forked from OSchip/llvm-project
1370 lines
50 KiB
C++
1370 lines
50 KiB
C++
//===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
///
|
|
/// The AMDGPUAsmPrinter is used to print both assembly string and also binary
|
|
/// code. When passed an MCAsmStreamer it prints assembly and when passed
|
|
/// an MCObjectStreamer it outputs binary code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
|
|
#include "AMDGPUAsmPrinter.h"
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "MCTargetDesc/AMDGPUInstPrinter.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "MCTargetDesc/AMDGPUTargetStreamer.h"
|
|
#include "R600AsmPrinter.h"
|
|
#include "R600Defines.h"
|
|
#include "R600MachineFunctionInfo.h"
|
|
#include "R600RegisterInfo.h"
|
|
#include "SIDefines.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "TargetInfo/AMDGPUTargetInfo.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCSectionELF.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/Support/AMDGPUMetadata.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/TargetParser.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::AMDGPU;
|
|
using namespace llvm::AMDGPU::HSAMD;
|
|
|
|
// We need to tell the runtime some amount ahead of time if we don't know the
|
|
// true stack size. Assume a smaller number if this is only due to dynamic /
|
|
// non-entry block allocas.
|
|
static cl::opt<uint32_t> AssumedStackSizeForExternalCall(
|
|
"amdgpu-assume-external-call-stack-size",
|
|
cl::desc("Assumed stack use of any external call (in bytes)"),
|
|
cl::Hidden,
|
|
cl::init(16384));
|
|
|
|
static cl::opt<uint32_t> AssumedStackSizeForDynamicSizeObjects(
|
|
"amdgpu-assume-dynamic-stack-object-size",
|
|
cl::desc("Assumed extra stack use if there are any "
|
|
"variable sized objects (in bytes)"),
|
|
cl::Hidden,
|
|
cl::init(4096));
|
|
|
|
// This should get the default rounding mode from the kernel. We just set the
|
|
// default here, but this could change if the OpenCL rounding mode pragmas are
|
|
// used.
|
|
//
|
|
// The denormal mode here should match what is reported by the OpenCL runtime
|
|
// for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
|
|
// can also be override to flush with the -cl-denorms-are-zero compiler flag.
|
|
//
|
|
// AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
|
|
// precision, and leaves single precision to flush all and does not report
|
|
// CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
|
|
// CL_FP_DENORM for both.
|
|
//
|
|
// FIXME: It seems some instructions do not support single precision denormals
|
|
// regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
|
|
// and sin_f32, cos_f32 on most parts).
|
|
|
|
// We want to use these instructions, and using fp32 denormals also causes
|
|
// instructions to run at the double precision rate for the device so it's
|
|
// probably best to just report no single precision denormals.
|
|
static uint32_t getFPMode(AMDGPU::SIModeRegisterDefaults Mode) {
|
|
return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
|
|
FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
|
|
FP_DENORM_MODE_SP(Mode.fpDenormModeSPValue()) |
|
|
FP_DENORM_MODE_DP(Mode.fpDenormModeDPValue());
|
|
}
|
|
|
|
static AsmPrinter *
|
|
createAMDGPUAsmPrinterPass(TargetMachine &tm,
|
|
std::unique_ptr<MCStreamer> &&Streamer) {
|
|
return new AMDGPUAsmPrinter(tm, std::move(Streamer));
|
|
}
|
|
|
|
extern "C" void LLVM_EXTERNAL_VISIBILITY LLVMInitializeAMDGPUAsmPrinter() {
|
|
TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(),
|
|
llvm::createR600AsmPrinterPass);
|
|
TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(),
|
|
createAMDGPUAsmPrinterPass);
|
|
}
|
|
|
|
AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM,
|
|
std::unique_ptr<MCStreamer> Streamer)
|
|
: AsmPrinter(TM, std::move(Streamer)) {
|
|
if (TM.getTargetTriple().getOS() == Triple::AMDHSA) {
|
|
if (isHsaAbiVersion2(getGlobalSTI())) {
|
|
HSAMetadataStream.reset(new MetadataStreamerV2());
|
|
} else {
|
|
HSAMetadataStream.reset(new MetadataStreamerV3());
|
|
}
|
|
}
|
|
}
|
|
|
|
StringRef AMDGPUAsmPrinter::getPassName() const {
|
|
return "AMDGPU Assembly Printer";
|
|
}
|
|
|
|
const MCSubtargetInfo *AMDGPUAsmPrinter::getGlobalSTI() const {
|
|
return TM.getMCSubtargetInfo();
|
|
}
|
|
|
|
AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const {
|
|
if (!OutStreamer)
|
|
return nullptr;
|
|
return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer());
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::emitStartOfAsmFile(Module &M) {
|
|
if (isHsaAbiVersion3(getGlobalSTI())) {
|
|
std::string ExpectedTarget;
|
|
raw_string_ostream ExpectedTargetOS(ExpectedTarget);
|
|
IsaInfo::streamIsaVersion(getGlobalSTI(), ExpectedTargetOS);
|
|
|
|
getTargetStreamer()->EmitDirectiveAMDGCNTarget(ExpectedTarget);
|
|
}
|
|
|
|
if (TM.getTargetTriple().getOS() != Triple::AMDHSA &&
|
|
TM.getTargetTriple().getOS() != Triple::AMDPAL)
|
|
return;
|
|
|
|
if (TM.getTargetTriple().getOS() == Triple::AMDHSA)
|
|
HSAMetadataStream->begin(M);
|
|
|
|
if (TM.getTargetTriple().getOS() == Triple::AMDPAL)
|
|
getTargetStreamer()->getPALMetadata()->readFromIR(M);
|
|
|
|
if (isHsaAbiVersion3(getGlobalSTI()))
|
|
return;
|
|
|
|
// HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2.
|
|
if (TM.getTargetTriple().getOS() == Triple::AMDHSA)
|
|
getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1);
|
|
|
|
// HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2.
|
|
IsaVersion Version = getIsaVersion(getGlobalSTI()->getCPU());
|
|
getTargetStreamer()->EmitDirectiveHSACodeObjectISA(
|
|
Version.Major, Version.Minor, Version.Stepping, "AMD", "AMDGPU");
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::emitEndOfAsmFile(Module &M) {
|
|
// Following code requires TargetStreamer to be present.
|
|
if (!getTargetStreamer())
|
|
return;
|
|
|
|
if (TM.getTargetTriple().getOS() != Triple::AMDHSA ||
|
|
isHsaAbiVersion2(getGlobalSTI())) {
|
|
// Emit ISA Version (NT_AMD_AMDGPU_ISA).
|
|
std::string ISAVersionString;
|
|
raw_string_ostream ISAVersionStream(ISAVersionString);
|
|
IsaInfo::streamIsaVersion(getGlobalSTI(), ISAVersionStream);
|
|
getTargetStreamer()->EmitISAVersion(ISAVersionStream.str());
|
|
}
|
|
|
|
// Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA).
|
|
if (TM.getTargetTriple().getOS() == Triple::AMDHSA) {
|
|
HSAMetadataStream->end();
|
|
bool Success = HSAMetadataStream->emitTo(*getTargetStreamer());
|
|
(void)Success;
|
|
assert(Success && "Malformed HSA Metadata");
|
|
}
|
|
}
|
|
|
|
bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough(
|
|
const MachineBasicBlock *MBB) const {
|
|
if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB))
|
|
return false;
|
|
|
|
if (MBB->empty())
|
|
return true;
|
|
|
|
// If this is a block implementing a long branch, an expression relative to
|
|
// the start of the block is needed. to the start of the block.
|
|
// XXX - Is there a smarter way to check this?
|
|
return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64);
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::emitFunctionBodyStart() {
|
|
const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
|
|
if (!MFI.isEntryFunction())
|
|
return;
|
|
|
|
const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>();
|
|
const Function &F = MF->getFunction();
|
|
if ((STM.isMesaKernel(F) || isHsaAbiVersion2(getGlobalSTI())) &&
|
|
(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
|
|
F.getCallingConv() == CallingConv::SPIR_KERNEL)) {
|
|
amd_kernel_code_t KernelCode;
|
|
getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF);
|
|
getTargetStreamer()->EmitAMDKernelCodeT(KernelCode);
|
|
}
|
|
|
|
if (STM.isAmdHsaOS())
|
|
HSAMetadataStream->emitKernel(*MF, CurrentProgramInfo);
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::emitFunctionBodyEnd() {
|
|
const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
|
|
if (!MFI.isEntryFunction())
|
|
return;
|
|
|
|
if (TM.getTargetTriple().getOS() != Triple::AMDHSA ||
|
|
isHsaAbiVersion2(getGlobalSTI()))
|
|
return;
|
|
|
|
auto &Streamer = getTargetStreamer()->getStreamer();
|
|
auto &Context = Streamer.getContext();
|
|
auto &ObjectFileInfo = *Context.getObjectFileInfo();
|
|
auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection();
|
|
|
|
Streamer.PushSection();
|
|
Streamer.SwitchSection(&ReadOnlySection);
|
|
|
|
// CP microcode requires the kernel descriptor to be allocated on 64 byte
|
|
// alignment.
|
|
Streamer.emitValueToAlignment(64, 0, 1, 0);
|
|
if (ReadOnlySection.getAlignment() < 64)
|
|
ReadOnlySection.setAlignment(Align(64));
|
|
|
|
const MCSubtargetInfo &STI = MF->getSubtarget();
|
|
|
|
SmallString<128> KernelName;
|
|
getNameWithPrefix(KernelName, &MF->getFunction());
|
|
getTargetStreamer()->EmitAmdhsaKernelDescriptor(
|
|
STI, KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo),
|
|
CurrentProgramInfo.NumVGPRsForWavesPerEU,
|
|
CurrentProgramInfo.NumSGPRsForWavesPerEU -
|
|
IsaInfo::getNumExtraSGPRs(&STI,
|
|
CurrentProgramInfo.VCCUsed,
|
|
CurrentProgramInfo.FlatUsed),
|
|
CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed,
|
|
hasXNACK(STI));
|
|
|
|
Streamer.PopSection();
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::emitFunctionEntryLabel() {
|
|
if (TM.getTargetTriple().getOS() == Triple::AMDHSA &&
|
|
isHsaAbiVersion3(getGlobalSTI())) {
|
|
AsmPrinter::emitFunctionEntryLabel();
|
|
return;
|
|
}
|
|
|
|
const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
|
|
const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>();
|
|
if (MFI->isEntryFunction() && STM.isAmdHsaOrMesa(MF->getFunction())) {
|
|
SmallString<128> SymbolName;
|
|
getNameWithPrefix(SymbolName, &MF->getFunction()),
|
|
getTargetStreamer()->EmitAMDGPUSymbolType(
|
|
SymbolName, ELF::STT_AMDGPU_HSA_KERNEL);
|
|
}
|
|
if (DumpCodeInstEmitter) {
|
|
// Disassemble function name label to text.
|
|
DisasmLines.push_back(MF->getName().str() + ":");
|
|
DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size());
|
|
HexLines.push_back("");
|
|
}
|
|
|
|
AsmPrinter::emitFunctionEntryLabel();
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
|
|
if (DumpCodeInstEmitter && !isBlockOnlyReachableByFallthrough(&MBB)) {
|
|
// Write a line for the basic block label if it is not only fallthrough.
|
|
DisasmLines.push_back(
|
|
(Twine("BB") + Twine(getFunctionNumber())
|
|
+ "_" + Twine(MBB.getNumber()) + ":").str());
|
|
DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size());
|
|
HexLines.push_back("");
|
|
}
|
|
AsmPrinter::emitBasicBlockStart(MBB);
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
|
|
if (GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
|
|
if (GV->hasInitializer() && !isa<UndefValue>(GV->getInitializer())) {
|
|
OutContext.reportError({},
|
|
Twine(GV->getName()) +
|
|
": unsupported initializer for address space");
|
|
return;
|
|
}
|
|
|
|
// LDS variables aren't emitted in HSA or PAL yet.
|
|
const Triple::OSType OS = TM.getTargetTriple().getOS();
|
|
if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
|
|
return;
|
|
|
|
MCSymbol *GVSym = getSymbol(GV);
|
|
|
|
GVSym->redefineIfPossible();
|
|
if (GVSym->isDefined() || GVSym->isVariable())
|
|
report_fatal_error("symbol '" + Twine(GVSym->getName()) +
|
|
"' is already defined");
|
|
|
|
const DataLayout &DL = GV->getParent()->getDataLayout();
|
|
uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
|
|
Align Alignment = GV->getAlign().getValueOr(Align(4));
|
|
|
|
emitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
|
|
emitLinkage(GV, GVSym);
|
|
if (auto TS = getTargetStreamer())
|
|
TS->emitAMDGPULDS(GVSym, Size, Alignment);
|
|
return;
|
|
}
|
|
|
|
AsmPrinter::emitGlobalVariable(GV);
|
|
}
|
|
|
|
bool AMDGPUAsmPrinter::doFinalization(Module &M) {
|
|
CallGraphResourceInfo.clear();
|
|
|
|
// Pad with s_code_end to help tools and guard against instruction prefetch
|
|
// causing stale data in caches. Arguably this should be done by the linker,
|
|
// which is why this isn't done for Mesa.
|
|
const MCSubtargetInfo &STI = *getGlobalSTI();
|
|
if (AMDGPU::isGFX10(STI) &&
|
|
(STI.getTargetTriple().getOS() == Triple::AMDHSA ||
|
|
STI.getTargetTriple().getOS() == Triple::AMDPAL)) {
|
|
OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
|
|
getTargetStreamer()->EmitCodeEnd();
|
|
}
|
|
|
|
return AsmPrinter::doFinalization(M);
|
|
}
|
|
|
|
// Print comments that apply to both callable functions and entry points.
|
|
void AMDGPUAsmPrinter::emitCommonFunctionComments(
|
|
uint32_t NumVGPR,
|
|
Optional<uint32_t> NumAGPR,
|
|
uint32_t TotalNumVGPR,
|
|
uint32_t NumSGPR,
|
|
uint64_t ScratchSize,
|
|
uint64_t CodeSize,
|
|
const AMDGPUMachineFunction *MFI) {
|
|
OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false);
|
|
OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false);
|
|
OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false);
|
|
if (NumAGPR) {
|
|
OutStreamer->emitRawComment(" NumAgprs: " + Twine(*NumAGPR), false);
|
|
OutStreamer->emitRawComment(" TotalNumVgprs: " + Twine(TotalNumVGPR),
|
|
false);
|
|
}
|
|
OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false);
|
|
OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()),
|
|
false);
|
|
}
|
|
|
|
uint16_t AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties(
|
|
const MachineFunction &MF) const {
|
|
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
|
|
uint16_t KernelCodeProperties = 0;
|
|
|
|
if (MFI.hasPrivateSegmentBuffer()) {
|
|
KernelCodeProperties |=
|
|
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
|
|
}
|
|
if (MFI.hasDispatchPtr()) {
|
|
KernelCodeProperties |=
|
|
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
|
|
}
|
|
if (MFI.hasQueuePtr()) {
|
|
KernelCodeProperties |=
|
|
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;
|
|
}
|
|
if (MFI.hasKernargSegmentPtr()) {
|
|
KernelCodeProperties |=
|
|
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;
|
|
}
|
|
if (MFI.hasDispatchID()) {
|
|
KernelCodeProperties |=
|
|
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;
|
|
}
|
|
if (MFI.hasFlatScratchInit()) {
|
|
KernelCodeProperties |=
|
|
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
|
|
}
|
|
if (MF.getSubtarget<GCNSubtarget>().isWave32()) {
|
|
KernelCodeProperties |=
|
|
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
|
|
}
|
|
|
|
return KernelCodeProperties;
|
|
}
|
|
|
|
amdhsa::kernel_descriptor_t AMDGPUAsmPrinter::getAmdhsaKernelDescriptor(
|
|
const MachineFunction &MF,
|
|
const SIProgramInfo &PI) const {
|
|
amdhsa::kernel_descriptor_t KernelDescriptor;
|
|
memset(&KernelDescriptor, 0x0, sizeof(KernelDescriptor));
|
|
|
|
assert(isUInt<32>(PI.ScratchSize));
|
|
assert(isUInt<32>(PI.getComputePGMRSrc1()));
|
|
assert(isUInt<32>(PI.ComputePGMRSrc2));
|
|
|
|
KernelDescriptor.group_segment_fixed_size = PI.LDSSize;
|
|
KernelDescriptor.private_segment_fixed_size = PI.ScratchSize;
|
|
KernelDescriptor.compute_pgm_rsrc1 = PI.getComputePGMRSrc1();
|
|
KernelDescriptor.compute_pgm_rsrc2 = PI.ComputePGMRSrc2;
|
|
KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF);
|
|
|
|
return KernelDescriptor;
|
|
}
|
|
|
|
bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
|
|
CurrentProgramInfo = SIProgramInfo();
|
|
|
|
const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
|
|
|
|
// The starting address of all shader programs must be 256 bytes aligned.
|
|
// Regular functions just need the basic required instruction alignment.
|
|
MF.setAlignment(MFI->isEntryFunction() ? Align(256) : Align(4));
|
|
|
|
SetupMachineFunction(MF);
|
|
|
|
const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
|
|
MCContext &Context = getObjFileLowering().getContext();
|
|
// FIXME: This should be an explicit check for Mesa.
|
|
if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) {
|
|
MCSectionELF *ConfigSection =
|
|
Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0);
|
|
OutStreamer->SwitchSection(ConfigSection);
|
|
}
|
|
|
|
if (MFI->isEntryFunction()) {
|
|
getSIProgramInfo(CurrentProgramInfo, MF);
|
|
} else {
|
|
auto I = CallGraphResourceInfo.insert(
|
|
std::make_pair(&MF.getFunction(), SIFunctionResourceInfo()));
|
|
SIFunctionResourceInfo &Info = I.first->second;
|
|
assert(I.second && "should only be called once per function");
|
|
Info = analyzeResourceUsage(MF);
|
|
}
|
|
|
|
if (STM.isAmdPalOS() && MFI->isEntryFunction())
|
|
EmitPALMetadata(MF, CurrentProgramInfo);
|
|
else if (!STM.isAmdHsaOS()) {
|
|
EmitProgramInfoSI(MF, CurrentProgramInfo);
|
|
}
|
|
|
|
DumpCodeInstEmitter = nullptr;
|
|
if (STM.dumpCode()) {
|
|
// For -dumpcode, get the assembler out of the streamer, even if it does
|
|
// not really want to let us have it. This only works with -filetype=obj.
|
|
bool SaveFlag = OutStreamer->getUseAssemblerInfoForParsing();
|
|
OutStreamer->setUseAssemblerInfoForParsing(true);
|
|
MCAssembler *Assembler = OutStreamer->getAssemblerPtr();
|
|
OutStreamer->setUseAssemblerInfoForParsing(SaveFlag);
|
|
if (Assembler)
|
|
DumpCodeInstEmitter = Assembler->getEmitterPtr();
|
|
}
|
|
|
|
DisasmLines.clear();
|
|
HexLines.clear();
|
|
DisasmLineMaxLen = 0;
|
|
|
|
emitFunctionBody();
|
|
|
|
if (isVerbose()) {
|
|
MCSectionELF *CommentSection =
|
|
Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0);
|
|
OutStreamer->SwitchSection(CommentSection);
|
|
|
|
if (!MFI->isEntryFunction()) {
|
|
OutStreamer->emitRawComment(" Function info:", false);
|
|
SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()];
|
|
emitCommonFunctionComments(
|
|
Info.NumVGPR,
|
|
STM.hasMAIInsts() ? Info.NumAGPR : Optional<uint32_t>(),
|
|
Info.getTotalNumVGPRs(STM),
|
|
Info.getTotalNumSGPRs(MF.getSubtarget<GCNSubtarget>()),
|
|
Info.PrivateSegmentSize,
|
|
getFunctionCodeSize(MF), MFI);
|
|
return false;
|
|
}
|
|
|
|
OutStreamer->emitRawComment(" Kernel info:", false);
|
|
emitCommonFunctionComments(CurrentProgramInfo.NumArchVGPR,
|
|
STM.hasMAIInsts()
|
|
? CurrentProgramInfo.NumAccVGPR
|
|
: Optional<uint32_t>(),
|
|
CurrentProgramInfo.NumVGPR,
|
|
CurrentProgramInfo.NumSGPR,
|
|
CurrentProgramInfo.ScratchSize,
|
|
getFunctionCodeSize(MF), MFI);
|
|
|
|
OutStreamer->emitRawComment(
|
|
" FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false);
|
|
OutStreamer->emitRawComment(
|
|
" IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false);
|
|
OutStreamer->emitRawComment(
|
|
" LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) +
|
|
" bytes/workgroup (compile time only)", false);
|
|
|
|
OutStreamer->emitRawComment(
|
|
" SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false);
|
|
OutStreamer->emitRawComment(
|
|
" VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false);
|
|
|
|
OutStreamer->emitRawComment(
|
|
" NumSGPRsForWavesPerEU: " +
|
|
Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false);
|
|
OutStreamer->emitRawComment(
|
|
" NumVGPRsForWavesPerEU: " +
|
|
Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false);
|
|
|
|
OutStreamer->emitRawComment(
|
|
" Occupancy: " +
|
|
Twine(CurrentProgramInfo.Occupancy), false);
|
|
|
|
OutStreamer->emitRawComment(
|
|
" WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false);
|
|
|
|
OutStreamer->emitRawComment(
|
|
" COMPUTE_PGM_RSRC2:USER_SGPR: " +
|
|
Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false);
|
|
OutStreamer->emitRawComment(
|
|
" COMPUTE_PGM_RSRC2:TRAP_HANDLER: " +
|
|
Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false);
|
|
OutStreamer->emitRawComment(
|
|
" COMPUTE_PGM_RSRC2:TGID_X_EN: " +
|
|
Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
|
|
OutStreamer->emitRawComment(
|
|
" COMPUTE_PGM_RSRC2:TGID_Y_EN: " +
|
|
Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
|
|
OutStreamer->emitRawComment(
|
|
" COMPUTE_PGM_RSRC2:TGID_Z_EN: " +
|
|
Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
|
|
OutStreamer->emitRawComment(
|
|
" COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " +
|
|
Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)),
|
|
false);
|
|
}
|
|
|
|
if (DumpCodeInstEmitter) {
|
|
|
|
OutStreamer->SwitchSection(
|
|
Context.getELFSection(".AMDGPU.disasm", ELF::SHT_PROGBITS, 0));
|
|
|
|
for (size_t i = 0; i < DisasmLines.size(); ++i) {
|
|
std::string Comment = "\n";
|
|
if (!HexLines[i].empty()) {
|
|
Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
|
|
Comment += " ; " + HexLines[i] + "\n";
|
|
}
|
|
|
|
OutStreamer->emitBytes(StringRef(DisasmLines[i]));
|
|
OutStreamer->emitBytes(StringRef(Comment));
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const {
|
|
const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
|
|
const SIInstrInfo *TII = STM.getInstrInfo();
|
|
|
|
uint64_t CodeSize = 0;
|
|
|
|
for (const MachineBasicBlock &MBB : MF) {
|
|
for (const MachineInstr &MI : MBB) {
|
|
// TODO: CodeSize should account for multiple functions.
|
|
|
|
// TODO: Should we count size of debug info?
|
|
if (MI.isDebugInstr())
|
|
continue;
|
|
|
|
CodeSize += TII->getInstSizeInBytes(MI);
|
|
}
|
|
}
|
|
|
|
return CodeSize;
|
|
}
|
|
|
|
static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI,
|
|
const SIInstrInfo &TII,
|
|
unsigned Reg) {
|
|
for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) {
|
|
if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent()))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs(
|
|
const GCNSubtarget &ST) const {
|
|
return NumExplicitSGPR + IsaInfo::getNumExtraSGPRs(&ST,
|
|
UsesVCC, UsesFlatScratch);
|
|
}
|
|
|
|
int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumVGPRs(
|
|
const GCNSubtarget &ST) const {
|
|
return std::max(NumVGPR, NumAGPR);
|
|
}
|
|
|
|
static const Function *getCalleeFunction(const MachineOperand &Op) {
|
|
if (Op.isImm()) {
|
|
assert(Op.getImm() == 0);
|
|
return nullptr;
|
|
}
|
|
|
|
return cast<Function>(Op.getGlobal());
|
|
}
|
|
|
|
AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage(
|
|
const MachineFunction &MF) const {
|
|
SIFunctionResourceInfo Info;
|
|
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
const SIRegisterInfo &TRI = TII->getRegisterInfo();
|
|
|
|
Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) ||
|
|
MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI);
|
|
|
|
// Even if FLAT_SCRATCH is implicitly used, it has no effect if flat
|
|
// instructions aren't used to access the scratch buffer. Inline assembly may
|
|
// need it though.
|
|
//
|
|
// If we only have implicit uses of flat_scr on flat instructions, it is not
|
|
// really needed.
|
|
if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() &&
|
|
(!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) &&
|
|
!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) &&
|
|
!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) {
|
|
Info.UsesFlatScratch = false;
|
|
}
|
|
|
|
Info.PrivateSegmentSize = FrameInfo.getStackSize();
|
|
|
|
// Assume a big number if there are any unknown sized objects.
|
|
Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects();
|
|
if (Info.HasDynamicallySizedStack)
|
|
Info.PrivateSegmentSize += AssumedStackSizeForDynamicSizeObjects;
|
|
|
|
if (MFI->isStackRealigned())
|
|
Info.PrivateSegmentSize += FrameInfo.getMaxAlign().value();
|
|
|
|
Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) ||
|
|
MRI.isPhysRegUsed(AMDGPU::VCC_HI);
|
|
|
|
// If there are no calls, MachineRegisterInfo can tell us the used register
|
|
// count easily.
|
|
// A tail call isn't considered a call for MachineFrameInfo's purposes.
|
|
if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) {
|
|
MCPhysReg HighestVGPRReg = AMDGPU::NoRegister;
|
|
for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) {
|
|
if (MRI.isPhysRegUsed(Reg)) {
|
|
HighestVGPRReg = Reg;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ST.hasMAIInsts()) {
|
|
MCPhysReg HighestAGPRReg = AMDGPU::NoRegister;
|
|
for (MCPhysReg Reg : reverse(AMDGPU::AGPR_32RegClass.getRegisters())) {
|
|
if (MRI.isPhysRegUsed(Reg)) {
|
|
HighestAGPRReg = Reg;
|
|
break;
|
|
}
|
|
}
|
|
Info.NumAGPR = HighestAGPRReg == AMDGPU::NoRegister ? 0 :
|
|
TRI.getHWRegIndex(HighestAGPRReg) + 1;
|
|
}
|
|
|
|
MCPhysReg HighestSGPRReg = AMDGPU::NoRegister;
|
|
for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) {
|
|
if (MRI.isPhysRegUsed(Reg)) {
|
|
HighestSGPRReg = Reg;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We found the maximum register index. They start at 0, so add one to get the
|
|
// number of registers.
|
|
Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 :
|
|
TRI.getHWRegIndex(HighestVGPRReg) + 1;
|
|
Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 :
|
|
TRI.getHWRegIndex(HighestSGPRReg) + 1;
|
|
|
|
return Info;
|
|
}
|
|
|
|
int32_t MaxVGPR = -1;
|
|
int32_t MaxAGPR = -1;
|
|
int32_t MaxSGPR = -1;
|
|
uint64_t CalleeFrameSize = 0;
|
|
|
|
for (const MachineBasicBlock &MBB : MF) {
|
|
for (const MachineInstr &MI : MBB) {
|
|
// TODO: Check regmasks? Do they occur anywhere except calls?
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
unsigned Width = 0;
|
|
bool IsSGPR = false;
|
|
bool IsAGPR = false;
|
|
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
Register Reg = MO.getReg();
|
|
switch (Reg) {
|
|
case AMDGPU::EXEC:
|
|
case AMDGPU::EXEC_LO:
|
|
case AMDGPU::EXEC_HI:
|
|
case AMDGPU::SCC:
|
|
case AMDGPU::M0:
|
|
case AMDGPU::SRC_SHARED_BASE:
|
|
case AMDGPU::SRC_SHARED_LIMIT:
|
|
case AMDGPU::SRC_PRIVATE_BASE:
|
|
case AMDGPU::SRC_PRIVATE_LIMIT:
|
|
case AMDGPU::SGPR_NULL:
|
|
case AMDGPU::MODE:
|
|
continue;
|
|
|
|
case AMDGPU::SRC_POPS_EXITING_WAVE_ID:
|
|
llvm_unreachable("src_pops_exiting_wave_id should not be used");
|
|
|
|
case AMDGPU::NoRegister:
|
|
assert(MI.isDebugInstr() && "Instruction uses invalid noreg register");
|
|
continue;
|
|
|
|
case AMDGPU::VCC:
|
|
case AMDGPU::VCC_LO:
|
|
case AMDGPU::VCC_HI:
|
|
case AMDGPU::VCC_LO_LO16:
|
|
case AMDGPU::VCC_LO_HI16:
|
|
case AMDGPU::VCC_HI_LO16:
|
|
case AMDGPU::VCC_HI_HI16:
|
|
Info.UsesVCC = true;
|
|
continue;
|
|
|
|
case AMDGPU::FLAT_SCR:
|
|
case AMDGPU::FLAT_SCR_LO:
|
|
case AMDGPU::FLAT_SCR_HI:
|
|
continue;
|
|
|
|
case AMDGPU::XNACK_MASK:
|
|
case AMDGPU::XNACK_MASK_LO:
|
|
case AMDGPU::XNACK_MASK_HI:
|
|
llvm_unreachable("xnack_mask registers should not be used");
|
|
|
|
case AMDGPU::LDS_DIRECT:
|
|
llvm_unreachable("lds_direct register should not be used");
|
|
|
|
case AMDGPU::TBA:
|
|
case AMDGPU::TBA_LO:
|
|
case AMDGPU::TBA_HI:
|
|
case AMDGPU::TMA:
|
|
case AMDGPU::TMA_LO:
|
|
case AMDGPU::TMA_HI:
|
|
llvm_unreachable("trap handler registers should not be used");
|
|
|
|
case AMDGPU::SRC_VCCZ:
|
|
llvm_unreachable("src_vccz register should not be used");
|
|
|
|
case AMDGPU::SRC_EXECZ:
|
|
llvm_unreachable("src_execz register should not be used");
|
|
|
|
case AMDGPU::SRC_SCC:
|
|
llvm_unreachable("src_scc register should not be used");
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (AMDGPU::SReg_32RegClass.contains(Reg) ||
|
|
AMDGPU::SReg_LO16RegClass.contains(Reg) ||
|
|
AMDGPU::SGPR_HI16RegClass.contains(Reg)) {
|
|
assert(!AMDGPU::TTMP_32RegClass.contains(Reg) &&
|
|
"trap handler registers should not be used");
|
|
IsSGPR = true;
|
|
Width = 1;
|
|
} else if (AMDGPU::VGPR_32RegClass.contains(Reg) ||
|
|
AMDGPU::VGPR_LO16RegClass.contains(Reg) ||
|
|
AMDGPU::VGPR_HI16RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 1;
|
|
} else if (AMDGPU::AGPR_32RegClass.contains(Reg) ||
|
|
AMDGPU::AGPR_LO16RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
IsAGPR = true;
|
|
Width = 1;
|
|
} else if (AMDGPU::SReg_64RegClass.contains(Reg)) {
|
|
assert(!AMDGPU::TTMP_64RegClass.contains(Reg) &&
|
|
"trap handler registers should not be used");
|
|
IsSGPR = true;
|
|
Width = 2;
|
|
} else if (AMDGPU::VReg_64RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 2;
|
|
} else if (AMDGPU::AReg_64RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
IsAGPR = true;
|
|
Width = 2;
|
|
} else if (AMDGPU::VReg_96RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 3;
|
|
} else if (AMDGPU::SReg_96RegClass.contains(Reg)) {
|
|
IsSGPR = true;
|
|
Width = 3;
|
|
} else if (AMDGPU::AReg_96RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
IsAGPR = true;
|
|
Width = 3;
|
|
} else if (AMDGPU::SReg_128RegClass.contains(Reg)) {
|
|
assert(!AMDGPU::TTMP_128RegClass.contains(Reg) &&
|
|
"trap handler registers should not be used");
|
|
IsSGPR = true;
|
|
Width = 4;
|
|
} else if (AMDGPU::VReg_128RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 4;
|
|
} else if (AMDGPU::AReg_128RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
IsAGPR = true;
|
|
Width = 4;
|
|
} else if (AMDGPU::VReg_160RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 5;
|
|
} else if (AMDGPU::SReg_160RegClass.contains(Reg)) {
|
|
IsSGPR = true;
|
|
Width = 5;
|
|
} else if (AMDGPU::AReg_160RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
IsAGPR = true;
|
|
Width = 5;
|
|
} else if (AMDGPU::VReg_192RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 6;
|
|
} else if (AMDGPU::SReg_192RegClass.contains(Reg)) {
|
|
IsSGPR = true;
|
|
Width = 6;
|
|
} else if (AMDGPU::AReg_192RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
IsAGPR = true;
|
|
Width = 6;
|
|
} else if (AMDGPU::SReg_256RegClass.contains(Reg)) {
|
|
assert(!AMDGPU::TTMP_256RegClass.contains(Reg) &&
|
|
"trap handler registers should not be used");
|
|
IsSGPR = true;
|
|
Width = 8;
|
|
} else if (AMDGPU::VReg_256RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 8;
|
|
} else if (AMDGPU::AReg_256RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
IsAGPR = true;
|
|
Width = 8;
|
|
} else if (AMDGPU::SReg_512RegClass.contains(Reg)) {
|
|
assert(!AMDGPU::TTMP_512RegClass.contains(Reg) &&
|
|
"trap handler registers should not be used");
|
|
IsSGPR = true;
|
|
Width = 16;
|
|
} else if (AMDGPU::VReg_512RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 16;
|
|
} else if (AMDGPU::AReg_512RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
IsAGPR = true;
|
|
Width = 16;
|
|
} else if (AMDGPU::SReg_1024RegClass.contains(Reg)) {
|
|
IsSGPR = true;
|
|
Width = 32;
|
|
} else if (AMDGPU::VReg_1024RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 32;
|
|
} else if (AMDGPU::AReg_1024RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
IsAGPR = true;
|
|
Width = 32;
|
|
} else {
|
|
llvm_unreachable("Unknown register class");
|
|
}
|
|
unsigned HWReg = TRI.getHWRegIndex(Reg);
|
|
int MaxUsed = HWReg + Width - 1;
|
|
if (IsSGPR) {
|
|
MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR;
|
|
} else if (IsAGPR) {
|
|
MaxAGPR = MaxUsed > MaxAGPR ? MaxUsed : MaxAGPR;
|
|
} else {
|
|
MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR;
|
|
}
|
|
}
|
|
|
|
if (MI.isCall()) {
|
|
// Pseudo used just to encode the underlying global. Is there a better
|
|
// way to track this?
|
|
|
|
const MachineOperand *CalleeOp
|
|
= TII->getNamedOperand(MI, AMDGPU::OpName::callee);
|
|
|
|
const Function *Callee = getCalleeFunction(*CalleeOp);
|
|
if (!Callee || Callee->isDeclaration()) {
|
|
// If this is a call to an external function, we can't do much. Make
|
|
// conservative guesses.
|
|
|
|
// 48 SGPRs - vcc, - flat_scr, -xnack
|
|
int MaxSGPRGuess =
|
|
47 - IsaInfo::getNumExtraSGPRs(&ST, true, ST.hasFlatAddressSpace());
|
|
MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess);
|
|
MaxVGPR = std::max(MaxVGPR, 23);
|
|
MaxAGPR = std::max(MaxAGPR, 23);
|
|
|
|
CalleeFrameSize = std::max(CalleeFrameSize,
|
|
static_cast<uint64_t>(AssumedStackSizeForExternalCall));
|
|
|
|
Info.UsesVCC = true;
|
|
Info.UsesFlatScratch = ST.hasFlatAddressSpace();
|
|
Info.HasDynamicallySizedStack = true;
|
|
} else {
|
|
// We force CodeGen to run in SCC order, so the callee's register
|
|
// usage etc. should be the cumulative usage of all callees.
|
|
|
|
auto I = CallGraphResourceInfo.find(Callee);
|
|
if (I == CallGraphResourceInfo.end()) {
|
|
// Avoid crashing on undefined behavior with an illegal call to a
|
|
// kernel. If a callsite's calling convention doesn't match the
|
|
// function's, it's undefined behavior. If the callsite calling
|
|
// convention does match, that would have errored earlier.
|
|
// FIXME: The verifier shouldn't allow this.
|
|
if (AMDGPU::isEntryFunctionCC(Callee->getCallingConv()))
|
|
report_fatal_error("invalid call to entry function");
|
|
|
|
llvm_unreachable("callee should have been handled before caller");
|
|
}
|
|
|
|
MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR);
|
|
MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR);
|
|
MaxAGPR = std::max(I->second.NumAGPR - 1, MaxAGPR);
|
|
CalleeFrameSize
|
|
= std::max(I->second.PrivateSegmentSize, CalleeFrameSize);
|
|
Info.UsesVCC |= I->second.UsesVCC;
|
|
Info.UsesFlatScratch |= I->second.UsesFlatScratch;
|
|
Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack;
|
|
Info.HasRecursion |= I->second.HasRecursion;
|
|
}
|
|
|
|
// FIXME: Call site could have norecurse on it
|
|
if (!Callee || !Callee->doesNotRecurse())
|
|
Info.HasRecursion = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
Info.NumExplicitSGPR = MaxSGPR + 1;
|
|
Info.NumVGPR = MaxVGPR + 1;
|
|
Info.NumAGPR = MaxAGPR + 1;
|
|
Info.PrivateSegmentSize += CalleeFrameSize;
|
|
|
|
return Info;
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
|
|
const MachineFunction &MF) {
|
|
SIFunctionResourceInfo Info = analyzeResourceUsage(MF);
|
|
const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
|
|
|
|
ProgInfo.NumArchVGPR = Info.NumVGPR;
|
|
ProgInfo.NumAccVGPR = Info.NumAGPR;
|
|
ProgInfo.NumVGPR = Info.getTotalNumVGPRs(STM);
|
|
ProgInfo.NumSGPR = Info.NumExplicitSGPR;
|
|
ProgInfo.ScratchSize = Info.PrivateSegmentSize;
|
|
ProgInfo.VCCUsed = Info.UsesVCC;
|
|
ProgInfo.FlatUsed = Info.UsesFlatScratch;
|
|
ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion;
|
|
|
|
const uint64_t MaxScratchPerWorkitem =
|
|
GCNSubtarget::MaxWaveScratchSize / STM.getWavefrontSize();
|
|
if (ProgInfo.ScratchSize > MaxScratchPerWorkitem) {
|
|
DiagnosticInfoStackSize DiagStackSize(MF.getFunction(),
|
|
ProgInfo.ScratchSize, DS_Error);
|
|
MF.getFunction().getContext().diagnose(DiagStackSize);
|
|
}
|
|
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
// TODO(scott.linder): The calculations related to SGPR/VGPR blocks are
|
|
// duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be
|
|
// unified.
|
|
unsigned ExtraSGPRs = IsaInfo::getNumExtraSGPRs(
|
|
&STM, ProgInfo.VCCUsed, ProgInfo.FlatUsed);
|
|
|
|
// Check the addressable register limit before we add ExtraSGPRs.
|
|
if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS &&
|
|
!STM.hasSGPRInitBug()) {
|
|
unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs();
|
|
if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) {
|
|
// This can happen due to a compiler bug or when using inline asm.
|
|
LLVMContext &Ctx = MF.getFunction().getContext();
|
|
DiagnosticInfoResourceLimit Diag(MF.getFunction(),
|
|
"addressable scalar registers",
|
|
ProgInfo.NumSGPR, DS_Error,
|
|
DK_ResourceLimit,
|
|
MaxAddressableNumSGPRs);
|
|
Ctx.diagnose(Diag);
|
|
ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1;
|
|
}
|
|
}
|
|
|
|
// Account for extra SGPRs and VGPRs reserved for debugger use.
|
|
ProgInfo.NumSGPR += ExtraSGPRs;
|
|
|
|
// Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave
|
|
// dispatch registers are function args.
|
|
unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0;
|
|
for (auto &Arg : MF.getFunction().args()) {
|
|
unsigned NumRegs = (Arg.getType()->getPrimitiveSizeInBits() + 31) / 32;
|
|
if (Arg.hasAttribute(Attribute::InReg))
|
|
WaveDispatchNumSGPR += NumRegs;
|
|
else
|
|
WaveDispatchNumVGPR += NumRegs;
|
|
}
|
|
ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR);
|
|
ProgInfo.NumVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR);
|
|
|
|
// Adjust number of registers used to meet default/requested minimum/maximum
|
|
// number of waves per execution unit request.
|
|
ProgInfo.NumSGPRsForWavesPerEU = std::max(
|
|
std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU()));
|
|
ProgInfo.NumVGPRsForWavesPerEU = std::max(
|
|
std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU()));
|
|
|
|
if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ||
|
|
STM.hasSGPRInitBug()) {
|
|
unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs();
|
|
if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) {
|
|
// This can happen due to a compiler bug or when using inline asm to use
|
|
// the registers which are usually reserved for vcc etc.
|
|
LLVMContext &Ctx = MF.getFunction().getContext();
|
|
DiagnosticInfoResourceLimit Diag(MF.getFunction(),
|
|
"scalar registers",
|
|
ProgInfo.NumSGPR, DS_Error,
|
|
DK_ResourceLimit,
|
|
MaxAddressableNumSGPRs);
|
|
Ctx.diagnose(Diag);
|
|
ProgInfo.NumSGPR = MaxAddressableNumSGPRs;
|
|
ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs;
|
|
}
|
|
}
|
|
|
|
if (STM.hasSGPRInitBug()) {
|
|
ProgInfo.NumSGPR =
|
|
AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
|
|
ProgInfo.NumSGPRsForWavesPerEU =
|
|
AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
|
|
}
|
|
|
|
if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) {
|
|
LLVMContext &Ctx = MF.getFunction().getContext();
|
|
DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs",
|
|
MFI->getNumUserSGPRs(), DS_Error);
|
|
Ctx.diagnose(Diag);
|
|
}
|
|
|
|
if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) {
|
|
LLVMContext &Ctx = MF.getFunction().getContext();
|
|
DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory",
|
|
MFI->getLDSSize(), DS_Error);
|
|
Ctx.diagnose(Diag);
|
|
}
|
|
|
|
ProgInfo.SGPRBlocks = IsaInfo::getNumSGPRBlocks(
|
|
&STM, ProgInfo.NumSGPRsForWavesPerEU);
|
|
ProgInfo.VGPRBlocks = IsaInfo::getNumVGPRBlocks(
|
|
&STM, ProgInfo.NumVGPRsForWavesPerEU);
|
|
|
|
const SIModeRegisterDefaults Mode = MFI->getMode();
|
|
|
|
// Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
|
|
// register.
|
|
ProgInfo.FloatMode = getFPMode(Mode);
|
|
|
|
ProgInfo.IEEEMode = Mode.IEEE;
|
|
|
|
// Make clamp modifier on NaN input returns 0.
|
|
ProgInfo.DX10Clamp = Mode.DX10Clamp;
|
|
|
|
unsigned LDSAlignShift;
|
|
if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
|
|
// LDS is allocated in 64 dword blocks.
|
|
LDSAlignShift = 8;
|
|
} else {
|
|
// LDS is allocated in 128 dword blocks.
|
|
LDSAlignShift = 9;
|
|
}
|
|
|
|
unsigned LDSSpillSize =
|
|
MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize();
|
|
|
|
ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize;
|
|
ProgInfo.LDSBlocks =
|
|
alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift;
|
|
|
|
// Scratch is allocated in 256 dword blocks.
|
|
unsigned ScratchAlignShift = 10;
|
|
// We need to program the hardware with the amount of scratch memory that
|
|
// is used by the entire wave. ProgInfo.ScratchSize is the amount of
|
|
// scratch memory used per thread.
|
|
ProgInfo.ScratchBlocks =
|
|
alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(),
|
|
1ULL << ScratchAlignShift) >>
|
|
ScratchAlignShift;
|
|
|
|
if (getIsaVersion(getGlobalSTI()->getCPU()).Major >= 10) {
|
|
ProgInfo.WgpMode = STM.isCuModeEnabled() ? 0 : 1;
|
|
ProgInfo.MemOrdered = 1;
|
|
}
|
|
|
|
// 0 = X, 1 = XY, 2 = XYZ
|
|
unsigned TIDIGCompCnt = 0;
|
|
if (MFI->hasWorkItemIDZ())
|
|
TIDIGCompCnt = 2;
|
|
else if (MFI->hasWorkItemIDY())
|
|
TIDIGCompCnt = 1;
|
|
|
|
ProgInfo.ComputePGMRSrc2 =
|
|
S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) |
|
|
S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) |
|
|
// For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP.
|
|
S_00B84C_TRAP_HANDLER(STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled()) |
|
|
S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) |
|
|
S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) |
|
|
S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) |
|
|
S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) |
|
|
S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) |
|
|
S_00B84C_EXCP_EN_MSB(0) |
|
|
// For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP.
|
|
S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) |
|
|
S_00B84C_EXCP_EN(0);
|
|
|
|
ProgInfo.Occupancy = STM.computeOccupancy(MF.getFunction(), ProgInfo.LDSSize,
|
|
ProgInfo.NumSGPRsForWavesPerEU,
|
|
ProgInfo.NumVGPRsForWavesPerEU);
|
|
}
|
|
|
|
static unsigned getRsrcReg(CallingConv::ID CallConv) {
|
|
switch (CallConv) {
|
|
default: LLVM_FALLTHROUGH;
|
|
case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1;
|
|
case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS;
|
|
case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS;
|
|
case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES;
|
|
case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS;
|
|
case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS;
|
|
case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS;
|
|
}
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
|
|
const SIProgramInfo &CurrentProgramInfo) {
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv());
|
|
|
|
if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) {
|
|
OutStreamer->emitInt32(R_00B848_COMPUTE_PGM_RSRC1);
|
|
|
|
OutStreamer->emitInt32(CurrentProgramInfo.getComputePGMRSrc1());
|
|
|
|
OutStreamer->emitInt32(R_00B84C_COMPUTE_PGM_RSRC2);
|
|
OutStreamer->emitInt32(CurrentProgramInfo.ComputePGMRSrc2);
|
|
|
|
OutStreamer->emitInt32(R_00B860_COMPUTE_TMPRING_SIZE);
|
|
OutStreamer->emitInt32(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks));
|
|
|
|
// TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 =
|
|
// 0" comment but I don't see a corresponding field in the register spec.
|
|
} else {
|
|
OutStreamer->emitInt32(RsrcReg);
|
|
OutStreamer->emitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) |
|
|
S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4);
|
|
OutStreamer->emitInt32(R_0286E8_SPI_TMPRING_SIZE);
|
|
OutStreamer->emitIntValue(
|
|
S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4);
|
|
}
|
|
|
|
if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) {
|
|
OutStreamer->emitInt32(R_00B02C_SPI_SHADER_PGM_RSRC2_PS);
|
|
OutStreamer->emitInt32(
|
|
S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks));
|
|
OutStreamer->emitInt32(R_0286CC_SPI_PS_INPUT_ENA);
|
|
OutStreamer->emitInt32(MFI->getPSInputEnable());
|
|
OutStreamer->emitInt32(R_0286D0_SPI_PS_INPUT_ADDR);
|
|
OutStreamer->emitInt32(MFI->getPSInputAddr());
|
|
}
|
|
|
|
OutStreamer->emitInt32(R_SPILLED_SGPRS);
|
|
OutStreamer->emitInt32(MFI->getNumSpilledSGPRs());
|
|
OutStreamer->emitInt32(R_SPILLED_VGPRS);
|
|
OutStreamer->emitInt32(MFI->getNumSpilledVGPRs());
|
|
}
|
|
|
|
// This is the equivalent of EmitProgramInfoSI above, but for when the OS type
|
|
// is AMDPAL. It stores each compute/SPI register setting and other PAL
|
|
// metadata items into the PALMD::Metadata, combining with any provided by the
|
|
// frontend as LLVM metadata. Once all functions are written, the PAL metadata
|
|
// is then written as a single block in the .note section.
|
|
void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF,
|
|
const SIProgramInfo &CurrentProgramInfo) {
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
auto CC = MF.getFunction().getCallingConv();
|
|
auto MD = getTargetStreamer()->getPALMetadata();
|
|
|
|
MD->setEntryPoint(CC, MF.getFunction().getName());
|
|
MD->setNumUsedVgprs(CC, CurrentProgramInfo.NumVGPRsForWavesPerEU);
|
|
MD->setNumUsedSgprs(CC, CurrentProgramInfo.NumSGPRsForWavesPerEU);
|
|
MD->setRsrc1(CC, CurrentProgramInfo.getPGMRSrc1(CC));
|
|
if (AMDGPU::isCompute(CC)) {
|
|
MD->setRsrc2(CC, CurrentProgramInfo.ComputePGMRSrc2);
|
|
} else {
|
|
if (CurrentProgramInfo.ScratchBlocks > 0)
|
|
MD->setRsrc2(CC, S_00B84C_SCRATCH_EN(1));
|
|
}
|
|
// ScratchSize is in bytes, 16 aligned.
|
|
MD->setScratchSize(CC, alignTo(CurrentProgramInfo.ScratchSize, 16));
|
|
if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) {
|
|
MD->setRsrc2(CC, S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks));
|
|
MD->setSpiPsInputEna(MFI->getPSInputEnable());
|
|
MD->setSpiPsInputAddr(MFI->getPSInputAddr());
|
|
}
|
|
|
|
const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
|
|
if (STM.isWave32())
|
|
MD->setWave32(MF.getFunction().getCallingConv());
|
|
}
|
|
|
|
// This is supposed to be log2(Size)
|
|
static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMD_ELEMENT_4_BYTES;
|
|
case 8:
|
|
return AMD_ELEMENT_8_BYTES;
|
|
case 16:
|
|
return AMD_ELEMENT_16_BYTES;
|
|
default:
|
|
llvm_unreachable("invalid private_element_size");
|
|
}
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out,
|
|
const SIProgramInfo &CurrentProgramInfo,
|
|
const MachineFunction &MF) const {
|
|
const Function &F = MF.getFunction();
|
|
assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
|
|
F.getCallingConv() == CallingConv::SPIR_KERNEL);
|
|
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
|
|
|
|
AMDGPU::initDefaultAMDKernelCodeT(Out, &STM);
|
|
|
|
Out.compute_pgm_resource_registers =
|
|
CurrentProgramInfo.getComputePGMRSrc1() |
|
|
(CurrentProgramInfo.ComputePGMRSrc2 << 32);
|
|
Out.code_properties |= AMD_CODE_PROPERTY_IS_PTR64;
|
|
|
|
if (CurrentProgramInfo.DynamicCallStack)
|
|
Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK;
|
|
|
|
AMD_HSA_BITS_SET(Out.code_properties,
|
|
AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE,
|
|
getElementByteSizeValue(STM.getMaxPrivateElementSize(true)));
|
|
|
|
if (MFI->hasPrivateSegmentBuffer()) {
|
|
Out.code_properties |=
|
|
AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
|
|
}
|
|
|
|
if (MFI->hasDispatchPtr())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
|
|
|
|
if (MFI->hasQueuePtr())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;
|
|
|
|
if (MFI->hasKernargSegmentPtr())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;
|
|
|
|
if (MFI->hasDispatchID())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;
|
|
|
|
if (MFI->hasFlatScratchInit())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
|
|
|
|
if (MFI->hasDispatchPtr())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
|
|
|
|
if (STM.isXNACKEnabled())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED;
|
|
|
|
Align MaxKernArgAlign;
|
|
Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign);
|
|
Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR;
|
|
Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR;
|
|
Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize;
|
|
Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize;
|
|
|
|
// kernarg_segment_alignment is specified as log of the alignment.
|
|
// The minimum alignment is 16.
|
|
Out.kernarg_segment_alignment = Log2(std::max(Align(16), MaxKernArgAlign));
|
|
}
|
|
|
|
bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
|
|
const char *ExtraCode, raw_ostream &O) {
|
|
// First try the generic code, which knows about modifiers like 'c' and 'n'.
|
|
if (!AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O))
|
|
return false;
|
|
|
|
if (ExtraCode && ExtraCode[0]) {
|
|
if (ExtraCode[1] != 0)
|
|
return true; // Unknown modifier.
|
|
|
|
switch (ExtraCode[0]) {
|
|
case 'r':
|
|
break;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// TODO: Should be able to support other operand types like globals.
|
|
const MachineOperand &MO = MI->getOperand(OpNo);
|
|
if (MO.isReg()) {
|
|
AMDGPUInstPrinter::printRegOperand(MO.getReg(), O,
|
|
*MF->getSubtarget().getRegisterInfo());
|
|
return false;
|
|
} else if (MO.isImm()) {
|
|
int64_t Val = MO.getImm();
|
|
if (AMDGPU::isInlinableIntLiteral(Val)) {
|
|
O << Val;
|
|
} else if (isUInt<16>(Val)) {
|
|
O << format("0x%" PRIx16, static_cast<uint16_t>(Val));
|
|
} else if (isUInt<32>(Val)) {
|
|
O << format("0x%" PRIx32, static_cast<uint32_t>(Val));
|
|
} else {
|
|
O << format("0x%" PRIx64, static_cast<uint64_t>(Val));
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|