llvm-project/compiler-rt/test/builtins/Unit/divdc3_test.c

375 lines
7.6 KiB
C

// RUN: %clang_builtins %s %librt -o %t && %run %t
// REQUIRES: librt_has_divdc3
//===-- divdc3_test.c - Test __divdc3 -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file tests __divdc3 for the compiler_rt library.
//
//===----------------------------------------------------------------------===//
#include "int_lib.h"
#include <math.h>
#include <complex.h>
#include <stdio.h>
// REQUIRES: c99-complex
// Returns: the quotient of (a + ib) / (c + id)
COMPILER_RT_ABI double _Complex
__divdc3(double __a, double __b, double __c, double __d);
enum {zero, non_zero, inf, NaN, non_zero_nan};
int
classify(double _Complex x)
{
if (x == 0)
return zero;
if (isinf(creal(x)) || isinf(cimag(x)))
return inf;
if (isnan(creal(x)) && isnan(cimag(x)))
return NaN;
if (isnan(creal(x)))
{
if (cimag(x) == 0)
return NaN;
return non_zero_nan;
}
if (isnan(cimag(x)))
{
if (creal(x) == 0)
return NaN;
return non_zero_nan;
}
return non_zero;
}
int test__divdc3(double a, double b, double c, double d)
{
double _Complex r = __divdc3(a, b, c, d);
// printf("test__divdc3(%f, %f, %f, %f) = %f + I%f\n",
// a, b, c, d, creal(r), cimag(r));
double _Complex dividend;
double _Complex divisor;
__real__ dividend = a;
__imag__ dividend = b;
__real__ divisor = c;
__imag__ divisor = d;
switch (classify(dividend))
{
case zero:
switch (classify(divisor))
{
case zero:
if (classify(r) != NaN)
return 1;
break;
case non_zero:
if (classify(r) != zero)
return 1;
break;
case inf:
if (classify(r) != zero)
return 1;
break;
case NaN:
if (classify(r) != NaN)
return 1;
break;
case non_zero_nan:
if (classify(r) != NaN)
return 1;
break;
}
break;
case non_zero:
switch (classify(divisor))
{
case zero:
if (classify(r) != inf)
return 1;
break;
case non_zero:
if (classify(r) != non_zero)
return 1;
{
double _Complex z = (a * c + b * d) / (c * c + d * d)
+ (b * c - a * d) / (c * c + d * d) * _Complex_I;
if (cabs((r-z)/r) > 1.e-6)
return 1;
}
break;
case inf:
if (classify(r) != zero)
return 1;
break;
case NaN:
if (classify(r) != NaN)
return 1;
break;
case non_zero_nan:
if (classify(r) != NaN)
return 1;
break;
}
break;
case inf:
switch (classify(divisor))
{
case zero:
if (classify(r) != inf)
return 1;
break;
case non_zero:
if (classify(r) != inf)
return 1;
break;
case inf:
if (classify(r) != NaN)
return 1;
break;
case NaN:
if (classify(r) != NaN)
return 1;
break;
case non_zero_nan:
if (classify(r) != NaN)
return 1;
break;
}
break;
case NaN:
switch (classify(divisor))
{
case zero:
if (classify(r) != NaN)
return 1;
break;
case non_zero:
if (classify(r) != NaN)
return 1;
break;
case inf:
if (classify(r) != NaN)
return 1;
break;
case NaN:
if (classify(r) != NaN)
return 1;
break;
case non_zero_nan:
if (classify(r) != NaN)
return 1;
break;
}
break;
case non_zero_nan:
switch (classify(divisor))
{
case zero:
if (classify(r) != inf)
return 1;
break;
case non_zero:
if (classify(r) != NaN)
return 1;
break;
case inf:
if (classify(r) != NaN)
return 1;
break;
case NaN:
if (classify(r) != NaN)
return 1;
break;
case non_zero_nan:
if (classify(r) != NaN)
return 1;
break;
}
break;
}
return 0;
}
double x[][2] =
{
{ 1.e-6, 1.e-6},
{-1.e-6, 1.e-6},
{-1.e-6, -1.e-6},
{ 1.e-6, -1.e-6},
{ 1.e+6, 1.e-6},
{-1.e+6, 1.e-6},
{-1.e+6, -1.e-6},
{ 1.e+6, -1.e-6},
{ 1.e-6, 1.e+6},
{-1.e-6, 1.e+6},
{-1.e-6, -1.e+6},
{ 1.e-6, -1.e+6},
{ 1.e+6, 1.e+6},
{-1.e+6, 1.e+6},
{-1.e+6, -1.e+6},
{ 1.e+6, -1.e+6},
{NAN, NAN},
{-INFINITY, NAN},
{-2, NAN},
{-1, NAN},
{-0.5, NAN},
{-0., NAN},
{+0., NAN},
{0.5, NAN},
{1, NAN},
{2, NAN},
{INFINITY, NAN},
{NAN, -INFINITY},
{-INFINITY, -INFINITY},
{-2, -INFINITY},
{-1, -INFINITY},
{-0.5, -INFINITY},
{-0., -INFINITY},
{+0., -INFINITY},
{0.5, -INFINITY},
{1, -INFINITY},
{2, -INFINITY},
{INFINITY, -INFINITY},
{NAN, -2},
{-INFINITY, -2},
{-2, -2},
{-1, -2},
{-0.5, -2},
{-0., -2},
{+0., -2},
{0.5, -2},
{1, -2},
{2, -2},
{INFINITY, -2},
{NAN, -1},
{-INFINITY, -1},
{-2, -1},
{-1, -1},
{-0.5, -1},
{-0., -1},
{+0., -1},
{0.5, -1},
{1, -1},
{2, -1},
{INFINITY, -1},
{NAN, -0.5},
{-INFINITY, -0.5},
{-2, -0.5},
{-1, -0.5},
{-0.5, -0.5},
{-0., -0.5},
{+0., -0.5},
{0.5, -0.5},
{1, -0.5},
{2, -0.5},
{INFINITY, -0.5},
{NAN, -0.},
{-INFINITY, -0.},
{-2, -0.},
{-1, -0.},
{-0.5, -0.},
{-0., -0.},
{+0., -0.},
{0.5, -0.},
{1, -0.},
{2, -0.},
{INFINITY, -0.},
{NAN, 0.},
{-INFINITY, 0.},
{-2, 0.},
{-1, 0.},
{-0.5, 0.},
{-0., 0.},
{+0., 0.},
{0.5, 0.},
{1, 0.},
{2, 0.},
{INFINITY, 0.},
{NAN, 0.5},
{-INFINITY, 0.5},
{-2, 0.5},
{-1, 0.5},
{-0.5, 0.5},
{-0., 0.5},
{+0., 0.5},
{0.5, 0.5},
{1, 0.5},
{2, 0.5},
{INFINITY, 0.5},
{NAN, 1},
{-INFINITY, 1},
{-2, 1},
{-1, 1},
{-0.5, 1},
{-0., 1},
{+0., 1},
{0.5, 1},
{1, 1},
{2, 1},
{INFINITY, 1},
{NAN, 2},
{-INFINITY, 2},
{-2, 2},
{-1, 2},
{-0.5, 2},
{-0., 2},
{+0., 2},
{0.5, 2},
{1, 2},
{2, 2},
{INFINITY, 2},
{NAN, INFINITY},
{-INFINITY, INFINITY},
{-2, INFINITY},
{-1, INFINITY},
{-0.5, INFINITY},
{-0., INFINITY},
{+0., INFINITY},
{0.5, INFINITY},
{1, INFINITY},
{2, INFINITY},
{INFINITY, INFINITY}
};
int main()
{
const unsigned N = sizeof(x) / sizeof(x[0]);
unsigned i, j;
for (i = 0; i < N; ++i)
{
for (j = 0; j < N; ++j)
{
if (test__divdc3(x[i][0], x[i][1], x[j][0], x[j][1]))
return 1;
}
}
return 0;
}