llvm-project/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h

501 lines
28 KiB
C

/*===-- X86DisassemblerDecoderCommon.h - Disassembler decoder -----*- C -*-===*
*
* The LLVM Compiler Infrastructure
*
* This file is distributed under the University of Illinois Open Source
* License. See LICENSE.TXT for details.
*
*===----------------------------------------------------------------------===*
*
* This file is part of the X86 Disassembler.
* It contains common definitions used by both the disassembler and the table
* generator.
* Documentation for the disassembler can be found in X86Disassembler.h.
*
*===----------------------------------------------------------------------===*/
/*
* This header file provides those definitions that need to be shared between
* the decoder and the table generator in a C-friendly manner.
*/
#ifndef X86DISASSEMBLERDECODERCOMMON_H
#define X86DISASSEMBLERDECODERCOMMON_H
#include "llvm/Support/DataTypes.h"
#define INSTRUCTIONS_SYM x86DisassemblerInstrSpecifiers
#define CONTEXTS_SYM x86DisassemblerContexts
#define ONEBYTE_SYM x86DisassemblerOneByteOpcodes
#define TWOBYTE_SYM x86DisassemblerTwoByteOpcodes
#define THREEBYTE38_SYM x86DisassemblerThreeByte38Opcodes
#define THREEBYTE3A_SYM x86DisassemblerThreeByte3AOpcodes
#define THREEBYTEA6_SYM x86DisassemblerThreeByteA6Opcodes
#define THREEBYTEA7_SYM x86DisassemblerThreeByteA7Opcodes
#define INSTRUCTIONS_STR "x86DisassemblerInstrSpecifiers"
#define CONTEXTS_STR "x86DisassemblerContexts"
#define ONEBYTE_STR "x86DisassemblerOneByteOpcodes"
#define TWOBYTE_STR "x86DisassemblerTwoByteOpcodes"
#define THREEBYTE38_STR "x86DisassemblerThreeByte38Opcodes"
#define THREEBYTE3A_STR "x86DisassemblerThreeByte3AOpcodes"
#define THREEBYTEA6_STR "x86DisassemblerThreeByteA6Opcodes"
#define THREEBYTEA7_STR "x86DisassemblerThreeByteA7Opcodes"
/*
* Attributes of an instruction that must be known before the opcode can be
* processed correctly. Most of these indicate the presence of particular
* prefixes, but ATTR_64BIT is simply an attribute of the decoding context.
*/
#define ATTRIBUTE_BITS \
ENUM_ENTRY(ATTR_NONE, 0x00) \
ENUM_ENTRY(ATTR_64BIT, 0x01) \
ENUM_ENTRY(ATTR_XS, 0x02) \
ENUM_ENTRY(ATTR_XD, 0x04) \
ENUM_ENTRY(ATTR_REXW, 0x08) \
ENUM_ENTRY(ATTR_OPSIZE, 0x10) \
ENUM_ENTRY(ATTR_ADSIZE, 0x20) \
ENUM_ENTRY(ATTR_VEX, 0x40) \
ENUM_ENTRY(ATTR_VEXL, 0x80)
#define ENUM_ENTRY(n, v) n = v,
enum attributeBits {
ATTRIBUTE_BITS
ATTR_max
};
#undef ENUM_ENTRY
/*
* Combinations of the above attributes that are relevant to instruction
* decode. Although other combinations are possible, they can be reduced to
* these without affecting the ultimately decoded instruction.
*/
/* Class name Rank Rationale for rank assignment */
#define INSTRUCTION_CONTEXTS \
ENUM_ENTRY(IC, 0, "says nothing about the instruction") \
ENUM_ENTRY(IC_64BIT, 1, "says the instruction applies in " \
"64-bit mode but no more") \
ENUM_ENTRY(IC_OPSIZE, 3, "requires an OPSIZE prefix, so " \
"operands change width") \
ENUM_ENTRY(IC_ADSIZE, 3, "requires an ADSIZE prefix, so " \
"operands change width") \
ENUM_ENTRY(IC_XD, 2, "may say something about the opcode " \
"but not the operands") \
ENUM_ENTRY(IC_XS, 2, "may say something about the opcode " \
"but not the operands") \
ENUM_ENTRY(IC_XD_OPSIZE, 3, "requires an OPSIZE prefix, so " \
"operands change width") \
ENUM_ENTRY(IC_XS_OPSIZE, 3, "requires an OPSIZE prefix, so " \
"operands change width") \
ENUM_ENTRY(IC_64BIT_REXW, 4, "requires a REX.W prefix, so operands "\
"change width; overrides IC_OPSIZE") \
ENUM_ENTRY(IC_64BIT_OPSIZE, 3, "Just as meaningful as IC_OPSIZE") \
ENUM_ENTRY(IC_64BIT_ADSIZE, 3, "Just as meaningful as IC_ADSIZE") \
ENUM_ENTRY(IC_64BIT_XD, 5, "XD instructions are SSE; REX.W is " \
"secondary") \
ENUM_ENTRY(IC_64BIT_XS, 5, "Just as meaningful as IC_64BIT_XD") \
ENUM_ENTRY(IC_64BIT_XD_OPSIZE, 3, "Just as meaningful as IC_XD_OPSIZE") \
ENUM_ENTRY(IC_64BIT_XS_OPSIZE, 3, "Just as meaningful as IC_XS_OPSIZE") \
ENUM_ENTRY(IC_64BIT_REXW_XS, 6, "OPSIZE could mean a different " \
"opcode") \
ENUM_ENTRY(IC_64BIT_REXW_XD, 6, "Just as meaningful as " \
"IC_64BIT_REXW_XS") \
ENUM_ENTRY(IC_64BIT_REXW_OPSIZE, 7, "The Dynamic Duo! Prefer over all " \
"else because this changes most " \
"operands' meaning") \
ENUM_ENTRY(IC_VEX, 1, "requires a VEX prefix") \
ENUM_ENTRY(IC_VEX_XS, 2, "requires VEX and the XS prefix") \
ENUM_ENTRY(IC_VEX_XD, 2, "requires VEX and the XD prefix") \
ENUM_ENTRY(IC_VEX_OPSIZE, 2, "requires VEX and the OpSize prefix") \
ENUM_ENTRY(IC_VEX_W, 3, "requires VEX and the W prefix") \
ENUM_ENTRY(IC_VEX_W_XS, 4, "requires VEX, W, and XS prefix") \
ENUM_ENTRY(IC_VEX_W_XD, 4, "requires VEX, W, and XD prefix") \
ENUM_ENTRY(IC_VEX_W_OPSIZE, 4, "requires VEX, W, and OpSize") \
ENUM_ENTRY(IC_VEX_L, 3, "requires VEX and the L prefix") \
ENUM_ENTRY(IC_VEX_L_XS, 4, "requires VEX and the L and XS prefix")\
ENUM_ENTRY(IC_VEX_L_XD, 4, "requires VEX and the L and XD prefix")\
ENUM_ENTRY(IC_VEX_L_OPSIZE, 4, "requires VEX, L, and OpSize") \
ENUM_ENTRY(IC_VEX_L_W, 3, "requires VEX, L and W") \
ENUM_ENTRY(IC_VEX_L_W_XS, 4, "requires VEX, L, W and XS prefix") \
ENUM_ENTRY(IC_VEX_L_W_XD, 4, "requires VEX, L, W and XD prefix") \
ENUM_ENTRY(IC_VEX_L_W_OPSIZE, 4, "requires VEX, L, W and OpSize") \
ENUM_ENTRY(IC_EVEX, 1, "requires an EVEX prefix") \
ENUM_ENTRY(IC_EVEX_XS, 2, "requires EVEX and the XS prefix") \
ENUM_ENTRY(IC_EVEX_XD, 2, "requires EVEX and the XD prefix") \
ENUM_ENTRY(IC_EVEX_OPSIZE, 2, "requires EVEX and the OpSize prefix") \
ENUM_ENTRY(IC_EVEX_W, 3, "requires EVEX and the W prefix") \
ENUM_ENTRY(IC_EVEX_W_XS, 4, "requires EVEX, W, and XS prefix") \
ENUM_ENTRY(IC_EVEX_W_XD, 4, "requires EVEX, W, and XD prefix") \
ENUM_ENTRY(IC_EVEX_W_OPSIZE, 4, "requires EVEX, W, and OpSize") \
ENUM_ENTRY(IC_EVEX_L, 3, "requires EVEX and the L prefix") \
ENUM_ENTRY(IC_EVEX_L_XS, 4, "requires EVEX and the L and XS prefix")\
ENUM_ENTRY(IC_EVEX_L_XD, 4, "requires EVEX and the L and XD prefix")\
ENUM_ENTRY(IC_EVEX_L_OPSIZE, 4, "requires EVEX, L, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_W, 3, "requires EVEX, L and W") \
ENUM_ENTRY(IC_EVEX_L_W_XS, 4, "requires EVEX, L, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L_W_XD, 4, "requires EVEX, L, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE, 4, "requires EVEX, L, W and OpSize") \
ENUM_ENTRY(IC_EVEX_L2, 3, "requires EVEX and the L2 prefix") \
ENUM_ENTRY(IC_EVEX_L2_XS, 4, "requires EVEX and the L2 and XS prefix")\
ENUM_ENTRY(IC_EVEX_L2_XD, 4, "requires EVEX and the L2 and XD prefix")\
ENUM_ENTRY(IC_EVEX_L2_OPSIZE, 4, "requires EVEX, L2, and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_W, 3, "requires EVEX, L2 and W") \
ENUM_ENTRY(IC_EVEX_L2_W_XS, 4, "requires EVEX, L2, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_XD, 4, "requires EVEX, L2, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE, 4, "requires EVEX, L2, W and OpSize") \
ENUM_ENTRY(IC_EVEX_K, 1, "requires an EVEX_K prefix") \
ENUM_ENTRY(IC_EVEX_XS_K, 2, "requires EVEX_K and the XS prefix") \
ENUM_ENTRY(IC_EVEX_XD_K, 2, "requires EVEX_K and the XD prefix") \
ENUM_ENTRY(IC_EVEX_OPSIZE_K, 2, "requires EVEX_K and the OpSize prefix") \
ENUM_ENTRY(IC_EVEX_W_K, 3, "requires EVEX_K and the W prefix") \
ENUM_ENTRY(IC_EVEX_W_XS_K, 4, "requires EVEX_K, W, and XS prefix") \
ENUM_ENTRY(IC_EVEX_W_XD_K, 4, "requires EVEX_K, W, and XD prefix") \
ENUM_ENTRY(IC_EVEX_W_OPSIZE_K, 4, "requires EVEX_K, W, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_K, 3, "requires EVEX_K and the L prefix") \
ENUM_ENTRY(IC_EVEX_L_XS_K, 4, "requires EVEX_K and the L and XS prefix")\
ENUM_ENTRY(IC_EVEX_L_XD_K, 4, "requires EVEX_K and the L and XD prefix")\
ENUM_ENTRY(IC_EVEX_L_OPSIZE_K, 4, "requires EVEX_K, L, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_W_K, 3, "requires EVEX_K, L and W") \
ENUM_ENTRY(IC_EVEX_L_W_XS_K, 4, "requires EVEX_K, L, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L_W_XD_K, 4, "requires EVEX_K, L, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K, 4, "requires EVEX_K, L, W and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_K, 3, "requires EVEX_K and the L2 prefix") \
ENUM_ENTRY(IC_EVEX_L2_XS_K, 4, "requires EVEX_K and the L2 and XS prefix")\
ENUM_ENTRY(IC_EVEX_L2_XD_K, 4, "requires EVEX_K and the L2 and XD prefix")\
ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K, 4, "requires EVEX_K, L2, and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_W_K, 3, "requires EVEX_K, L2 and W") \
ENUM_ENTRY(IC_EVEX_L2_W_XS_K, 4, "requires EVEX_K, L2, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_XD_K, 4, "requires EVEX_K, L2, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K, 4, "requires EVEX_K, L2, W and OpSize") \
ENUM_ENTRY(IC_EVEX_B, 1, "requires an EVEX_B prefix") \
ENUM_ENTRY(IC_EVEX_XS_B, 2, "requires EVEX_B and the XS prefix") \
ENUM_ENTRY(IC_EVEX_XD_B, 2, "requires EVEX_B and the XD prefix") \
ENUM_ENTRY(IC_EVEX_OPSIZE_B, 2, "requires EVEX_B and the OpSize prefix") \
ENUM_ENTRY(IC_EVEX_W_B, 3, "requires EVEX_B and the W prefix") \
ENUM_ENTRY(IC_EVEX_W_XS_B, 4, "requires EVEX_B, W, and XS prefix") \
ENUM_ENTRY(IC_EVEX_W_XD_B, 4, "requires EVEX_B, W, and XD prefix") \
ENUM_ENTRY(IC_EVEX_W_OPSIZE_B, 4, "requires EVEX_B, W, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_B, 3, "requires EVEX_B and the L prefix") \
ENUM_ENTRY(IC_EVEX_L_XS_B, 4, "requires EVEX_B and the L and XS prefix")\
ENUM_ENTRY(IC_EVEX_L_XD_B, 4, "requires EVEX_B and the L and XD prefix")\
ENUM_ENTRY(IC_EVEX_L_OPSIZE_B, 4, "requires EVEX_B, L, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_W_B, 3, "requires EVEX_B, L and W") \
ENUM_ENTRY(IC_EVEX_L_W_XS_B, 4, "requires EVEX_B, L, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L_W_XD_B, 4, "requires EVEX_B, L, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_B, 4, "requires EVEX_B, L, W and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_B, 3, "requires EVEX_B and the L2 prefix") \
ENUM_ENTRY(IC_EVEX_L2_XS_B, 4, "requires EVEX_B and the L2 and XS prefix")\
ENUM_ENTRY(IC_EVEX_L2_XD_B, 4, "requires EVEX_B and the L2 and XD prefix")\
ENUM_ENTRY(IC_EVEX_L2_OPSIZE_B, 4, "requires EVEX_B, L2, and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_W_B, 3, "requires EVEX_B, L2 and W") \
ENUM_ENTRY(IC_EVEX_L2_W_XS_B, 4, "requires EVEX_B, L2, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_XD_B, 4, "requires EVEX_B, L2, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_B, 4, "requires EVEX_B, L2, W and OpSize") \
ENUM_ENTRY(IC_EVEX_K_B, 1, "requires EVEX_B and EVEX_K prefix") \
ENUM_ENTRY(IC_EVEX_XS_K_B, 2, "requires EVEX_B, EVEX_K and the XS prefix") \
ENUM_ENTRY(IC_EVEX_XD_K_B, 2, "requires EVEX_B, EVEX_K and the XD prefix") \
ENUM_ENTRY(IC_EVEX_OPSIZE_K_B, 2, "requires EVEX_B, EVEX_K and the OpSize prefix") \
ENUM_ENTRY(IC_EVEX_W_K_B, 3, "requires EVEX_B, EVEX_K and the W prefix") \
ENUM_ENTRY(IC_EVEX_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, W, and XS prefix") \
ENUM_ENTRY(IC_EVEX_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, W, and XD prefix") \
ENUM_ENTRY(IC_EVEX_W_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, W, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_K_B, 3, "requires EVEX_B, EVEX_K and the L prefix") \
ENUM_ENTRY(IC_EVEX_L_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L and XS prefix")\
ENUM_ENTRY(IC_EVEX_L_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L and XD prefix")\
ENUM_ENTRY(IC_EVEX_L_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_W_K_B, 3, "requires EVEX_B, EVEX_K, L and W") \
ENUM_ENTRY(IC_EVEX_L_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L, W and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_K_B, 3, "requires EVEX_B, EVEX_K and the L2 prefix") \
ENUM_ENTRY(IC_EVEX_L2_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XS prefix")\
ENUM_ENTRY(IC_EVEX_L2_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XD prefix")\
ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L2, and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_W_K_B, 3, "requires EVEX_B, EVEX_K, L2 and W") \
ENUM_ENTRY(IC_EVEX_L2_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and OpSize")
#define ENUM_ENTRY(n, r, d) n,
typedef enum {
INSTRUCTION_CONTEXTS
IC_max
} InstructionContext;
#undef ENUM_ENTRY
/*
* Opcode types, which determine which decode table to use, both in the Intel
* manual and also for the decoder.
*/
typedef enum {
ONEBYTE = 0,
TWOBYTE = 1,
THREEBYTE_38 = 2,
THREEBYTE_3A = 3,
THREEBYTE_A6 = 4,
THREEBYTE_A7 = 5
} OpcodeType;
/*
* The following structs are used for the hierarchical decode table. After
* determining the instruction's class (i.e., which IC_* constant applies to
* it), the decoder reads the opcode. Some instructions require specific
* values of the ModR/M byte, so the ModR/M byte indexes into the final table.
*
* If a ModR/M byte is not required, "required" is left unset, and the values
* for each instructionID are identical.
*/
typedef uint16_t InstrUID;
/*
* ModRMDecisionType - describes the type of ModR/M decision, allowing the
* consumer to determine the number of entries in it.
*
* MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded
* instruction is the same.
* MODRM_SPLITRM - If the ModR/M byte is between 0x00 and 0xbf, the opcode
* corresponds to one instruction; otherwise, it corresponds to
* a different instruction.
* MODRM_SPLITMISC- If the ModR/M byte is between 0x00 and 0xbf, ModR/M byte
* divided by 8 is used to select instruction; otherwise, each
* value of the ModR/M byte could correspond to a different
* instruction.
* MODRM_SPLITREG - ModR/M byte divided by 8 is used to select instruction. This
corresponds to instructions that use reg field as opcode
* MODRM_FULL - Potentially, each value of the ModR/M byte could correspond
* to a different instruction.
*/
#define MODRMTYPES \
ENUM_ENTRY(MODRM_ONEENTRY) \
ENUM_ENTRY(MODRM_SPLITRM) \
ENUM_ENTRY(MODRM_SPLITMISC) \
ENUM_ENTRY(MODRM_SPLITREG) \
ENUM_ENTRY(MODRM_FULL)
#define ENUM_ENTRY(n) n,
typedef enum {
MODRMTYPES
MODRM_max
} ModRMDecisionType;
#undef ENUM_ENTRY
/*
* ModRMDecision - Specifies whether a ModR/M byte is needed and (if so) which
* instruction each possible value of the ModR/M byte corresponds to. Once
* this information is known, we have narrowed down to a single instruction.
*/
struct ModRMDecision {
uint8_t modrm_type;
/* The macro below must be defined wherever this file is included. */
INSTRUCTION_IDS
};
/*
* OpcodeDecision - Specifies which set of ModR/M->instruction tables to look at
* given a particular opcode.
*/
struct OpcodeDecision {
struct ModRMDecision modRMDecisions[256];
};
/*
* ContextDecision - Specifies which opcode->instruction tables to look at given
* a particular context (set of attributes). Since there are many possible
* contexts, the decoder first uses CONTEXTS_SYM to determine which context
* applies given a specific set of attributes. Hence there are only IC_max
* entries in this table, rather than 2^(ATTR_max).
*/
struct ContextDecision {
struct OpcodeDecision opcodeDecisions[IC_max];
};
/*
* Physical encodings of instruction operands.
*/
#define ENCODINGS \
ENUM_ENTRY(ENCODING_NONE, "") \
ENUM_ENTRY(ENCODING_REG, "Register operand in ModR/M byte.") \
ENUM_ENTRY(ENCODING_RM, "R/M operand in ModR/M byte.") \
ENUM_ENTRY(ENCODING_VVVV, "Register operand in VEX.vvvv byte.") \
ENUM_ENTRY(ENCODING_WRITEMASK, "Register operand in EVEX.aaa byte.") \
ENUM_ENTRY(ENCODING_CB, "1-byte code offset (possible new CS value)") \
ENUM_ENTRY(ENCODING_CW, "2-byte") \
ENUM_ENTRY(ENCODING_CD, "4-byte") \
ENUM_ENTRY(ENCODING_CP, "6-byte") \
ENUM_ENTRY(ENCODING_CO, "8-byte") \
ENUM_ENTRY(ENCODING_CT, "10-byte") \
ENUM_ENTRY(ENCODING_IB, "1-byte immediate") \
ENUM_ENTRY(ENCODING_IW, "2-byte") \
ENUM_ENTRY(ENCODING_ID, "4-byte") \
ENUM_ENTRY(ENCODING_IO, "8-byte") \
ENUM_ENTRY(ENCODING_RB, "(AL..DIL, R8L..R15L) Register code added to " \
"the opcode byte") \
ENUM_ENTRY(ENCODING_RW, "(AX..DI, R8W..R15W)") \
ENUM_ENTRY(ENCODING_RD, "(EAX..EDI, R8D..R15D)") \
ENUM_ENTRY(ENCODING_RO, "(RAX..RDI, R8..R15)") \
ENUM_ENTRY(ENCODING_I, "Position on floating-point stack added to the " \
"opcode byte") \
\
ENUM_ENTRY(ENCODING_Iv, "Immediate of operand size") \
ENUM_ENTRY(ENCODING_Ia, "Immediate of address size") \
ENUM_ENTRY(ENCODING_Rv, "Register code of operand size added to the " \
"opcode byte") \
ENUM_ENTRY(ENCODING_DUP, "Duplicate of another operand; ID is encoded " \
"in type")
#define ENUM_ENTRY(n, d) n,
typedef enum {
ENCODINGS
ENCODING_max
} OperandEncoding;
#undef ENUM_ENTRY
/*
* Semantic interpretations of instruction operands.
*/
#define TYPES \
ENUM_ENTRY(TYPE_NONE, "") \
ENUM_ENTRY(TYPE_REL8, "1-byte immediate address") \
ENUM_ENTRY(TYPE_REL16, "2-byte") \
ENUM_ENTRY(TYPE_REL32, "4-byte") \
ENUM_ENTRY(TYPE_REL64, "8-byte") \
ENUM_ENTRY(TYPE_PTR1616, "2+2-byte segment+offset address") \
ENUM_ENTRY(TYPE_PTR1632, "2+4-byte") \
ENUM_ENTRY(TYPE_PTR1664, "2+8-byte") \
ENUM_ENTRY(TYPE_R8, "1-byte register operand") \
ENUM_ENTRY(TYPE_R16, "2-byte") \
ENUM_ENTRY(TYPE_R32, "4-byte") \
ENUM_ENTRY(TYPE_R64, "8-byte") \
ENUM_ENTRY(TYPE_IMM8, "1-byte immediate operand") \
ENUM_ENTRY(TYPE_IMM16, "2-byte") \
ENUM_ENTRY(TYPE_IMM32, "4-byte") \
ENUM_ENTRY(TYPE_IMM64, "8-byte") \
ENUM_ENTRY(TYPE_IMM3, "1-byte immediate operand between 0 and 7") \
ENUM_ENTRY(TYPE_IMM5, "1-byte immediate operand between 0 and 31") \
ENUM_ENTRY(TYPE_RM8, "1-byte register or memory operand") \
ENUM_ENTRY(TYPE_RM16, "2-byte") \
ENUM_ENTRY(TYPE_RM32, "4-byte") \
ENUM_ENTRY(TYPE_RM64, "8-byte") \
ENUM_ENTRY(TYPE_M, "Memory operand") \
ENUM_ENTRY(TYPE_M8, "1-byte") \
ENUM_ENTRY(TYPE_M16, "2-byte") \
ENUM_ENTRY(TYPE_M32, "4-byte") \
ENUM_ENTRY(TYPE_M64, "8-byte") \
ENUM_ENTRY(TYPE_LEA, "Effective address") \
ENUM_ENTRY(TYPE_M128, "16-byte (SSE/SSE2)") \
ENUM_ENTRY(TYPE_M256, "256-byte (AVX)") \
ENUM_ENTRY(TYPE_M1616, "2+2-byte segment+offset address") \
ENUM_ENTRY(TYPE_M1632, "2+4-byte") \
ENUM_ENTRY(TYPE_M1664, "2+8-byte") \
ENUM_ENTRY(TYPE_M16_32, "2+4-byte two-part memory operand (LIDT, LGDT)") \
ENUM_ENTRY(TYPE_M16_16, "2+2-byte (BOUND)") \
ENUM_ENTRY(TYPE_M32_32, "4+4-byte (BOUND)") \
ENUM_ENTRY(TYPE_M16_64, "2+8-byte (LIDT, LGDT)") \
ENUM_ENTRY(TYPE_MOFFS8, "1-byte memory offset (relative to segment " \
"base)") \
ENUM_ENTRY(TYPE_MOFFS16, "2-byte") \
ENUM_ENTRY(TYPE_MOFFS32, "4-byte") \
ENUM_ENTRY(TYPE_MOFFS64, "8-byte") \
ENUM_ENTRY(TYPE_SREG, "Byte with single bit set: 0 = ES, 1 = CS, " \
"2 = SS, 3 = DS, 4 = FS, 5 = GS") \
ENUM_ENTRY(TYPE_M32FP, "32-bit IEE754 memory floating-point operand") \
ENUM_ENTRY(TYPE_M64FP, "64-bit") \
ENUM_ENTRY(TYPE_M80FP, "80-bit extended") \
ENUM_ENTRY(TYPE_M16INT, "2-byte memory integer operand for use in " \
"floating-point instructions") \
ENUM_ENTRY(TYPE_M32INT, "4-byte") \
ENUM_ENTRY(TYPE_M64INT, "8-byte") \
ENUM_ENTRY(TYPE_ST, "Position on the floating-point stack") \
ENUM_ENTRY(TYPE_MM, "MMX register operand") \
ENUM_ENTRY(TYPE_MM32, "4-byte MMX register or memory operand") \
ENUM_ENTRY(TYPE_MM64, "8-byte") \
ENUM_ENTRY(TYPE_XMM, "XMM register operand") \
ENUM_ENTRY(TYPE_XMM32, "4-byte XMM register or memory operand") \
ENUM_ENTRY(TYPE_XMM64, "8-byte") \
ENUM_ENTRY(TYPE_XMM128, "16-byte") \
ENUM_ENTRY(TYPE_XMM256, "32-byte") \
ENUM_ENTRY(TYPE_XMM512, "64-byte") \
ENUM_ENTRY(TYPE_VK8, "8-bit") \
ENUM_ENTRY(TYPE_VK16, "16-bit") \
ENUM_ENTRY(TYPE_XMM0, "Implicit use of XMM0") \
ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand") \
ENUM_ENTRY(TYPE_DEBUGREG, "Debug register operand") \
ENUM_ENTRY(TYPE_CONTROLREG, "Control register operand") \
\
ENUM_ENTRY(TYPE_Mv, "Memory operand of operand size") \
ENUM_ENTRY(TYPE_Rv, "Register operand of operand size") \
ENUM_ENTRY(TYPE_IMMv, "Immediate operand of operand size") \
ENUM_ENTRY(TYPE_RELv, "Immediate address of operand size") \
ENUM_ENTRY(TYPE_DUP0, "Duplicate of operand 0") \
ENUM_ENTRY(TYPE_DUP1, "operand 1") \
ENUM_ENTRY(TYPE_DUP2, "operand 2") \
ENUM_ENTRY(TYPE_DUP3, "operand 3") \
ENUM_ENTRY(TYPE_DUP4, "operand 4") \
ENUM_ENTRY(TYPE_M512, "512-bit FPU/MMX/XMM/MXCSR state")
#define ENUM_ENTRY(n, d) n,
typedef enum {
TYPES
TYPE_max
} OperandType;
#undef ENUM_ENTRY
/*
* OperandSpecifier - The specification for how to extract and interpret one
* operand.
*/
struct OperandSpecifier {
uint8_t encoding;
uint8_t type;
};
/*
* Indicates where the opcode modifier (if any) is to be found. Extended
* opcodes with AddRegFrm have the opcode modifier in the ModR/M byte.
*/
#define MODIFIER_TYPES \
ENUM_ENTRY(MODIFIER_NONE) \
ENUM_ENTRY(MODIFIER_OPCODE) \
ENUM_ENTRY(MODIFIER_MODRM)
#define ENUM_ENTRY(n) n,
typedef enum {
MODIFIER_TYPES
MODIFIER_max
} ModifierType;
#undef ENUM_ENTRY
#define X86_MAX_OPERANDS 5
/*
* The specification for how to extract and interpret a full instruction and
* its operands.
*/
struct InstructionSpecifier {
uint8_t modifierType;
uint8_t modifierBase;
/* The macro below must be defined wherever this file is included. */
INSTRUCTION_SPECIFIER_FIELDS
};
/*
* Decoding mode for the Intel disassembler. 16-bit, 32-bit, and 64-bit mode
* are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode,
* respectively.
*/
typedef enum {
MODE_16BIT,
MODE_32BIT,
MODE_64BIT
} DisassemblerMode;
#endif