|
: S(nullptr), Context(nullptr), StartIndex(0), EndIndex(0) {}
|
|
|
|
bool StmtSequence::contains(const StmtSequence &Other) const {
|
|
// If both sequences reside in different translation units, they can never
|
|
// contain each other.
|
|
if (Context != Other.Context)
|
|
return false;
|
|
|
|
const SourceManager &SM = Context->getSourceManager();
|
|
|
|
// Otherwise check if the start and end locations of the current sequence
|
|
// surround the other sequence.
|
|
bool StartIsInBounds =
|
|
SM.isBeforeInTranslationUnit(getStartLoc(), Other.getStartLoc()) ||
|
|
getStartLoc() == Other.getStartLoc();
|
|
if (!StartIsInBounds)
|
|
return false;
|
|
|
|
bool EndIsInBounds =
|
|
SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
|
|
Other.getEndLoc() == getEndLoc();
|
|
return EndIsInBounds;
|
|
}
|
|
|
|
StmtSequence::iterator StmtSequence::begin() const {
|
|
if (!holdsSequence()) {
|
|
return &S;
|
|
}
|
|
auto CS = cast<CompoundStmt>(S);
|
|
return CS->body_begin() + StartIndex;
|
|
}
|
|
|
|
StmtSequence::iterator StmtSequence::end() const {
|
|
if (!holdsSequence()) {
|
|
return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
|
|
}
|
|
auto CS = cast<CompoundStmt>(S);
|
|
return CS->body_begin() + EndIndex;
|
|
}
|
|
|
|
SourceLocation StmtSequence::getStartLoc() const {
|
|
return front()->getLocStart();
|
|
}
|
|
|
|
SourceLocation StmtSequence::getEndLoc() const { return back()->getLocEnd(); }
|
|
|
|
namespace {
|
|
|
|
/// \brief Analyzes the pattern of the referenced variables in a statement.
|
|
class VariablePattern {
|
|
|
|
/// \brief Describes an occurence of a variable reference in a statement.
|
|
struct VariableOccurence {
|
|
/// The index of the associated VarDecl in the Variables vector.
|
|
size_t KindID;
|
|
/// The source range in the code where the variable was referenced.
|
|
SourceRange Range;
|
|
|
|
VariableOccurence(size_t KindID, SourceRange Range)
|
|
: KindID(KindID), Range(Range) {}
|
|
};
|
|
|
|
/// All occurences of referenced variables in the order of appearance.
|
|
std::vector<VariableOccurence> Occurences;
|
|
/// List of referenced variables in the order of appearance.
|
|
/// Every item in this list is unique.
|
|
std::vector<const VarDecl *> Variables;
|
|
|
|
/// \brief Adds a new variable referenced to this pattern.
|
|
/// \param VarDecl The declaration of the variable that is referenced.
|
|
/// \param Range The SourceRange where this variable is referenced.
|
|
void addVariableOccurence(const VarDecl *VarDecl, SourceRange Range) {
|
|
// First check if we already reference this variable
|
|
for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
|
|
if (Variables[KindIndex] == VarDecl) {
|
|
// If yes, add a new occurence that points to the existing entry in
|
|
// the Variables vector.
|
|
Occurences.emplace_back(KindIndex, Range);
|
|
return;
|
|
}
|
|
}
|
|
// If this variable wasn't already referenced, add it to the list of
|
|
// referenced variables and add a occurence that points to this new entry.
|
|
Occurences.emplace_back(Variables.size(), Range);
|
|
Variables.push_back(VarDecl);
|
|
}
|
|
|
|
/// \brief Adds each referenced variable from the given statement.
|
|
void addVariables(const Stmt *S) {
|
|
// Sometimes we get a nullptr (such as from IfStmts which often have nullptr
|
|
// children). We skip such statements as they don't reference any
|
|
// variables.
|
|
if (!S)
|
|
return;
|
|
|
|
// Check if S is a reference to a variable. If yes, add it to the pattern.
|
|
if (auto D = dyn_cast<DeclRefExpr>(S)) {
|
|
if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
|
|
addVariableOccurence(VD, D->getSourceRange());
|
|
}
|
|
|
|
// Recursively check all children of the given statement.
|
|
for (const Stmt *Child : S->children()) {
|
|
addVariables(Child);
|
|
}
|
|
}
|
|
|
|
public:
|
|
/// \brief Creates an VariablePattern object with information about the given
|
|
/// StmtSequence.
|
|
VariablePattern(const StmtSequence &Sequence) {
|
|
for (const Stmt *S : Sequence)
|
|
addVariables(S);
|
|
}
|
|
|
|
/// \brief Counts the differences between this pattern and the given one.
|
|
/// \param Other The given VariablePattern to compare with.
|
|
/// \param FirstMismatch Output parameter that will be filled with information
|
|
/// about the first difference between the two patterns. This parameter
|
|
/// can be a nullptr, in which case it will be ignored.
|
|
/// \return Returns the number of differences between the pattern this object
|
|
/// is following and the given VariablePattern.
|
|
///
|
|
/// For example, the following statements all have the same pattern and this
|
|
/// function would return zero:
|
|
///
|
|
/// if (a < b) return a; return b;
|
|
/// if (x < y) return x; return y;
|
|
/// if (u2 < u1) return u2; return u1;
|
|
///
|
|
/// But the following statement has a different pattern (note the changed
|
|
/// variables in the return statements) and would have two differences when
|
|
/// compared with one of the statements above.
|
|
///
|
|
/// if (a < b) return b; return a;
|
|
///
|
|
/// This function should only be called if the related statements of the given
|
|
/// pattern and the statements of this objects are clones of each other.
|
|
unsigned countPatternDifferences(
|
|
const VariablePattern &Other,
|
|
CloneDetector::SuspiciousClonePair *FirstMismatch = nullptr) {
|
|
unsigned NumberOfDifferences = 0;
|
|
|
|
assert(Other.Occurences.size() == Occurences.size());
|
|
for (unsigned i = 0; i < Occurences.size(); ++i) {
|
|
auto ThisOccurence = Occurences[i];
|
|
auto OtherOccurence = Other.Occurences[i];
|
|
if (ThisOccurence.KindID == OtherOccurence.KindID)
|
|
continue;
|
|
|
|
++NumberOfDifferences;
|
|
|
|
// If FirstMismatch is not a nullptr, we need to store information about
|
|
// the first difference between the two patterns.
|
|
if (FirstMismatch == nullptr)
|
|
continue;
|
|
|
|
// Only proceed if we just found the first difference as we only store
|
|
// information about the first difference.
|
|
if (NumberOfDifferences != 1)
|
|
continue;
|
|
|
|
const VarDecl *FirstSuggestion = nullptr;
|
|
// If there is a variable available in the list of referenced variables
|
|
// which wouldn't break the pattern if it is used in place of the
|
|
// current variable, we provide this variable as the suggested fix.
|
|
if (OtherOccurence.KindID < Variables.size())
|
|
FirstSuggestion = Variables[OtherOccurence.KindID];
|
|
|
|
// Store information about the first clone.
|
|
FirstMismatch->FirstCloneInfo =
|
|
CloneDetector::SuspiciousClonePair::SuspiciousCloneInfo(
|
|
Variables[ThisOccurence.KindID], ThisOccurence.Range,
|
|
FirstSuggestion);
|
|
|
|
// Same as above but with the other clone. We do this for both clones as
|
|
// we don't know which clone is the one containing the unintended
|
|
// pattern error.
|
|
const VarDecl *SecondSuggestion = nullptr;
|
|
if (ThisOccurence.KindID < Other.Variables.size())
|
|
SecondSuggestion = Other.Variables[ThisOccurence.KindID];
|
|
|
|
// Store information about the second clone.
|
|
FirstMismatch->SecondCloneInfo =
|
|
CloneDetector::SuspiciousClonePair::SuspiciousCloneInfo(
|
|
Variables[ThisOccurence.KindID], OtherOccurence.Range,
|
|
SecondSuggestion);
|
|
|
|
// SuspiciousClonePair guarantees that the first clone always has a
|
|
// suggested variable associated with it. As we know that one of the two
|
|
// clones in the pair always has suggestion, we swap the two clones
|
|
// in case the first clone has no suggested variable which means that
|
|
// the second clone has a suggested variable and should be first.
|
|
if (!FirstMismatch->FirstCloneInfo.Suggestion)
|
|
std::swap(FirstMismatch->FirstCloneInfo,
|
|
FirstMismatch->SecondCloneInfo);
|
|
|
|
// This ensures that we always have at least one suggestion in a pair.
|
|
assert(FirstMismatch->FirstCloneInfo.Suggestion);
|
|
}
|
|
|
|
return NumberOfDifferences;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Prints the macro name that contains the given SourceLocation into
|
|
/// the given raw_string_ostream.
|
|
static void printMacroName(llvm::raw_string_ostream &MacroStack,
|
|
ASTContext &Context, SourceLocation Loc) {
|
|
MacroStack << Lexer::getImmediateMacroName(Loc, Context.getSourceManager(),
|
|
Context.getLangOpts());
|
|
|
|
// Add an empty space at the end as a padding to prevent
|
|
// that macro names concatenate to the names of other macros.
|
|
MacroStack << " ";
|
|
}
|
|
|
|
/// \brief Returns a string that represents all macro expansions that
|
|
/// expanded into the given SourceLocation.
|
|
///
|
|
/// If 'getMacroStack(A) == getMacroStack(B)' is true, then the SourceLocations
|
|
/// A and B are expanded from the same macros in the same order.
|
|
static std::string getMacroStack(SourceLocation Loc, ASTContext &Context) {
|
|
std::string MacroStack;
|
|
llvm::raw_string_ostream MacroStackStream(MacroStack);
|
|
SourceManager &SM = Context.getSourceManager();
|
|
|
|
// Iterate over all macros that expanded into the given SourceLocation.
|
|
while (Loc.isMacroID()) {
|
|
// Add the macro name to the stream.
|
|
printMacroName(MacroStackStream, Context, Loc);
|
|
Loc = SM.getImmediateMacroCallerLoc(Loc);
|
|
}
|
|
MacroStackStream.flush();
|
|
return MacroStack;
|
|
}
|
|
|
|
namespace {
|
|
/// \brief Collects the data of a single Stmt.
|
|
///
|
|
/// This class defines what a code clone is: If it collects for two statements
|
|
/// the same data, then those two statements are considered to be clones of each
|
|
/// other.
|
|
///
|
|
/// All collected data is forwarded to the given data consumer of the type T.
|
|
/// The data consumer class needs to provide a member method with the signature:
|
|
/// update(StringRef Str)
|
|
template <typename T>
|
|
class StmtDataCollector : public ConstStmtVisitor<StmtDataCollector<T>> {
|
|
|
|
ASTContext &Context;
|
|
/// \brief The data sink to which all data is forwarded.
|
|
T &DataConsumer;
|
|
|
|
public:
|
|
/// \brief Collects data of the given Stmt.
|
|
/// \param S The given statement.
|
|
/// \param Context The ASTContext of S.
|
|
/// \param DataConsumer The data sink to which all data is forwarded.
|
|
StmtDataCollector(const Stmt *S, ASTContext &Context, T &DataConsumer)
|
|
: Context(Context), DataConsumer(DataConsumer) {
|
|
this->Visit(S);
|
|
}
|
|
|
|
// Below are utility methods for appending different data to the vector.
|
|
|
|
void addData(CloneDetector::DataPiece Integer) {
|
|
DataConsumer.update(
|
|
StringRef(reinterpret_cast<char *>(&Integer), sizeof(Integer)));
|
|
}
|
|
|
|
void addData(llvm::StringRef Str) { DataConsumer.update(Str); }
|
|
|
|
void addData(const QualType &QT) { addData(QT.getAsString()); }
|
|
|
|
// The functions below collect the class specific data of each Stmt subclass.
|
|
|
|
// Utility macro for defining a visit method for a given class. This method
|
|
// calls back to the ConstStmtVisitor to visit all parent classes.
|
|
#define DEF_ADD_DATA(CLASS, CODE) \
|
|
void Visit##CLASS(const CLASS *S) { \
|
|
CODE; \
|
|
ConstStmtVisitor<StmtDataCollector>::Visit##CLASS(S); \
|
|
}
|
|
|
|
DEF_ADD_DATA(Stmt, {
|
|
addData(S->getStmtClass());
|
|
// This ensures that macro generated code isn't identical to macro-generated
|
|
// code.
|
|
addData(getMacroStack(S->getLocStart(), Context));
|
|
addData(getMacroStack(S->getLocEnd(), Context));
|
|
})
|
|
DEF_ADD_DATA(Expr, { addData(S->getType()); })
|
|
|
|
//--- Builtin functionality ----------------------------------------------//
|
|
DEF_ADD_DATA(ArrayTypeTraitExpr, { addData(S->getTrait()); })
|
|
DEF_ADD_DATA(ExpressionTraitExpr, { addData(S->getTrait()); })
|
|
DEF_ADD_DATA(PredefinedExpr, { addData(S->getIdentType()); })
|
|
DEF_ADD_DATA(TypeTraitExpr, {
|
|
addData(S->getTrait());
|
|
for (unsigned i = 0; i < S->getNumArgs(); ++i)
|
|
addData(S->getArg(i)->getType());
|
|
})
|
|
|
|
//--- Calls --------------------------------------------------------------//
|
|
DEF_ADD_DATA(CallExpr, {
|
|
// Function pointers don't have a callee and we just skip hashing it.
|
|
if (const FunctionDecl *D = S->getDirectCallee()) {
|
|
// If the function is a template specialization, we also need to handle
|
|
// the template arguments as they are not included in the qualified name.
|
|
if (auto Args = D->getTemplateSpecializationArgs()) {
|
|
std::string ArgString;
|
|
|
|
// Print all template arguments into ArgString
|
|
llvm::raw_string_ostream OS(ArgString);
|
|
for (unsigned i = 0; i < Args->size(); ++i) {
|
|
Args->get(i).print(Context.getLangOpts(), OS);
|
|
// Add a padding character so that 'foo<X, XX>()' != 'foo<XX, X>()'.
|
|
OS << '\n';
|
|
}
|
|
OS.flush();
|
|
|
|
addData(ArgString);
|
|
}
|
|
addData(D->getQualifiedNameAsString());
|
|
}
|
|
})
|
|
|
|
//--- Exceptions ---------------------------------------------------------//
|
|
DEF_ADD_DATA(CXXCatchStmt, { addData(S->getCaughtType()); })
|
|
|
|
//--- C++ OOP Stmts ------------------------------------------------------//
|
|
DEF_ADD_DATA(CXXDeleteExpr, {
|
|
addData(S->isArrayFormAsWritten());
|
|
addData(S->isGlobalDelete());
|
|
})
|
|
|
|
//--- Casts --------------------------------------------------------------//
|
|
DEF_ADD_DATA(ObjCBridgedCastExpr, { addData(S->getBridgeKind()); })
|
|
|
|
//--- Miscellaneous Exprs ------------------------------------------------//
|
|
DEF_ADD_DATA(BinaryOperator, { addData(S->getOpcode()); })
|
|
DEF_ADD_DATA(UnaryOperator, { addData(S->getOpcode()); })
|
|
|
|
//--- Control flow -------------------------------------------------------//
|
|
DEF_ADD_DATA(GotoStmt, { addData(S->getLabel()->getName()); })
|
|
DEF_ADD_DATA(IndirectGotoStmt, {
|
|
if (S->getConstantTarget())
|
|
addData(S->getConstantTarget()->getName());
|
|
})
|
|
DEF_ADD_DATA(LabelStmt, { addData(S->getDecl()->getName()); })
|
|
DEF_ADD_DATA(MSDependentExistsStmt, { addData(S->isIfExists()); })
|
|
DEF_ADD_DATA(AddrLabelExpr, { addData(S->getLabel()->getName()); })
|
|
|
|
//--- Objective-C --------------------------------------------------------//
|
|
DEF_ADD_DATA(ObjCIndirectCopyRestoreExpr, { addData(S->shouldCopy()); })
|
|
DEF_ADD_DATA(ObjCPropertyRefExpr, {
|
|
addData(S->isSuperReceiver());
|
|
addData(S->isImplicitProperty());
|
|
})
|
|
DEF_ADD_DATA(ObjCAtCatchStmt, { addData(S->hasEllipsis()); })
|
|
|
|
//--- Miscellaneous Stmts ------------------------------------------------//
|
|
DEF_ADD_DATA(CXXFoldExpr, {
|
|
addData(S->isRightFold());
|
|
addData(S->getOperator());
|
|
})
|
|
DEF_ADD_DATA(GenericSelectionExpr, {
|
|
for (unsigned i = 0; i < S->getNumAssocs(); ++i) {
|
|
addData(S->getAssocType(i));
|
|
}
|
|
})
|
|
DEF_ADD_DATA(LambdaExpr, {
|
|
for (const LambdaCapture &C : S->captures()) {
|
|
addData(C.isPackExpansion());
|
|
addData(C.getCaptureKind());
|
|
if (C.capturesVariable())
|
|
addData(C.getCapturedVar()->getType());
|
|
}
|
|
addData(S->isGenericLambda());
|
|
addData(S->isMutable());
|
|
})
|
|
DEF_ADD_DATA(DeclStmt, {
|
|
auto numDecls = std::distance(S->decl_begin(), S->decl_end());
|
|
addData(static_cast<CloneDetector::DataPiece>(numDecls));
|
|
for (const Decl *D : S->decls()) {
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
addData(VD->getType());
|
|
}
|
|
}
|
|
})
|
|
DEF_ADD_DATA(AsmStmt, {
|
|
addData(S->isSimple());
|
|
addData(S->isVolatile());
|
|
addData(S->generateAsmString(Context));
|
|
for (unsigned i = 0; i < S->getNumInputs(); ++i) {
|
|
addData(S->getInputConstraint(i));
|
|
}
|
|
for (unsigned i = 0; i < S->getNumOutputs(); ++i) {
|
|
addData(S->getOutputConstraint(i));
|
|
}
|
|
for (unsigned i = 0; i < S->getNumClobbers(); ++i) {
|
|
addData(S->getClobber(i));
|
|
}
|
|
})
|
|
DEF_ADD_DATA(AttributedStmt, {
|
|
for (const Attr *A : S->getAttrs()) {
|
|
addData(std::string(A->getSpelling()));
|
|
}
|
|
})
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
/// Generates CloneSignatures for a set of statements and stores the results in
|
|
/// a CloneDetector object.
|
|
class CloneSignatureGenerator {
|
|
|
|
CloneDetector &CD;
|
|
ASTContext &Context;
|
|
|
|
/// \brief Generates CloneSignatures for all statements in the given statement
|
|
/// tree and stores them in the CloneDetector.
|
|
///
|
|
/// \param S The root of the given statement tree.
|
|
/// \param ParentMacroStack A string representing the macros that generated
|
|
/// the parent statement or an empty string if no
|
|
/// macros generated the parent statement.
|
|
/// See getMacroStack() for generating such a string.
|
|
/// \return The CloneSignature of the root statement.
|
|
CloneDetector::CloneSignature
|
|
generateSignatures(const Stmt *S, const std::string &ParentMacroStack) {
|
|
// Create an empty signature that will be filled in this method.
|
|
CloneDetector::CloneSignature Signature;
|
|
|
|
llvm::MD5 Hash;
|
|
|
|
// Collect all relevant data from S and hash it.
|
|
StmtDataCollector<llvm::MD5>(S, Context, Hash);
|
|
|
|
// Look up what macros expanded into the current statement.
|
|
std::string StartMacroStack = getMacroStack(S->getLocStart(), Context);
|
|
std::string EndMacroStack = getMacroStack(S->getLocEnd(), Context);
|
|
|
|
// First, check if ParentMacroStack is not empty which means we are currently
|
|
// dealing with a parent statement which was expanded from a macro.
|
|
// If this parent statement was expanded from the same macros as this
|
|
// statement, we reduce the initial complexity of this statement to zero.
|
|
// This causes that a group of statements that were generated by a single
|
|
// macro expansion will only increase the total complexity by one.
|
|
// Note: This is not the final complexity of this statement as we still
|
|
// add the complexity of the child statements to the complexity value.
|
|
if (!ParentMacroStack.empty() && (StartMacroStack == ParentMacroStack &&
|
|
EndMacroStack == ParentMacroStack)) {
|
|
Signature.Complexity = 0;
|
|
}
|
|
|
|
// Storage for the signatures of the direct child statements. This is only
|
|
// needed if the current statement is a CompoundStmt.
|
|
std::vector<CloneDetector::CloneSignature> ChildSignatures;
|
|
const CompoundStmt *CS = dyn_cast<const CompoundStmt>(S);
|
|
|
|
// The signature of a statement includes the signatures of its children.
|
|
// Therefore we create the signatures for every child and add them to the
|
|
// current signature.
|
|
for (const Stmt *Child : S->children()) {
|
|
// Some statements like 'if' can have nullptr children that we will skip.
|
|
if (!Child)
|
|
continue;
|
|
|
|
// Recursive call to create the signature of the child statement. This
|
|
// will also create and store all clone groups in this child statement.
|
|
// We pass only the StartMacroStack along to keep things simple.
|
|
auto ChildSignature = generateSignatures(Child, StartMacroStack);
|
|
|
|
// Add the collected data to the signature of the current statement.
|
|
Signature.Complexity += ChildSignature.Complexity;
|
|
Hash.update(StringRef(reinterpret_cast<char *>(&ChildSignature.Hash),
|
|
sizeof(ChildSignature.Hash)));
|
|
|
|
// If the current statement is a CompoundStatement, we need to store the
|
|
// signature for the generation of the sub-sequences.
|
|
if (CS)
|
|
ChildSignatures.push_back(ChildSignature);
|
|
}
|
|
|
|
// If the current statement is a CompoundStmt, we also need to create the
|
|
// clone groups from the sub-sequences inside the children.
|
|
if (CS)
|
|
handleSubSequences(CS, ChildSignatures);
|
|
|
|
// Create the final hash code for the current signature.
|
|
llvm::MD5::MD5Result HashResult;
|
|
Hash.final(HashResult);
|
|
|
|
// Copy as much of the generated hash code to the signature's hash code.
|
|
std::memcpy(&Signature.Hash, &HashResult,
|
|
std::min(sizeof(Signature.Hash), sizeof(HashResult)));
|
|
|
|
// Save the signature for the current statement in the CloneDetector object.
|
|
CD.add(StmtSequence(S, Context), Signature);
|
|
|
|
return Signature;
|
|
}
|
|
|
|
/// \brief Adds all possible sub-sequences in the child array of the given
|
|
/// CompoundStmt to the CloneDetector.
|
|
/// \param CS The given CompoundStmt.
|
|
/// \param ChildSignatures A list of calculated signatures for each child in
|
|
/// the given CompoundStmt.
|
|
void handleSubSequences(
|
|
const CompoundStmt *CS,
|
|
const std::vector<CloneDetector::CloneSignature> &ChildSignatures) {
|
|
|
|
// FIXME: This function has quadratic runtime right now. Check if skipping
|
|
// this function for too long CompoundStmts is an option.
|
|
|
|
// The length of the sub-sequence. We don't need to handle sequences with
|
|
// the length 1 as they are already handled in CollectData().
|
|
for (unsigned Length = 2; Length <= CS->size(); ++Length) {
|
|
// The start index in the body of the CompoundStmt. We increase the
|
|
// position until the end of the sub-sequence reaches the end of the
|
|
// CompoundStmt body.
|
|
for (unsigned Pos = 0; Pos <= CS->size() - Length; ++Pos) {
|
|
// Create an empty signature and add the signatures of all selected
|
|
// child statements to it.
|
|
CloneDetector::CloneSignature SubSignature;
|
|
llvm::MD5 SubHash;
|
|
|
|
for (unsigned i = Pos; i < Pos + Length; ++i) {
|
|
SubSignature.Complexity += ChildSignatures[i].Complexity;
|
|
size_t ChildHash = ChildSignatures[i].Hash;
|
|
|
|
SubHash.update(StringRef(reinterpret_cast<char *>(&ChildHash),
|
|
sizeof(ChildHash)));
|
|
}
|
|
|
|
// Create the final hash code for the current signature.
|
|
llvm::MD5::MD5Result HashResult;
|
|
SubHash.final(HashResult);
|
|
|
|
// Copy as much of the generated hash code to the signature's hash code.
|
|
std::memcpy(&SubSignature.Hash, &HashResult,
|
|
std::min(sizeof(SubSignature.Hash), sizeof(HashResult)));
|
|
|
|
// Save the signature together with the information about what children
|
|
// sequence we selected.
|
|
CD.add(StmtSequence(CS, Context, Pos, Pos + Length), SubSignature);
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
explicit CloneSignatureGenerator(CloneDetector &CD, ASTContext &Context)
|
|
: CD(CD), Context(Context) {}
|
|
|
|
/// \brief Generates signatures for all statements in the given function body.
|
|
void consumeCodeBody(const Stmt *S) { generateSignatures(S, ""); }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void CloneDetector::analyzeCodeBody(const Decl *D) {
|
|
assert(D);
|
|
assert(D->hasBody());
|
|
CloneSignatureGenerator Generator(*this, D->getASTContext());
|
|
Generator.consumeCodeBody(D->getBody());
|
|
}
|
|
|
|
void CloneDetector::add(const StmtSequence &S,
|
|
const CloneSignature &Signature) {
|
|
Sequences.push_back(std::make_pair(Signature, S));
|
|
}
|
|
|
|
namespace {
|
|
/// \brief Returns true if and only if \p Stmt contains at least one other
|
|
/// sequence in the \p Group.
|
|
bool containsAnyInGroup(StmtSequence &Stmt, CloneDetector::CloneGroup &Group) {
|
|
for (StmtSequence &GroupStmt : Group.Sequences) {
|
|
if (Stmt.contains(GroupStmt))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Returns true if and only if all sequences in \p OtherGroup are
|
|
/// contained by a sequence in \p Group.
|
|
bool containsGroup(CloneDetector::CloneGroup &Group,
|
|
CloneDetector::CloneGroup &OtherGroup) {
|
|
// We have less sequences in the current group than we have in the other,
|
|
// so we will never fulfill the requirement for returning true. This is only
|
|
// possible because we know that a sequence in Group can contain at most
|
|
// one sequence in OtherGroup.
|
|
if (Group.Sequences.size() < OtherGroup.Sequences.size())
|
|
return false;
|
|
|
|
for (StmtSequence &Stmt : Group.Sequences) {
|
|
if (!containsAnyInGroup(Stmt, OtherGroup))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
/// \brief Wrapper around FoldingSetNodeID that it can be used as the template
|
|
/// argument of the StmtDataCollector.
|
|
class FoldingSetNodeIDWrapper {
|
|
|
|
llvm::FoldingSetNodeID &FS;
|
|
|
|
public:
|
|
FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
|
|
|
|
void update(StringRef Str) { FS.AddString(Str); }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// \brief Writes the relevant data from all statements and child statements
|
|
/// in the given StmtSequence into the given FoldingSetNodeID.
|
|
static void CollectStmtSequenceData(const StmtSequence &Sequence,
|
|
FoldingSetNodeIDWrapper &OutputData) {
|
|
for (const Stmt *S : Sequence) {
|
|
StmtDataCollector<FoldingSetNodeIDWrapper>(S, Sequence.getASTContext(),
|
|
OutputData);
|
|
|
|
for (const Stmt *Child : S->children()) {
|
|
if (!Child)
|
|
continue;
|
|
|
|
CollectStmtSequenceData(StmtSequence(Child, Sequence.getASTContext()),
|
|
OutputData);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Returns true if both sequences are clones of each other.
|
|
static bool areSequencesClones(const StmtSequence &LHS,
|
|
const StmtSequence &RHS) {
|
|
// We collect the data from all statements in the sequence as we did before
|
|
// when generating a hash value for each sequence. But this time we don't
|
|
// hash the collected data and compare the whole data set instead. This
|
|
// prevents any false-positives due to hash code collisions.
|
|
llvm::FoldingSetNodeID DataLHS, DataRHS;
|
|
FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
|
|
FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
|
|
|
|
CollectStmtSequenceData(LHS, LHSWrapper);
|
|
CollectStmtSequenceData(RHS, RHSWrapper);
|
|
|
|
return DataLHS == DataRHS;
|
|
}
|
|
|
|
/// \brief Finds all actual clone groups in a single group of presumed clones.
|
|
/// \param Result Output parameter to which all found groups are added.
|
|
/// \param Group A group of presumed clones. The clones are allowed to have a
|
|
/// different variable pattern and may not be actual clones of each
|
|
/// other.
|
|
/// \param CheckVariablePattern If true, every clone in a group that was added
|
|
/// to the output follows the same variable pattern as the other
|
|
/// clones in its group.
|
|
static void createCloneGroups(std::vector<CloneDetector::CloneGroup> &Result,
|
|
const CloneDetector::CloneGroup &Group,
|
|
bool CheckVariablePattern) {
|
|
// We remove the Sequences one by one, so a list is more appropriate.
|
|
std::list<StmtSequence> UnassignedSequences(Group.Sequences.begin(),
|
|
Group.Sequences.end());
|
|
|
|
// Search for clones as long as there could be clones in UnassignedSequences.
|
|
while (UnassignedSequences.size() > 1) {
|
|
|
|
// Pick the first Sequence as a protoype for a new clone group.
|
|
StmtSequence Prototype = UnassignedSequences.front();
|
|
UnassignedSequences.pop_front();
|
|
|
|
CloneDetector::CloneGroup FilteredGroup(Prototype, Group.Signature);
|
|
|
|
// Analyze the variable pattern of the prototype. Every other StmtSequence
|
|
// needs to have the same pattern to get into the new clone group.
|
|
VariablePattern PrototypeFeatures(Prototype);
|
|
|
|
// Search all remaining StmtSequences for an identical variable pattern
|
|
// and assign them to our new clone group.
|
|
auto I = UnassignedSequences.begin(), E = UnassignedSequences.end();
|
|
while (I != E) {
|
|
// If the sequence doesn't fit to the prototype, we have encountered
|
|
// an unintended hash code collision and we skip it.
|
|
if (!areSequencesClones(Prototype, *I)) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
// If we weren't asked to check for a matching variable pattern in clone
|
|
// groups we can add the sequence now to the new clone group.
|
|
// If we were asked to check for matching variable pattern, we first have
|
|
// to check that there are no differences between the two patterns and
|
|
// only proceed if they match.
|
|
if (!CheckVariablePattern ||
|
|
VariablePattern(*I).countPatternDifferences(PrototypeFeatures) == 0) {
|
|
FilteredGroup.Sequences.push_back(*I);
|
|
I = UnassignedSequences.erase(I);
|
|
continue;
|
|
}
|
|
|
|
// We didn't found a matching variable pattern, so we continue with the
|
|
// next sequence.
|
|
++I;
|
|
}
|
|
|
|
// Add a valid clone group to the list of found clone groups.
|
|
if (!FilteredGroup.isValid())
|
|
continue;
|
|
|
|
Result.push_back(FilteredGroup);
|
|
}
|
|
}
|
|
|
|
void CloneDetector::findClones(std::vector<CloneGroup> &Result,
|
|
unsigned MinGroupComplexity,
|
|
bool CheckPatterns) {
|
|
// A shortcut (and necessary for the for-loop later in this function).
|
|
if (Sequences.empty())
|
|
return;
|
|
|
|
// We need to search for groups of StmtSequences with the same hash code to
|
|
// create our initial clone groups. By sorting all known StmtSequences by
|
|
// their hash value we make sure that StmtSequences with the same hash code
|
|
// are grouped together in the Sequences vector.
|
|
// Note: We stable sort here because the StmtSequences are added in the order
|
|
// in which they appear in the source file. We want to preserve that order
|
|
// because we also want to report them in that order in the CloneChecker.
|
|
std::stable_sort(Sequences.begin(), Sequences.end(),
|
|
[](std::pair<CloneSignature, StmtSequence> LHS,
|
|
std::pair<CloneSignature, StmtSequence> RHS) {
|
|
return LHS.first.Hash < RHS.first.Hash;
|
|
});
|
|
|
|
std::vector<CloneGroup> CloneGroups;
|
|
|
|
// Check for each CloneSignature if its successor has the same hash value.
|
|
// We don't check the last CloneSignature as it has no successor.
|
|
// Note: The 'size - 1' in the condition is safe because we check for an empty
|
|
// Sequences vector at the beginning of this function.
|
|
for (unsigned i = 0; i < Sequences.size() - 1; ++i) {
|
|
const auto Current = Sequences[i];
|
|
const auto Next = Sequences[i + 1];
|
|
|
|
if (Current.first.Hash != Next.first.Hash)
|
|
continue;
|
|
|
|
// It's likely that we just found an sequence of CloneSignatures that
|
|
// represent a CloneGroup, so we create a new group and start checking and
|
|
// adding the CloneSignatures in this sequence.
|
|
CloneGroup Group;
|
|
Group.Signature = Current.first;
|
|
|
|
for (; i < Sequences.size(); ++i) {
|
|
const auto &Signature = Sequences[i];
|
|
|
|
// A different hash value means we have reached the end of the sequence.
|
|
if (Current.first.Hash != Signature.first.Hash) {
|
|
// The current Signature could be the start of a new CloneGroup. So we
|
|
// decrement i so that we visit it again in the outer loop.
|
|
// Note: i can never be 0 at this point because we are just comparing
|
|
// the hash of the Current CloneSignature with itself in the 'if' above.
|
|
assert(i != 0);
|
|
--i;
|
|
break;
|
|
}
|
|
|
|
// Skip CloneSignatures that won't pass the complexity requirement.
|
|
if (Signature.first.Complexity < MinGroupComplexity)
|
|
continue;
|
|
|
|
Group.Sequences.push_back(Signature.second);
|
|
}
|
|
|
|
// There is a chance that we haven't found more than two fitting
|
|
// CloneSignature because not enough CloneSignatures passed the complexity
|
|
// requirement. As a CloneGroup with less than two members makes no sense,
|
|
// we ignore this CloneGroup and won't add it to the result.
|
|
if (!Group.isValid())
|
|
continue;
|
|
|
|
CloneGroups.push_back(Group);
|
|
}
|
|
|
|
// Add every valid clone group that fulfills the complexity requirement.
|
|
for (const CloneGroup &Group : CloneGroups) {
|
|
createCloneGroups(Result, Group, CheckPatterns);
|
|
}
|
|
|
|
std::vector<unsigned> IndexesToRemove;
|
|
|
|
// Compare every group in the result with the rest. If one groups contains
|
|
// another group, we only need to return the bigger group.
|
|
// Note: This doesn't scale well, so if possible avoid calling any heavy
|
|
// function from this loop to minimize the performance impact.
|
|
for (unsigned i = 0; i < Result.size(); ++i) {
|
|
for (unsigned j = 0; j < Result.size(); ++j) {
|
|
// Don't compare a group with itself.
|
|
if (i == j)
|
|
continue;
|
|
|
|
if (containsGroup(Result[j], Result[i])) {
|
|
IndexesToRemove.push_back(i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Erasing a list of indexes from the vector should be done with decreasing
|
|
// indexes. As IndexesToRemove is constructed with increasing values, we just
|
|
// reverse iterate over it to get the desired order.
|
|
for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
|
|
Result.erase(Result.begin() + *I);
|
|
}
|
|
}
|
|
|
|
void CloneDetector::findSuspiciousClones(
|
|
std::vector<CloneDetector::SuspiciousClonePair> &Result,
|
|
unsigned MinGroupComplexity) {
|
|
std::vector<CloneGroup> Clones;
|
|
// Reuse the normal search for clones but specify that the clone groups don't
|
|
// need to have a common referenced variable pattern so that we can manually
|
|
// search for the kind of pattern errors this function is supposed to find.
|
|
findClones(Clones, MinGroupComplexity, false);
|
|
|
|
for (const CloneGroup &Group : Clones) {
|
|
for (unsigned i = 0; i < Group.Sequences.size(); ++i) {
|
|
VariablePattern PatternA(Group.Sequences[i]);
|
|
|
|
for (unsigned j = i + 1; j < Group.Sequences.size(); ++j) {
|
|
VariablePattern PatternB(Group.Sequences[j]);
|
|
|
|
CloneDetector::SuspiciousClonePair ClonePair;
|
|
// For now, we only report clones which break the variable pattern just
|
|
// once because multiple differences in a pattern are an indicator that
|
|
// those differences are maybe intended (e.g. because it's actually
|
|
// a different algorithm).
|
|
// TODO: In very big clones even multiple variables can be unintended,
|
|
// so replacing this number with a percentage could better handle such
|
|
// cases. On the other hand it could increase the false-positive rate
|
|
// for all clones if the percentage is too high.
|
|
if (PatternA.countPatternDifferences(PatternB, &ClonePair) == 1) {
|
|
Result.push_back(ClonePair);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|