llvm-project/llvm/docs/CommandGuide/llvm-exegesis.rst

237 lines
7.7 KiB
ReStructuredText

llvm-exegesis - LLVM Machine Instruction Benchmark
==================================================
SYNOPSIS
--------
:program:`llvm-exegesis` [*options*]
DESCRIPTION
-----------
:program:`llvm-exegesis` is a benchmarking tool that uses information available
in LLVM to measure host machine instruction characteristics like latency or port
decomposition.
Given an LLVM opcode name and a benchmarking mode, :program:`llvm-exegesis`
generates a code snippet that makes execution as serial (resp. as parallel) as
possible so that we can measure the latency (resp. uop decomposition) of the
instruction.
The code snippet is jitted and executed on the host subtarget. The time taken
(resp. resource usage) is measured using hardware performance counters. The
result is printed out as YAML to the standard output.
The main goal of this tool is to automatically (in)validate the LLVM's TableDef
scheduling models. To that end, we also provide analysis of the results.
:program:`llvm-exegesis` can also benchmark arbitrary user-provided code
snippets.
EXAMPLE 1: benchmarking instructions
------------------------------------
Assume you have an X86-64 machine. To measure the latency of a single
instruction, run:
.. code-block:: bash
$ llvm-exegesis -mode=latency -opcode-name=ADD64rr
Measuring the uop decomposition of an instruction works similarly:
.. code-block:: bash
$ llvm-exegesis -mode=uops -opcode-name=ADD64rr
The output is a YAML document (the default is to write to stdout, but you can
redirect the output to a file using `-benchmarks-file`):
.. code-block:: none
---
key:
opcode_name: ADD64rr
mode: latency
config: ''
cpu_name: haswell
llvm_triple: x86_64-unknown-linux-gnu
num_repetitions: 10000
measurements:
- { key: latency, value: 1.0058, debug_string: '' }
error: ''
info: 'explicit self cycles, selecting one aliasing configuration.
Snippet:
ADD64rr R8, R8, R10
'
...
To measure the latency of all instructions for the host architecture, run:
.. code-block:: bash
#!/bin/bash
readonly INSTRUCTIONS=$(($(grep INSTRUCTION_LIST_END build/lib/Target/X86/X86GenInstrInfo.inc | cut -f2 -d=) - 1))
for INSTRUCTION in $(seq 1 ${INSTRUCTIONS});
do
./build/bin/llvm-exegesis -mode=latency -opcode-index=${INSTRUCTION} | sed -n '/---/,$p'
done
FIXME: Provide an :program:`llvm-exegesis` option to test all instructions.
EXAMPLE 2: benchmarking a custom code snippet
---------------------------------------------
To measure the latency/uops of a custom piece of code, you can specify the
`snippets-file` option (`-` reads from standard input).
.. code-block:: bash
$ echo "vzeroupper" | llvm-exegesis -mode=uops -snippets-file=-
Real-life code snippets typically depend on registers or memory.
:program:`llvm-exegesis` checks the liveliness of registers (i.e. any register
use has a corresponding def or is a "live in"). If your code depends on the
value of some registers, you have two options:
- Mark the register as requiring a definition. :program:`llvm-exegesis` will
automatically assign a value to the register. This can be done using the
directive `LLVM-EXEGESIS-DEFREG <reg name> <hex_value>`, where `<hex_value>`
is a bit pattern used to fill `<reg_name>`. If `<hex_value>` is smaller than
the register width, it will be sign-extended.
- Mark the register as a "live in". :program:`llvm-exegesis` will benchmark
using whatever value was in this registers on entry. This can be done using
the directive `LLVM-EXEGESIS-LIVEIN <reg name>`.
For example, the following code snippet depends on the values of XMM1 (which
will be set by the tool) and the memory buffer passed in RDI (live in).
.. code-block:: none
# LLVM-EXEGESIS-LIVEIN RDI
# LLVM-EXEGESIS-DEFREG XMM1 42
vmulps (%rdi), %xmm1, %xmm2
vhaddps %xmm2, %xmm2, %xmm3
addq $0x10, %rdi
EXAMPLE 3: analysis
-------------------
Assuming you have a set of benchmarked instructions (either latency or uops) as
YAML in file `/tmp/benchmarks.yaml`, you can analyze the results using the
following command:
.. code-block:: bash
$ llvm-exegesis -mode=analysis \
-benchmarks-file=/tmp/benchmarks.yaml \
-analysis-clusters-output-file=/tmp/clusters.csv \
-analysis-inconsistencies-output-file=/tmp/inconsistencies.html
This will group the instructions into clusters with the same performance
characteristics. The clusters will be written out to `/tmp/clusters.csv` in the
following format:
.. code-block:: none
cluster_id,opcode_name,config,sched_class
...
2,ADD32ri8_DB,,WriteALU,1.00
2,ADD32ri_DB,,WriteALU,1.01
2,ADD32rr,,WriteALU,1.01
2,ADD32rr_DB,,WriteALU,1.00
2,ADD32rr_REV,,WriteALU,1.00
2,ADD64i32,,WriteALU,1.01
2,ADD64ri32,,WriteALU,1.01
2,MOVSX64rr32,,BSWAP32r_BSWAP64r_MOVSX64rr32,1.00
2,VPADDQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.02
2,VPSUBQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.01
2,ADD64ri8,,WriteALU,1.00
2,SETBr,,WriteSETCC,1.01
...
:program:`llvm-exegesis` will also analyze the clusters to point out
inconsistencies in the scheduling information. The output is an html file. For
example, `/tmp/inconsistencies.html` will contain messages like the following :
.. image:: llvm-exegesis-analysis.png
:align: center
Note that the scheduling class names will be resolved only when
:program:`llvm-exegesis` is compiled in debug mode, else only the class id will
be shown. This does not invalidate any of the analysis results though.
OPTIONS
-------
.. option:: -help
Print a summary of command line options.
.. option:: -opcode-index=<LLVM opcode index>
Specify the opcode to measure, by index. See example 1 for details.
Either `opcode-index`, `opcode-name` or `snippets-file` must be set.
.. option:: -opcode-name=<opcode name 1>,<opcode name 2>,...
Specify the opcode to measure, by name. Several opcodes can be specified as
a comma-separated list. See example 1 for details.
Either `opcode-index`, `opcode-name` or `snippets-file` must be set.
.. option:: -snippets-file=<filename>
Specify the custom code snippet to measure. See example 2 for details.
Either `opcode-index`, `opcode-name` or `snippets-file` must be set.
.. option:: -mode=[latency|uops|analysis]
Specify the run mode.
.. option:: -num-repetitions=<Number of repetition>
Specify the number of repetitions of the asm snippet.
Higher values lead to more accurate measurements but lengthen the benchmark.
.. option:: -benchmarks-file=</path/to/file>
File to read (`analysis` mode) or write (`latency`/`uops` modes) benchmark
results. "-" uses stdin/stdout.
.. option:: -analysis-clusters-output-file=</path/to/file>
If provided, write the analysis clusters as CSV to this file. "-" prints to
stdout.
.. option:: -analysis-inconsistencies-output-file=</path/to/file>
If non-empty, write inconsistencies found during analysis to this file. `-`
prints to stdout.
.. option:: -analysis-numpoints=<dbscan numPoints parameter>
Specify the numPoints parameters to be used for DBSCAN clustering
(`analysis` mode).
.. option:: -analysis-espilon=<dbscan epsilon parameter>
Specify the numPoints parameters to be used for DBSCAN clustering
(`analysis` mode).
.. option:: -ignore-invalid-sched-class=false
If set, ignore instructions that do not have a sched class (class idx = 0).
.. option:: -mcpu=<cpu name>
If set, measure the cpu characteristics using the counters for this CPU. This
is useful when creating new sched models (the host CPU is unknown to LLVM).
EXIT STATUS
-----------
:program:`llvm-exegesis` returns 0 on success. Otherwise, an error message is
printed to standard error, and the tool returns a non 0 value.