llvm-project/clang/lib/Driver/ToolChains/CommonArgs.cpp

1498 lines
54 KiB
C++

//===--- CommonArgs.cpp - Args handling for multiple toolchains -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "CommonArgs.h"
#include "Arch/AArch64.h"
#include "Arch/ARM.h"
#include "Arch/Mips.h"
#include "Arch/PPC.h"
#include "Arch/SystemZ.h"
#include "Arch/X86.h"
#include "HIP.h"
#include "Hexagon.h"
#include "InputInfo.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/ObjCRuntime.h"
#include "clang/Basic/Version.h"
#include "clang/Config/config.h"
#include "clang/Driver/Action.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/SanitizerArgs.h"
#include "clang/Driver/ToolChain.h"
#include "clang/Driver/Util.h"
#include "clang/Driver/XRayArgs.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/Option.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/YAMLParser.h"
using namespace clang::driver;
using namespace clang::driver::tools;
using namespace clang;
using namespace llvm::opt;
void tools::addPathIfExists(const Driver &D, const Twine &Path,
ToolChain::path_list &Paths) {
if (D.getVFS().exists(Path))
Paths.push_back(Path.str());
}
void tools::handleTargetFeaturesGroup(const ArgList &Args,
std::vector<StringRef> &Features,
OptSpecifier Group) {
for (const Arg *A : Args.filtered(Group)) {
StringRef Name = A->getOption().getName();
A->claim();
// Skip over "-m".
assert(Name.startswith("m") && "Invalid feature name.");
Name = Name.substr(1);
bool IsNegative = Name.startswith("no-");
if (IsNegative)
Name = Name.substr(3);
Features.push_back(Args.MakeArgString((IsNegative ? "-" : "+") + Name));
}
}
void tools::addDirectoryList(const ArgList &Args, ArgStringList &CmdArgs,
const char *ArgName, const char *EnvVar) {
const char *DirList = ::getenv(EnvVar);
bool CombinedArg = false;
if (!DirList)
return; // Nothing to do.
StringRef Name(ArgName);
if (Name.equals("-I") || Name.equals("-L"))
CombinedArg = true;
StringRef Dirs(DirList);
if (Dirs.empty()) // Empty string should not add '.'.
return;
StringRef::size_type Delim;
while ((Delim = Dirs.find(llvm::sys::EnvPathSeparator)) != StringRef::npos) {
if (Delim == 0) { // Leading colon.
if (CombinedArg) {
CmdArgs.push_back(Args.MakeArgString(std::string(ArgName) + "."));
} else {
CmdArgs.push_back(ArgName);
CmdArgs.push_back(".");
}
} else {
if (CombinedArg) {
CmdArgs.push_back(
Args.MakeArgString(std::string(ArgName) + Dirs.substr(0, Delim)));
} else {
CmdArgs.push_back(ArgName);
CmdArgs.push_back(Args.MakeArgString(Dirs.substr(0, Delim)));
}
}
Dirs = Dirs.substr(Delim + 1);
}
if (Dirs.empty()) { // Trailing colon.
if (CombinedArg) {
CmdArgs.push_back(Args.MakeArgString(std::string(ArgName) + "."));
} else {
CmdArgs.push_back(ArgName);
CmdArgs.push_back(".");
}
} else { // Add the last path.
if (CombinedArg) {
CmdArgs.push_back(Args.MakeArgString(std::string(ArgName) + Dirs));
} else {
CmdArgs.push_back(ArgName);
CmdArgs.push_back(Args.MakeArgString(Dirs));
}
}
}
void tools::AddLinkerInputs(const ToolChain &TC, const InputInfoList &Inputs,
const ArgList &Args, ArgStringList &CmdArgs,
const JobAction &JA) {
const Driver &D = TC.getDriver();
// Add extra linker input arguments which are not treated as inputs
// (constructed via -Xarch_).
Args.AddAllArgValues(CmdArgs, options::OPT_Zlinker_input);
// LIBRARY_PATH are included before user inputs and only supported on native
// toolchains.
if (!TC.isCrossCompiling())
addDirectoryList(Args, CmdArgs, "-L", "LIBRARY_PATH");
for (const auto &II : Inputs) {
// If the current tool chain refers to an OpenMP or HIP offloading host, we
// should ignore inputs that refer to OpenMP or HIP offloading devices -
// they will be embedded according to a proper linker script.
if (auto *IA = II.getAction())
if ((JA.isHostOffloading(Action::OFK_OpenMP) &&
IA->isDeviceOffloading(Action::OFK_OpenMP)) ||
(JA.isHostOffloading(Action::OFK_HIP) &&
IA->isDeviceOffloading(Action::OFK_HIP)))
continue;
if (!TC.HasNativeLLVMSupport() && types::isLLVMIR(II.getType()))
// Don't try to pass LLVM inputs unless we have native support.
D.Diag(diag::err_drv_no_linker_llvm_support) << TC.getTripleString();
// Add filenames immediately.
if (II.isFilename()) {
CmdArgs.push_back(II.getFilename());
continue;
}
// Otherwise, this is a linker input argument.
const Arg &A = II.getInputArg();
// Handle reserved library options.
if (A.getOption().matches(options::OPT_Z_reserved_lib_stdcxx))
TC.AddCXXStdlibLibArgs(Args, CmdArgs);
else if (A.getOption().matches(options::OPT_Z_reserved_lib_cckext))
TC.AddCCKextLibArgs(Args, CmdArgs);
else if (A.getOption().matches(options::OPT_z)) {
// Pass -z prefix for gcc linker compatibility.
A.claim();
A.render(Args, CmdArgs);
} else {
A.renderAsInput(Args, CmdArgs);
}
}
}
void tools::AddTargetFeature(const ArgList &Args,
std::vector<StringRef> &Features,
OptSpecifier OnOpt, OptSpecifier OffOpt,
StringRef FeatureName) {
if (Arg *A = Args.getLastArg(OnOpt, OffOpt)) {
if (A->getOption().matches(OnOpt))
Features.push_back(Args.MakeArgString("+" + FeatureName));
else
Features.push_back(Args.MakeArgString("-" + FeatureName));
}
}
/// Get the (LLVM) name of the R600 gpu we are targeting.
static std::string getR600TargetGPU(const ArgList &Args) {
if (Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) {
const char *GPUName = A->getValue();
return llvm::StringSwitch<const char *>(GPUName)
.Cases("rv630", "rv635", "r600")
.Cases("rv610", "rv620", "rs780", "rs880")
.Case("rv740", "rv770")
.Case("palm", "cedar")
.Cases("sumo", "sumo2", "sumo")
.Case("hemlock", "cypress")
.Case("aruba", "cayman")
.Default(GPUName);
}
return "";
}
static std::string getLanaiTargetCPU(const ArgList &Args) {
if (Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) {
return A->getValue();
}
return "";
}
/// Get the (LLVM) name of the WebAssembly cpu we are targeting.
static StringRef getWebAssemblyTargetCPU(const ArgList &Args) {
// If we have -mcpu=, use that.
if (Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) {
StringRef CPU = A->getValue();
#ifdef __wasm__
// Handle "native" by examining the host. "native" isn't meaningful when
// cross compiling, so only support this when the host is also WebAssembly.
if (CPU == "native")
return llvm::sys::getHostCPUName();
#endif
return CPU;
}
return "generic";
}
std::string tools::getCPUName(const ArgList &Args, const llvm::Triple &T,
bool FromAs) {
Arg *A;
switch (T.getArch()) {
default:
return "";
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_be:
return aarch64::getAArch64TargetCPU(Args, T, A);
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb: {
StringRef MArch, MCPU;
arm::getARMArchCPUFromArgs(Args, MArch, MCPU, FromAs);
return arm::getARMTargetCPU(MCPU, MArch, T);
}
case llvm::Triple::avr:
if (const Arg *A = Args.getLastArg(options::OPT_mmcu_EQ))
return A->getValue();
return "";
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el: {
StringRef CPUName;
StringRef ABIName;
mips::getMipsCPUAndABI(Args, T, CPUName, ABIName);
return CPUName;
}
case llvm::Triple::nvptx:
case llvm::Triple::nvptx64:
if (const Arg *A = Args.getLastArg(options::OPT_march_EQ))
return A->getValue();
return "";
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le: {
std::string TargetCPUName = ppc::getPPCTargetCPU(Args);
// LLVM may default to generating code for the native CPU,
// but, like gcc, we default to a more generic option for
// each architecture. (except on Darwin)
if (TargetCPUName.empty() && !T.isOSDarwin()) {
if (T.getArch() == llvm::Triple::ppc64)
TargetCPUName = "ppc64";
else if (T.getArch() == llvm::Triple::ppc64le)
TargetCPUName = "ppc64le";
else
TargetCPUName = "ppc";
}
return TargetCPUName;
}
case llvm::Triple::bpfel:
case llvm::Triple::bpfeb:
case llvm::Triple::sparc:
case llvm::Triple::sparcel:
case llvm::Triple::sparcv9:
if (const Arg *A = Args.getLastArg(options::OPT_mcpu_EQ))
return A->getValue();
return "";
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return x86::getX86TargetCPU(Args, T);
case llvm::Triple::hexagon:
return "hexagon" +
toolchains::HexagonToolChain::GetTargetCPUVersion(Args).str();
case llvm::Triple::lanai:
return getLanaiTargetCPU(Args);
case llvm::Triple::systemz:
return systemz::getSystemZTargetCPU(Args);
case llvm::Triple::r600:
case llvm::Triple::amdgcn:
return getR600TargetGPU(Args);
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
return getWebAssemblyTargetCPU(Args);
}
}
unsigned tools::getLTOParallelism(const ArgList &Args, const Driver &D) {
unsigned Parallelism = 0;
Arg *LtoJobsArg = Args.getLastArg(options::OPT_flto_jobs_EQ);
if (LtoJobsArg &&
StringRef(LtoJobsArg->getValue()).getAsInteger(10, Parallelism))
D.Diag(diag::err_drv_invalid_int_value) << LtoJobsArg->getAsString(Args)
<< LtoJobsArg->getValue();
return Parallelism;
}
// CloudABI uses -ffunction-sections and -fdata-sections by default.
bool tools::isUseSeparateSections(const llvm::Triple &Triple) {
return Triple.getOS() == llvm::Triple::CloudABI;
}
void tools::AddGoldPlugin(const ToolChain &ToolChain, const ArgList &Args,
ArgStringList &CmdArgs, const InputInfo &Output,
const InputInfo &Input, bool IsThinLTO) {
// Tell the linker to load the plugin. This has to come before AddLinkerInputs
// as gold requires -plugin to come before any -plugin-opt that -Wl might
// forward.
CmdArgs.push_back("-plugin");
#if defined(_WIN32)
const char *Suffix = ".dll";
#elif defined(__APPLE__)
const char *Suffix = ".dylib";
#else
const char *Suffix = ".so";
#endif
SmallString<1024> Plugin;
llvm::sys::path::native(Twine(ToolChain.getDriver().Dir) +
"/../lib" CLANG_LIBDIR_SUFFIX "/LLVMgold" +
Suffix,
Plugin);
CmdArgs.push_back(Args.MakeArgString(Plugin));
// Try to pass driver level flags relevant to LTO code generation down to
// the plugin.
// Handle flags for selecting CPU variants.
std::string CPU = getCPUName(Args, ToolChain.getTriple());
if (!CPU.empty())
CmdArgs.push_back(Args.MakeArgString(Twine("-plugin-opt=mcpu=") + CPU));
if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
StringRef OOpt;
if (A->getOption().matches(options::OPT_O4) ||
A->getOption().matches(options::OPT_Ofast))
OOpt = "3";
else if (A->getOption().matches(options::OPT_O))
OOpt = A->getValue();
else if (A->getOption().matches(options::OPT_O0))
OOpt = "0";
if (!OOpt.empty())
CmdArgs.push_back(Args.MakeArgString(Twine("-plugin-opt=O") + OOpt));
}
if (Args.hasArg(options::OPT_gsplit_dwarf)) {
CmdArgs.push_back(
Args.MakeArgString(Twine("-plugin-opt=dwo_dir=") +
Output.getFilename() + "_dwo"));
}
if (IsThinLTO)
CmdArgs.push_back("-plugin-opt=thinlto");
if (unsigned Parallelism = getLTOParallelism(Args, ToolChain.getDriver()))
CmdArgs.push_back(
Args.MakeArgString("-plugin-opt=jobs=" + Twine(Parallelism)));
// If an explicit debugger tuning argument appeared, pass it along.
if (Arg *A = Args.getLastArg(options::OPT_gTune_Group,
options::OPT_ggdbN_Group)) {
if (A->getOption().matches(options::OPT_glldb))
CmdArgs.push_back("-plugin-opt=-debugger-tune=lldb");
else if (A->getOption().matches(options::OPT_gsce))
CmdArgs.push_back("-plugin-opt=-debugger-tune=sce");
else
CmdArgs.push_back("-plugin-opt=-debugger-tune=gdb");
}
bool UseSeparateSections =
isUseSeparateSections(ToolChain.getEffectiveTriple());
if (Args.hasFlag(options::OPT_ffunction_sections,
options::OPT_fno_function_sections, UseSeparateSections)) {
CmdArgs.push_back("-plugin-opt=-function-sections");
}
if (Args.hasFlag(options::OPT_fdata_sections, options::OPT_fno_data_sections,
UseSeparateSections)) {
CmdArgs.push_back("-plugin-opt=-data-sections");
}
if (Arg *A = getLastProfileSampleUseArg(Args)) {
StringRef FName = A->getValue();
if (!llvm::sys::fs::exists(FName))
ToolChain.getDriver().Diag(diag::err_drv_no_such_file) << FName;
else
CmdArgs.push_back(
Args.MakeArgString(Twine("-plugin-opt=sample-profile=") + FName));
}
auto *CSPGOGenerateArg = Args.getLastArg(options::OPT_fcs_profile_generate,
options::OPT_fcs_profile_generate_EQ,
options::OPT_fno_profile_generate);
if (CSPGOGenerateArg &&
CSPGOGenerateArg->getOption().matches(options::OPT_fno_profile_generate))
CSPGOGenerateArg = nullptr;
auto *ProfileUseArg = getLastProfileUseArg(Args);
if (CSPGOGenerateArg) {
CmdArgs.push_back(Args.MakeArgString("-plugin-opt=cs-profile-generate"));
if (CSPGOGenerateArg->getOption().matches(
options::OPT_fcs_profile_generate_EQ)) {
SmallString<128> Path(CSPGOGenerateArg->getValue());
llvm::sys::path::append(Path, "default_%m.profraw");
CmdArgs.push_back(
Args.MakeArgString(Twine("-plugin-opt=cs-profile-path=") + Path));
} else
CmdArgs.push_back(
Args.MakeArgString("-plugin-opt=cs-profile-path=default_%m.profraw"));
} else if (ProfileUseArg) {
SmallString<128> Path(
ProfileUseArg->getNumValues() == 0 ? "" : ProfileUseArg->getValue());
if (Path.empty() || llvm::sys::fs::is_directory(Path))
llvm::sys::path::append(Path, "default.profdata");
CmdArgs.push_back(Args.MakeArgString(Twine("-plugin-opt=cs-profile-path=") +
Path));
}
// Need this flag to turn on new pass manager via Gold plugin.
if (Args.hasFlag(options::OPT_fexperimental_new_pass_manager,
options::OPT_fno_experimental_new_pass_manager,
/* Default */ ENABLE_EXPERIMENTAL_NEW_PASS_MANAGER)) {
CmdArgs.push_back("-plugin-opt=new-pass-manager");
}
// Setup statistics file output.
SmallString<128> StatsFile =
getStatsFileName(Args, Output, Input, ToolChain.getDriver());
if (!StatsFile.empty())
CmdArgs.push_back(
Args.MakeArgString(Twine("-plugin-opt=stats-file=") + StatsFile));
}
void tools::addArchSpecificRPath(const ToolChain &TC, const ArgList &Args,
ArgStringList &CmdArgs) {
if (!Args.hasFlag(options::OPT_frtlib_add_rpath,
options::OPT_fno_rtlib_add_rpath, false))
return;
std::string CandidateRPath = TC.getArchSpecificLibPath();
if (TC.getVFS().exists(CandidateRPath)) {
CmdArgs.push_back("-rpath");
CmdArgs.push_back(Args.MakeArgString(CandidateRPath.c_str()));
}
}
bool tools::addOpenMPRuntime(ArgStringList &CmdArgs, const ToolChain &TC,
const ArgList &Args, bool IsOffloadingHost,
bool GompNeedsRT) {
if (!Args.hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ,
options::OPT_fno_openmp, false))
return false;
switch (TC.getDriver().getOpenMPRuntime(Args)) {
case Driver::OMPRT_OMP:
CmdArgs.push_back("-lomp");
break;
case Driver::OMPRT_GOMP:
CmdArgs.push_back("-lgomp");
if (GompNeedsRT)
CmdArgs.push_back("-lrt");
break;
case Driver::OMPRT_IOMP5:
CmdArgs.push_back("-liomp5");
break;
case Driver::OMPRT_Unknown:
// Already diagnosed.
return false;
}
if (IsOffloadingHost)
CmdArgs.push_back("-lomptarget");
addArchSpecificRPath(TC, Args, CmdArgs);
return true;
}
static void addSanitizerRuntime(const ToolChain &TC, const ArgList &Args,
ArgStringList &CmdArgs, StringRef Sanitizer,
bool IsShared, bool IsWhole) {
// Wrap any static runtimes that must be forced into executable in
// whole-archive.
if (IsWhole) CmdArgs.push_back("--whole-archive");
CmdArgs.push_back(TC.getCompilerRTArgString(
Args, Sanitizer, IsShared ? ToolChain::FT_Shared : ToolChain::FT_Static));
if (IsWhole) CmdArgs.push_back("--no-whole-archive");
if (IsShared) {
addArchSpecificRPath(TC, Args, CmdArgs);
}
}
// Tries to use a file with the list of dynamic symbols that need to be exported
// from the runtime library. Returns true if the file was found.
static bool addSanitizerDynamicList(const ToolChain &TC, const ArgList &Args,
ArgStringList &CmdArgs,
StringRef Sanitizer) {
// Solaris ld defaults to --export-dynamic behaviour but doesn't support
// the option, so don't try to pass it.
if (TC.getTriple().getOS() == llvm::Triple::Solaris)
return true;
// Myriad is static linking only. Furthermore, some versions of its
// linker have the bug where --export-dynamic overrides -static, so
// don't use --export-dynamic on that platform.
if (TC.getTriple().getVendor() == llvm::Triple::Myriad)
return true;
SmallString<128> SanRT(TC.getCompilerRT(Args, Sanitizer));
if (llvm::sys::fs::exists(SanRT + ".syms")) {
CmdArgs.push_back(Args.MakeArgString("--dynamic-list=" + SanRT + ".syms"));
return true;
}
return false;
}
void tools::linkSanitizerRuntimeDeps(const ToolChain &TC,
ArgStringList &CmdArgs) {
// Force linking against the system libraries sanitizers depends on
// (see PR15823 why this is necessary).
CmdArgs.push_back("--no-as-needed");
// There's no libpthread or librt on RTEMS & Android.
if (TC.getTriple().getOS() != llvm::Triple::RTEMS &&
!TC.getTriple().isAndroid()) {
CmdArgs.push_back("-lpthread");
if (!TC.getTriple().isOSOpenBSD())
CmdArgs.push_back("-lrt");
}
CmdArgs.push_back("-lm");
// There's no libdl on all OSes.
if (!TC.getTriple().isOSFreeBSD() &&
!TC.getTriple().isOSNetBSD() &&
!TC.getTriple().isOSOpenBSD() &&
TC.getTriple().getOS() != llvm::Triple::RTEMS)
CmdArgs.push_back("-ldl");
// Required for backtrace on some OSes
if (TC.getTriple().isOSFreeBSD() ||
TC.getTriple().isOSNetBSD())
CmdArgs.push_back("-lexecinfo");
}
static void
collectSanitizerRuntimes(const ToolChain &TC, const ArgList &Args,
SmallVectorImpl<StringRef> &SharedRuntimes,
SmallVectorImpl<StringRef> &StaticRuntimes,
SmallVectorImpl<StringRef> &NonWholeStaticRuntimes,
SmallVectorImpl<StringRef> &HelperStaticRuntimes,
SmallVectorImpl<StringRef> &RequiredSymbols) {
const SanitizerArgs &SanArgs = TC.getSanitizerArgs();
// Collect shared runtimes.
if (SanArgs.needsSharedRt()) {
if (SanArgs.needsAsanRt() && SanArgs.linkRuntimes()) {
SharedRuntimes.push_back("asan");
if (!Args.hasArg(options::OPT_shared) && !TC.getTriple().isAndroid())
HelperStaticRuntimes.push_back("asan-preinit");
}
if (SanArgs.needsUbsanRt() && SanArgs.linkRuntimes()) {
if (SanArgs.requiresMinimalRuntime())
SharedRuntimes.push_back("ubsan_minimal");
else
SharedRuntimes.push_back("ubsan_standalone");
}
if (SanArgs.needsScudoRt() && SanArgs.linkRuntimes()) {
if (SanArgs.requiresMinimalRuntime())
SharedRuntimes.push_back("scudo_minimal");
else
SharedRuntimes.push_back("scudo");
}
if (SanArgs.needsHwasanRt() && SanArgs.linkRuntimes())
SharedRuntimes.push_back("hwasan");
}
// The stats_client library is also statically linked into DSOs.
if (SanArgs.needsStatsRt() && SanArgs.linkRuntimes())
StaticRuntimes.push_back("stats_client");
// Collect static runtimes.
if (Args.hasArg(options::OPT_shared) || SanArgs.needsSharedRt()) {
// Don't link static runtimes into DSOs or if -shared-libasan.
return;
}
if (SanArgs.needsAsanRt() && SanArgs.linkRuntimes()) {
StaticRuntimes.push_back("asan");
if (SanArgs.linkCXXRuntimes())
StaticRuntimes.push_back("asan_cxx");
}
if (SanArgs.needsHwasanRt() && SanArgs.linkRuntimes()) {
StaticRuntimes.push_back("hwasan");
if (SanArgs.linkCXXRuntimes())
StaticRuntimes.push_back("hwasan_cxx");
}
if (SanArgs.needsDfsanRt() && SanArgs.linkRuntimes())
StaticRuntimes.push_back("dfsan");
if (SanArgs.needsLsanRt() && SanArgs.linkRuntimes())
StaticRuntimes.push_back("lsan");
if (SanArgs.needsMsanRt() && SanArgs.linkRuntimes()) {
StaticRuntimes.push_back("msan");
if (SanArgs.linkCXXRuntimes())
StaticRuntimes.push_back("msan_cxx");
}
if (SanArgs.needsTsanRt() && SanArgs.linkRuntimes()) {
StaticRuntimes.push_back("tsan");
if (SanArgs.linkCXXRuntimes())
StaticRuntimes.push_back("tsan_cxx");
}
if (SanArgs.needsUbsanRt() && SanArgs.linkRuntimes()) {
if (SanArgs.requiresMinimalRuntime()) {
StaticRuntimes.push_back("ubsan_minimal");
} else {
StaticRuntimes.push_back("ubsan_standalone");
if (SanArgs.linkCXXRuntimes())
StaticRuntimes.push_back("ubsan_standalone_cxx");
}
}
if (SanArgs.needsSafeStackRt() && SanArgs.linkRuntimes()) {
NonWholeStaticRuntimes.push_back("safestack");
RequiredSymbols.push_back("__safestack_init");
}
if (SanArgs.needsCfiRt() && SanArgs.linkRuntimes())
StaticRuntimes.push_back("cfi");
if (SanArgs.needsCfiDiagRt() && SanArgs.linkRuntimes()) {
StaticRuntimes.push_back("cfi_diag");
if (SanArgs.linkCXXRuntimes())
StaticRuntimes.push_back("ubsan_standalone_cxx");
}
if (SanArgs.needsStatsRt() && SanArgs.linkRuntimes()) {
NonWholeStaticRuntimes.push_back("stats");
RequiredSymbols.push_back("__sanitizer_stats_register");
}
if (SanArgs.needsScudoRt() && SanArgs.linkRuntimes()) {
if (SanArgs.requiresMinimalRuntime()) {
StaticRuntimes.push_back("scudo_minimal");
if (SanArgs.linkCXXRuntimes())
StaticRuntimes.push_back("scudo_cxx_minimal");
} else {
StaticRuntimes.push_back("scudo");
if (SanArgs.linkCXXRuntimes())
StaticRuntimes.push_back("scudo_cxx");
}
}
}
// Should be called before we add system libraries (C++ ABI, libstdc++/libc++,
// C runtime, etc). Returns true if sanitizer system deps need to be linked in.
bool tools::addSanitizerRuntimes(const ToolChain &TC, const ArgList &Args,
ArgStringList &CmdArgs) {
SmallVector<StringRef, 4> SharedRuntimes, StaticRuntimes,
NonWholeStaticRuntimes, HelperStaticRuntimes, RequiredSymbols;
collectSanitizerRuntimes(TC, Args, SharedRuntimes, StaticRuntimes,
NonWholeStaticRuntimes, HelperStaticRuntimes,
RequiredSymbols);
const SanitizerArgs &SanArgs = TC.getSanitizerArgs();
// Inject libfuzzer dependencies.
if (SanArgs.needsFuzzer() && SanArgs.linkRuntimes() &&
!Args.hasArg(options::OPT_shared)) {
addSanitizerRuntime(TC, Args, CmdArgs, "fuzzer", false, true);
if (!Args.hasArg(clang::driver::options::OPT_nostdlibxx))
TC.AddCXXStdlibLibArgs(Args, CmdArgs);
}
for (auto RT : SharedRuntimes)
addSanitizerRuntime(TC, Args, CmdArgs, RT, true, false);
for (auto RT : HelperStaticRuntimes)
addSanitizerRuntime(TC, Args, CmdArgs, RT, false, true);
bool AddExportDynamic = false;
for (auto RT : StaticRuntimes) {
addSanitizerRuntime(TC, Args, CmdArgs, RT, false, true);
AddExportDynamic |= !addSanitizerDynamicList(TC, Args, CmdArgs, RT);
}
for (auto RT : NonWholeStaticRuntimes) {
addSanitizerRuntime(TC, Args, CmdArgs, RT, false, false);
AddExportDynamic |= !addSanitizerDynamicList(TC, Args, CmdArgs, RT);
}
for (auto S : RequiredSymbols) {
CmdArgs.push_back("-u");
CmdArgs.push_back(Args.MakeArgString(S));
}
// If there is a static runtime with no dynamic list, force all the symbols
// to be dynamic to be sure we export sanitizer interface functions.
if (AddExportDynamic)
CmdArgs.push_back("--export-dynamic");
if (SanArgs.hasCrossDsoCfi() && !AddExportDynamic)
CmdArgs.push_back("-export-dynamic-symbol=__cfi_check");
return !StaticRuntimes.empty() || !NonWholeStaticRuntimes.empty();
}
bool tools::addXRayRuntime(const ToolChain&TC, const ArgList &Args, ArgStringList &CmdArgs) {
if (Args.hasArg(options::OPT_shared))
return false;
if (TC.getXRayArgs().needsXRayRt()) {
CmdArgs.push_back("-whole-archive");
CmdArgs.push_back(TC.getCompilerRTArgString(Args, "xray"));
for (const auto &Mode : TC.getXRayArgs().modeList())
CmdArgs.push_back(TC.getCompilerRTArgString(Args, Mode));
CmdArgs.push_back("-no-whole-archive");
return true;
}
return false;
}
void tools::linkXRayRuntimeDeps(const ToolChain &TC, ArgStringList &CmdArgs) {
CmdArgs.push_back("--no-as-needed");
CmdArgs.push_back("-lpthread");
if (!TC.getTriple().isOSOpenBSD())
CmdArgs.push_back("-lrt");
CmdArgs.push_back("-lm");
if (!TC.getTriple().isOSFreeBSD() &&
!TC.getTriple().isOSNetBSD() &&
!TC.getTriple().isOSOpenBSD())
CmdArgs.push_back("-ldl");
}
bool tools::areOptimizationsEnabled(const ArgList &Args) {
// Find the last -O arg and see if it is non-zero.
if (Arg *A = Args.getLastArg(options::OPT_O_Group))
return !A->getOption().matches(options::OPT_O0);
// Defaults to -O0.
return false;
}
const char *tools::SplitDebugName(const ArgList &Args, const InputInfo &Input,
const InputInfo &Output) {
if (Arg *A = Args.getLastArg(options::OPT_gsplit_dwarf_EQ))
if (StringRef(A->getValue()) == "single")
return Args.MakeArgString(Output.getFilename());
Arg *FinalOutput = Args.getLastArg(options::OPT_o);
if (FinalOutput && Args.hasArg(options::OPT_c)) {
SmallString<128> T(FinalOutput->getValue());
llvm::sys::path::replace_extension(T, "dwo");
return Args.MakeArgString(T);
} else {
// Use the compilation dir.
SmallString<128> T(
Args.getLastArgValue(options::OPT_fdebug_compilation_dir));
SmallString<128> F(llvm::sys::path::stem(Input.getBaseInput()));
llvm::sys::path::replace_extension(F, "dwo");
T += F;
return Args.MakeArgString(F);
}
}
void tools::SplitDebugInfo(const ToolChain &TC, Compilation &C, const Tool &T,
const JobAction &JA, const ArgList &Args,
const InputInfo &Output, const char *OutFile) {
ArgStringList ExtractArgs;
ExtractArgs.push_back("--extract-dwo");
ArgStringList StripArgs;
StripArgs.push_back("--strip-dwo");
// Grabbing the output of the earlier compile step.
StripArgs.push_back(Output.getFilename());
ExtractArgs.push_back(Output.getFilename());
ExtractArgs.push_back(OutFile);
const char *Exec =
Args.MakeArgString(TC.GetProgramPath(CLANG_DEFAULT_OBJCOPY));
InputInfo II(types::TY_Object, Output.getFilename(), Output.getFilename());
// First extract the dwo sections.
C.addCommand(std::make_unique<Command>(JA, T, Exec, ExtractArgs, II));
// Then remove them from the original .o file.
C.addCommand(std::make_unique<Command>(JA, T, Exec, StripArgs, II));
}
// Claim options we don't want to warn if they are unused. We do this for
// options that build systems might add but are unused when assembling or only
// running the preprocessor for example.
void tools::claimNoWarnArgs(const ArgList &Args) {
// Don't warn about unused -f(no-)?lto. This can happen when we're
// preprocessing, precompiling or assembling.
Args.ClaimAllArgs(options::OPT_flto_EQ);
Args.ClaimAllArgs(options::OPT_flto);
Args.ClaimAllArgs(options::OPT_fno_lto);
}
Arg *tools::getLastProfileUseArg(const ArgList &Args) {
auto *ProfileUseArg = Args.getLastArg(
options::OPT_fprofile_instr_use, options::OPT_fprofile_instr_use_EQ,
options::OPT_fprofile_use, options::OPT_fprofile_use_EQ,
options::OPT_fno_profile_instr_use);
if (ProfileUseArg &&
ProfileUseArg->getOption().matches(options::OPT_fno_profile_instr_use))
ProfileUseArg = nullptr;
return ProfileUseArg;
}
Arg *tools::getLastProfileSampleUseArg(const ArgList &Args) {
auto *ProfileSampleUseArg = Args.getLastArg(
options::OPT_fprofile_sample_use, options::OPT_fprofile_sample_use_EQ,
options::OPT_fauto_profile, options::OPT_fauto_profile_EQ,
options::OPT_fno_profile_sample_use, options::OPT_fno_auto_profile);
if (ProfileSampleUseArg &&
(ProfileSampleUseArg->getOption().matches(
options::OPT_fno_profile_sample_use) ||
ProfileSampleUseArg->getOption().matches(options::OPT_fno_auto_profile)))
return nullptr;
return Args.getLastArg(options::OPT_fprofile_sample_use_EQ,
options::OPT_fauto_profile_EQ);
}
/// Parses the various -fpic/-fPIC/-fpie/-fPIE arguments. Then,
/// smooshes them together with platform defaults, to decide whether
/// this compile should be using PIC mode or not. Returns a tuple of
/// (RelocationModel, PICLevel, IsPIE).
std::tuple<llvm::Reloc::Model, unsigned, bool>
tools::ParsePICArgs(const ToolChain &ToolChain, const ArgList &Args) {
const llvm::Triple &EffectiveTriple = ToolChain.getEffectiveTriple();
const llvm::Triple &Triple = ToolChain.getTriple();
bool PIE = ToolChain.isPIEDefault();
bool PIC = PIE || ToolChain.isPICDefault();
// The Darwin/MachO default to use PIC does not apply when using -static.
if (Triple.isOSBinFormatMachO() && Args.hasArg(options::OPT_static))
PIE = PIC = false;
bool IsPICLevelTwo = PIC;
bool KernelOrKext =
Args.hasArg(options::OPT_mkernel, options::OPT_fapple_kext);
// Android-specific defaults for PIC/PIE
if (Triple.isAndroid()) {
switch (Triple.getArch()) {
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
case llvm::Triple::aarch64:
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
PIC = true; // "-fpic"
break;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
PIC = true; // "-fPIC"
IsPICLevelTwo = true;
break;
default:
break;
}
}
// OpenBSD-specific defaults for PIE
if (Triple.isOSOpenBSD()) {
switch (ToolChain.getArch()) {
case llvm::Triple::arm:
case llvm::Triple::aarch64:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
case llvm::Triple::x86:
case llvm::Triple::x86_64:
IsPICLevelTwo = false; // "-fpie"
break;
case llvm::Triple::ppc:
case llvm::Triple::sparc:
case llvm::Triple::sparcel:
case llvm::Triple::sparcv9:
IsPICLevelTwo = true; // "-fPIE"
break;
default:
break;
}
}
// AMDGPU-specific defaults for PIC.
if (Triple.getArch() == llvm::Triple::amdgcn)
PIC = true;
// The last argument relating to either PIC or PIE wins, and no
// other argument is used. If the last argument is any flavor of the
// '-fno-...' arguments, both PIC and PIE are disabled. Any PIE
// option implicitly enables PIC at the same level.
Arg *LastPICArg = Args.getLastArg(options::OPT_fPIC, options::OPT_fno_PIC,
options::OPT_fpic, options::OPT_fno_pic,
options::OPT_fPIE, options::OPT_fno_PIE,
options::OPT_fpie, options::OPT_fno_pie);
if (Triple.isOSWindows() && LastPICArg &&
LastPICArg ==
Args.getLastArg(options::OPT_fPIC, options::OPT_fpic,
options::OPT_fPIE, options::OPT_fpie)) {
ToolChain.getDriver().Diag(diag::err_drv_unsupported_opt_for_target)
<< LastPICArg->getSpelling() << Triple.str();
if (Triple.getArch() == llvm::Triple::x86_64)
return std::make_tuple(llvm::Reloc::PIC_, 2U, false);
return std::make_tuple(llvm::Reloc::Static, 0U, false);
}
// Check whether the tool chain trumps the PIC-ness decision. If the PIC-ness
// is forced, then neither PIC nor PIE flags will have no effect.
if (!ToolChain.isPICDefaultForced()) {
if (LastPICArg) {
Option O = LastPICArg->getOption();
if (O.matches(options::OPT_fPIC) || O.matches(options::OPT_fpic) ||
O.matches(options::OPT_fPIE) || O.matches(options::OPT_fpie)) {
PIE = O.matches(options::OPT_fPIE) || O.matches(options::OPT_fpie);
PIC =
PIE || O.matches(options::OPT_fPIC) || O.matches(options::OPT_fpic);
IsPICLevelTwo =
O.matches(options::OPT_fPIE) || O.matches(options::OPT_fPIC);
} else {
PIE = PIC = false;
if (EffectiveTriple.isPS4CPU()) {
Arg *ModelArg = Args.getLastArg(options::OPT_mcmodel_EQ);
StringRef Model = ModelArg ? ModelArg->getValue() : "";
if (Model != "kernel") {
PIC = true;
ToolChain.getDriver().Diag(diag::warn_drv_ps4_force_pic)
<< LastPICArg->getSpelling();
}
}
}
}
}
// Introduce a Darwin and PS4-specific hack. If the default is PIC, but the
// PIC level would've been set to level 1, force it back to level 2 PIC
// instead.
if (PIC && (Triple.isOSDarwin() || EffectiveTriple.isPS4CPU()))
IsPICLevelTwo |= ToolChain.isPICDefault();
// This kernel flags are a trump-card: they will disable PIC/PIE
// generation, independent of the argument order.
if (KernelOrKext &&
((!EffectiveTriple.isiOS() || EffectiveTriple.isOSVersionLT(6)) &&
!EffectiveTriple.isWatchOS()))
PIC = PIE = false;
if (Arg *A = Args.getLastArg(options::OPT_mdynamic_no_pic)) {
// This is a very special mode. It trumps the other modes, almost no one
// uses it, and it isn't even valid on any OS but Darwin.
if (!Triple.isOSDarwin())
ToolChain.getDriver().Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << Triple.str();
// FIXME: Warn when this flag trumps some other PIC or PIE flag.
// Only a forced PIC mode can cause the actual compile to have PIC defines
// etc., no flags are sufficient. This behavior was selected to closely
// match that of llvm-gcc and Apple GCC before that.
PIC = ToolChain.isPICDefault() && ToolChain.isPICDefaultForced();
return std::make_tuple(llvm::Reloc::DynamicNoPIC, PIC ? 2U : 0U, false);
}
bool EmbeddedPISupported;
switch (Triple.getArch()) {
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
EmbeddedPISupported = true;
break;
default:
EmbeddedPISupported = false;
break;
}
bool ROPI = false, RWPI = false;
Arg* LastROPIArg = Args.getLastArg(options::OPT_fropi, options::OPT_fno_ropi);
if (LastROPIArg && LastROPIArg->getOption().matches(options::OPT_fropi)) {
if (!EmbeddedPISupported)
ToolChain.getDriver().Diag(diag::err_drv_unsupported_opt_for_target)
<< LastROPIArg->getSpelling() << Triple.str();
ROPI = true;
}
Arg *LastRWPIArg = Args.getLastArg(options::OPT_frwpi, options::OPT_fno_rwpi);
if (LastRWPIArg && LastRWPIArg->getOption().matches(options::OPT_frwpi)) {
if (!EmbeddedPISupported)
ToolChain.getDriver().Diag(diag::err_drv_unsupported_opt_for_target)
<< LastRWPIArg->getSpelling() << Triple.str();
RWPI = true;
}
// ROPI and RWPI are not compatible with PIC or PIE.
if ((ROPI || RWPI) && (PIC || PIE))
ToolChain.getDriver().Diag(diag::err_drv_ropi_rwpi_incompatible_with_pic);
if (Triple.isMIPS()) {
StringRef CPUName;
StringRef ABIName;
mips::getMipsCPUAndABI(Args, Triple, CPUName, ABIName);
// When targeting the N64 ABI, PIC is the default, except in the case
// when the -mno-abicalls option is used. In that case we exit
// at next check regardless of PIC being set below.
if (ABIName == "n64")
PIC = true;
// When targettng MIPS with -mno-abicalls, it's always static.
if(Args.hasArg(options::OPT_mno_abicalls))
return std::make_tuple(llvm::Reloc::Static, 0U, false);
// Unlike other architectures, MIPS, even with -fPIC/-mxgot/multigot,
// does not use PIC level 2 for historical reasons.
IsPICLevelTwo = false;
}
if (PIC)
return std::make_tuple(llvm::Reloc::PIC_, IsPICLevelTwo ? 2U : 1U, PIE);
llvm::Reloc::Model RelocM = llvm::Reloc::Static;
if (ROPI && RWPI)
RelocM = llvm::Reloc::ROPI_RWPI;
else if (ROPI)
RelocM = llvm::Reloc::ROPI;
else if (RWPI)
RelocM = llvm::Reloc::RWPI;
return std::make_tuple(RelocM, 0U, false);
}
// `-falign-functions` indicates that the functions should be aligned to a
// 16-byte boundary.
//
// `-falign-functions=1` is the same as `-fno-align-functions`.
//
// The scalar `n` in `-falign-functions=n` must be an integral value between
// [0, 65536]. If the value is not a power-of-two, it will be rounded up to
// the nearest power-of-two.
//
// If we return `0`, the frontend will default to the backend's preferred
// alignment.
//
// NOTE: icc only allows values between [0, 4096]. icc uses `-falign-functions`
// to mean `-falign-functions=16`. GCC defaults to the backend's preferred
// alignment. For unaligned functions, we default to the backend's preferred
// alignment.
unsigned tools::ParseFunctionAlignment(const ToolChain &TC,
const ArgList &Args) {
const Arg *A = Args.getLastArg(options::OPT_falign_functions,
options::OPT_falign_functions_EQ,
options::OPT_fno_align_functions);
if (!A || A->getOption().matches(options::OPT_fno_align_functions))
return 0;
if (A->getOption().matches(options::OPT_falign_functions))
return 0;
unsigned Value = 0;
if (StringRef(A->getValue()).getAsInteger(10, Value) || Value > 65536)
TC.getDriver().Diag(diag::err_drv_invalid_int_value)
<< A->getAsString(Args) << A->getValue();
return Value ? llvm::Log2_32_Ceil(std::min(Value, 65536u)) : Value;
}
void tools::AddAssemblerKPIC(const ToolChain &ToolChain, const ArgList &Args,
ArgStringList &CmdArgs) {
llvm::Reloc::Model RelocationModel;
unsigned PICLevel;
bool IsPIE;
std::tie(RelocationModel, PICLevel, IsPIE) = ParsePICArgs(ToolChain, Args);
if (RelocationModel != llvm::Reloc::Static)
CmdArgs.push_back("-KPIC");
}
/// Determine whether Objective-C automated reference counting is
/// enabled.
bool tools::isObjCAutoRefCount(const ArgList &Args) {
return Args.hasFlag(options::OPT_fobjc_arc, options::OPT_fno_objc_arc, false);
}
enum class LibGccType { UnspecifiedLibGcc, StaticLibGcc, SharedLibGcc };
static LibGccType getLibGccType(const Driver &D, const ArgList &Args) {
if (Args.hasArg(options::OPT_static_libgcc) ||
Args.hasArg(options::OPT_static) || Args.hasArg(options::OPT_static_pie))
return LibGccType::StaticLibGcc;
if (Args.hasArg(options::OPT_shared_libgcc) || D.CCCIsCXX())
return LibGccType::SharedLibGcc;
return LibGccType::UnspecifiedLibGcc;
}
// Gcc adds libgcc arguments in various ways:
//
// gcc <none>: -lgcc --as-needed -lgcc_s --no-as-needed
// g++ <none>: -lgcc_s -lgcc
// gcc shared: -lgcc_s -lgcc
// g++ shared: -lgcc_s -lgcc
// gcc static: -lgcc -lgcc_eh
// g++ static: -lgcc -lgcc_eh
// gcc static-pie: -lgcc -lgcc_eh
// g++ static-pie: -lgcc -lgcc_eh
//
// Also, certain targets need additional adjustments.
static void AddUnwindLibrary(const ToolChain &TC, const Driver &D,
ArgStringList &CmdArgs, const ArgList &Args) {
ToolChain::UnwindLibType UNW = TC.GetUnwindLibType(Args);
// Targets that don't use unwind libraries.
if (TC.getTriple().isAndroid() || TC.getTriple().isOSIAMCU() ||
TC.getTriple().isOSBinFormatWasm() ||
UNW == ToolChain::UNW_None)
return;
LibGccType LGT = getLibGccType(D, Args);
bool AsNeeded = LGT == LibGccType::UnspecifiedLibGcc &&
!TC.getTriple().isAndroid() && !TC.getTriple().isOSCygMing();
if (AsNeeded)
CmdArgs.push_back("--as-needed");
switch (UNW) {
case ToolChain::UNW_None:
return;
case ToolChain::UNW_Libgcc: {
LibGccType LGT = getLibGccType(D, Args);
if (LGT == LibGccType::StaticLibGcc)
CmdArgs.push_back("-lgcc_eh");
else
CmdArgs.push_back("-lgcc_s");
break;
}
case ToolChain::UNW_CompilerRT:
CmdArgs.push_back("-lunwind");
break;
}
if (AsNeeded)
CmdArgs.push_back("--no-as-needed");
}
static void AddLibgcc(const ToolChain &TC, const Driver &D,
ArgStringList &CmdArgs, const ArgList &Args) {
LibGccType LGT = getLibGccType(D, Args);
if (LGT != LibGccType::SharedLibGcc)
CmdArgs.push_back("-lgcc");
AddUnwindLibrary(TC, D, CmdArgs, Args);
if (LGT == LibGccType::SharedLibGcc)
CmdArgs.push_back("-lgcc");
// According to Android ABI, we have to link with libdl if we are
// linking with non-static libgcc.
//
// NOTE: This fixes a link error on Android MIPS as well. The non-static
// libgcc for MIPS relies on _Unwind_Find_FDE and dl_iterate_phdr from libdl.
if (TC.getTriple().isAndroid() && LGT != LibGccType::StaticLibGcc)
CmdArgs.push_back("-ldl");
}
void tools::AddRunTimeLibs(const ToolChain &TC, const Driver &D,
ArgStringList &CmdArgs, const ArgList &Args) {
// Make use of compiler-rt if --rtlib option is used
ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(Args);
switch (RLT) {
case ToolChain::RLT_CompilerRT:
CmdArgs.push_back(TC.getCompilerRTArgString(Args, "builtins"));
AddUnwindLibrary(TC, D, CmdArgs, Args);
break;
case ToolChain::RLT_Libgcc:
// Make sure libgcc is not used under MSVC environment by default
if (TC.getTriple().isKnownWindowsMSVCEnvironment()) {
// Issue error diagnostic if libgcc is explicitly specified
// through command line as --rtlib option argument.
if (Args.hasArg(options::OPT_rtlib_EQ)) {
TC.getDriver().Diag(diag::err_drv_unsupported_rtlib_for_platform)
<< Args.getLastArg(options::OPT_rtlib_EQ)->getValue() << "MSVC";
}
} else
AddLibgcc(TC, D, CmdArgs, Args);
break;
}
}
/// Add OpenMP linker script arguments at the end of the argument list so that
/// the fat binary is built by embedding each of the device images into the
/// host. The linker script also defines a few symbols required by the code
/// generation so that the images can be easily retrieved at runtime by the
/// offloading library. This should be used only in tool chains that support
/// linker scripts.
void tools::AddOpenMPLinkerScript(const ToolChain &TC, Compilation &C,
const InputInfo &Output,
const InputInfoList &Inputs,
const ArgList &Args, ArgStringList &CmdArgs,
const JobAction &JA) {
// If this is not an OpenMP host toolchain, we don't need to do anything.
if (!JA.isHostOffloading(Action::OFK_OpenMP))
return;
// Create temporary linker script. Keep it if save-temps is enabled.
const char *LKS;
SmallString<256> Name = llvm::sys::path::filename(Output.getFilename());
if (C.getDriver().isSaveTempsEnabled()) {
llvm::sys::path::replace_extension(Name, "lk");
LKS = C.getArgs().MakeArgString(Name.c_str());
} else {
llvm::sys::path::replace_extension(Name, "");
Name = C.getDriver().GetTemporaryPath(Name, "lk");
LKS = C.addTempFile(C.getArgs().MakeArgString(Name.c_str()));
}
// Add linker script option to the command.
CmdArgs.push_back("-T");
CmdArgs.push_back(LKS);
// Create a buffer to write the contents of the linker script.
std::string LksBuffer;
llvm::raw_string_ostream LksStream(LksBuffer);
// Get the OpenMP offload tool chains so that we can extract the triple
// associated with each device input.
auto OpenMPToolChains = C.getOffloadToolChains<Action::OFK_OpenMP>();
assert(OpenMPToolChains.first != OpenMPToolChains.second &&
"No OpenMP toolchains??");
// Track the input file name and device triple in order to build the script,
// inserting binaries in the designated sections.
SmallVector<std::pair<std::string, const char *>, 8> InputBinaryInfo;
// Add commands to embed target binaries. We ensure that each section and
// image is 16-byte aligned. This is not mandatory, but increases the
// likelihood of data to be aligned with a cache block in several main host
// machines.
LksStream << "/*\n";
LksStream << " OpenMP Offload Linker Script\n";
LksStream << " *** Automatically generated by Clang ***\n";
LksStream << "*/\n";
LksStream << "TARGET(binary)\n";
auto DTC = OpenMPToolChains.first;
for (auto &II : Inputs) {
const Action *A = II.getAction();
// Is this a device linking action?
if (A && isa<LinkJobAction>(A) &&
A->isDeviceOffloading(Action::OFK_OpenMP)) {
assert(DTC != OpenMPToolChains.second &&
"More device inputs than device toolchains??");
InputBinaryInfo.push_back(std::make_pair(
DTC->second->getTriple().normalize(), II.getFilename()));
++DTC;
LksStream << "INPUT(" << II.getFilename() << ")\n";
}
}
assert(DTC == OpenMPToolChains.second &&
"Less device inputs than device toolchains??");
LksStream << "SECTIONS\n";
LksStream << "{\n";
// Put each target binary into a separate section.
for (const auto &BI : InputBinaryInfo) {
LksStream << " .omp_offloading." << BI.first << " :\n";
LksStream << " ALIGN(0x10)\n";
LksStream << " {\n";
LksStream << " PROVIDE_HIDDEN(.omp_offloading.img_start." << BI.first
<< " = .);\n";
LksStream << " " << BI.second << "\n";
LksStream << " PROVIDE_HIDDEN(.omp_offloading.img_end." << BI.first
<< " = .);\n";
LksStream << " }\n";
}
// Add commands to define host entries begin and end. We use 1-byte subalign
// so that the linker does not add any padding and the elements in this
// section form an array.
LksStream << " .omp_offloading.entries :\n";
LksStream << " ALIGN(0x10)\n";
LksStream << " SUBALIGN(0x01)\n";
LksStream << " {\n";
LksStream << " PROVIDE_HIDDEN(.omp_offloading.entries_begin = .);\n";
LksStream << " *(.omp_offloading.entries)\n";
LksStream << " PROVIDE_HIDDEN(.omp_offloading.entries_end = .);\n";
LksStream << " }\n";
LksStream << "}\n";
LksStream << "INSERT BEFORE .data\n";
LksStream.flush();
// Dump the contents of the linker script if the user requested that. We
// support this option to enable testing of behavior with -###.
if (C.getArgs().hasArg(options::OPT_fopenmp_dump_offload_linker_script))
llvm::errs() << LksBuffer;
// If this is a dry run, do not create the linker script file.
if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH))
return;
// Open script file and write the contents.
std::error_code EC;
llvm::raw_fd_ostream Lksf(LKS, EC, llvm::sys::fs::OF_None);
if (EC) {
C.getDriver().Diag(clang::diag::err_unable_to_make_temp) << EC.message();
return;
}
Lksf << LksBuffer;
}
/// Add HIP linker script arguments at the end of the argument list so that
/// the fat binary is built by embedding the device images into the host. The
/// linker script also defines a symbol required by the code generation so that
/// the image can be retrieved at runtime. This should be used only in tool
/// chains that support linker scripts.
void tools::AddHIPLinkerScript(const ToolChain &TC, Compilation &C,
const InputInfo &Output,
const InputInfoList &Inputs, const ArgList &Args,
ArgStringList &CmdArgs, const JobAction &JA,
const Tool &T) {
// If this is not a HIP host toolchain, we don't need to do anything.
if (!JA.isHostOffloading(Action::OFK_HIP))
return;
InputInfoList DeviceInputs;
for (const auto &II : Inputs) {
const Action *A = II.getAction();
// Is this a device linking action?
if (A && isa<LinkJobAction>(A) && A->isDeviceOffloading(Action::OFK_HIP)) {
DeviceInputs.push_back(II);
}
}
if (DeviceInputs.empty())
return;
// Create temporary linker script. Keep it if save-temps is enabled.
const char *LKS;
SmallString<256> Name = llvm::sys::path::filename(Output.getFilename());
if (C.getDriver().isSaveTempsEnabled()) {
llvm::sys::path::replace_extension(Name, "lk");
LKS = C.getArgs().MakeArgString(Name.c_str());
} else {
llvm::sys::path::replace_extension(Name, "");
Name = C.getDriver().GetTemporaryPath(Name, "lk");
LKS = C.addTempFile(C.getArgs().MakeArgString(Name.c_str()));
}
// Add linker script option to the command.
CmdArgs.push_back("-T");
CmdArgs.push_back(LKS);
// Create a buffer to write the contents of the linker script.
std::string LksBuffer;
llvm::raw_string_ostream LksStream(LksBuffer);
// Get the HIP offload tool chain.
auto *HIPTC = static_cast<const toolchains::CudaToolChain *>(
C.getSingleOffloadToolChain<Action::OFK_HIP>());
assert(HIPTC->getTriple().getArch() == llvm::Triple::amdgcn &&
"Wrong platform");
(void)HIPTC;
// The output file name needs to persist through the compilation, therefore
// it needs to be created through MakeArgString.
std::string BundleFileName = C.getDriver().GetTemporaryPath("BUNDLE", "hipfb");
const char *BundleFile =
C.addTempFile(C.getArgs().MakeArgString(BundleFileName.c_str()));
AMDGCN::constructHIPFatbinCommand(C, JA, BundleFile, DeviceInputs, Args, T);
// Add commands to embed target binaries. We ensure that each section and
// image is 16-byte aligned. This is not mandatory, but increases the
// likelihood of data to be aligned with a cache block in several main host
// machines.
LksStream << "/*\n";
LksStream << " HIP Offload Linker Script\n";
LksStream << " *** Automatically generated by Clang ***\n";
LksStream << "*/\n";
LksStream << "TARGET(binary)\n";
LksStream << "INPUT(" << BundleFileName << ")\n";
LksStream << "SECTIONS\n";
LksStream << "{\n";
LksStream << " .hip_fatbin :\n";
LksStream << " ALIGN(0x10)\n";
LksStream << " {\n";
LksStream << " PROVIDE_HIDDEN(__hip_fatbin = .);\n";
LksStream << " " << BundleFileName << "\n";
LksStream << " }\n";
LksStream << " /DISCARD/ :\n";
LksStream << " {\n";
LksStream << " * ( __CLANG_OFFLOAD_BUNDLE__* )\n";
LksStream << " }\n";
LksStream << "}\n";
LksStream << "INSERT BEFORE .data\n";
LksStream.flush();
// Dump the contents of the linker script if the user requested that. We
// support this option to enable testing of behavior with -###.
if (C.getArgs().hasArg(options::OPT_fhip_dump_offload_linker_script))
llvm::errs() << LksBuffer;
// If this is a dry run, do not create the linker script file.
if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH))
return;
// Open script file and write the contents.
std::error_code EC;
llvm::raw_fd_ostream Lksf(LKS, EC, llvm::sys::fs::OF_None);
if (EC) {
C.getDriver().Diag(clang::diag::err_unable_to_make_temp) << EC.message();
return;
}
Lksf << LksBuffer;
}
SmallString<128> tools::getStatsFileName(const llvm::opt::ArgList &Args,
const InputInfo &Output,
const InputInfo &Input,
const Driver &D) {
const Arg *A = Args.getLastArg(options::OPT_save_stats_EQ);
if (!A)
return {};
StringRef SaveStats = A->getValue();
SmallString<128> StatsFile;
if (SaveStats == "obj" && Output.isFilename()) {
StatsFile.assign(Output.getFilename());
llvm::sys::path::remove_filename(StatsFile);
} else if (SaveStats != "cwd") {
D.Diag(diag::err_drv_invalid_value) << A->getAsString(Args) << SaveStats;
return {};
}
StringRef BaseName = llvm::sys::path::filename(Input.getBaseInput());
llvm::sys::path::append(StatsFile, BaseName);
llvm::sys::path::replace_extension(StatsFile, "stats");
return StatsFile;
}
void tools::addMultilibFlag(bool Enabled, const char *const Flag,
Multilib::flags_list &Flags) {
Flags.push_back(std::string(Enabled ? "+" : "-") + Flag);
}