Go to file
Puyan Lotfi 7bc03f5553 [MachineOutliner][AArch64] WA for multiple stack fixup cases in MachineOutliner.
In cases where MachineOutliner candidates either are:

  * noreturn
  * have calls with no available LR or free regs
  * Don't use SP

we can end up hitting stack fixup code for the caller and the callee for
a FrameID of MachineOutlinerDefault. This triggers the assert:

  `assert(OF.FrameConstructionID != MachineOutlinerDefault &&
          "Can only fix up stack references once");`

in AArch64InstrInfo.cpp. This assert exists for now because a lot of the
fixup code is not tested to handle fixing up more than once and needs
some better checks and enhancements to avoid potentially generating
illegal code.

I've filed a Bugzilla report to track this until these cases are handled
by the AArch64 MachineOutliner: https://bugs.llvm.org/show_bug.cgi?id=46767

This diff detects cases that will cause these multiple stack fixups and
prune the Candidates from `RepeatedSequenceLocs`.

    Differential Revision: https://reviews.llvm.org/D83923
2020-08-10 15:43:30 -04:00
clang Re-Re-land: [CodeView] Add full repro to LF_BUILDINFO record 2020-08-10 13:36:30 -04:00
clang-tools-extra [clangd] Have template template arguments target their referenced template decl 2020-08-10 13:27:23 -04:00
compiler-rt [MSAN RT] Use __sanitizer::mem_is_zero in __msan_test_shadow 2020-08-10 19:22:27 +00:00
debuginfo-tests
flang [flang] Avoid cascading error in subscript triplet 2020-08-10 11:44:08 -07:00
libc [libc][NFC] Disable a loader test as ld.gold fails to link. 2020-08-07 23:45:18 -07:00
libclc [CMake] Bump CMake minimum version to 3.13.4 2020-07-22 14:25:07 -04:00
libcxx [libcxx-fuzzing] Fixed bug found by -Wstring-concatenation 2020-08-08 22:44:14 +02:00
libcxxabi [libc++abi] Make sure we use a 32 bit guard on 32 bit Aarch64 2020-08-04 15:12:03 -04:00
libunwind [libunwind] Make the test depend on the libunwind explicitly. 2020-08-03 09:46:23 +02:00
lld Re-Re-land: [CodeView] Add full repro to LF_BUILDINFO record 2020-08-10 13:36:30 -04:00
lldb [lldb] tab completion for `platform target-install` 2020-08-10 20:14:46 +02:00
llvm [MachineOutliner][AArch64] WA for multiple stack fixup cases in MachineOutliner. 2020-08-10 15:43:30 -04:00
mlir [MLIR] Make gpu.launch_func rewrite pattern part of the LLVM lowering pass. 2020-08-10 19:28:30 +02:00
openmp [OpenMP] Fix ref count dec for implicit map of partial data 2020-08-06 11:39:29 -04:00
parallel-libs Reapply "Try enabling -Wsuggest-override again, using add_compile_options instead of add_compile_definitions for disabling it in unittests/ directories." 2020-07-22 17:50:19 -07:00
polly [Polly] Reuse LLVM's build rules for gtest/gmock 2020-08-09 12:53:31 +02:00
pstl [libc++][pstl] Remove c++98 from UNSUPPORTED annotations 2020-07-29 14:17:32 -04:00
utils/arcanist
.arcconfig
.arclint PR46997: don't run clang-format on clang's testcases. 2020-08-04 17:53:25 -07:00
.clang-format
.clang-tidy
.git-blame-ignore-revs NFC: Add whitespace changing revisions to .git-blame-ignore-revs 2020-07-28 13:10:05 -04:00
.gitignore
CONTRIBUTING.md
README.md

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.