forked from OSchip/llvm-project
2185 lines
78 KiB
C++
2185 lines
78 KiB
C++
//===-- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains support for writing dwarf debug info into asm files.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "DwarfDebug.h"
|
|
#include "ByteStreamer.h"
|
|
#include "DIEHash.h"
|
|
#include "DwarfCompileUnit.h"
|
|
#include "DwarfExpression.h"
|
|
#include "DwarfUnit.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/CodeGen/DIE.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCSection.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Dwarf.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/MD5.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Target/TargetFrameLowering.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "dwarfdebug"
|
|
|
|
static cl::opt<bool>
|
|
DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
|
|
cl::desc("Disable debug info printing"));
|
|
|
|
static cl::opt<bool> UnknownLocations(
|
|
"use-unknown-locations", cl::Hidden,
|
|
cl::desc("Make an absence of debug location information explicit."),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
GenerateGnuPubSections("generate-gnu-dwarf-pub-sections", cl::Hidden,
|
|
cl::desc("Generate GNU-style pubnames and pubtypes"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> GenerateARangeSection("generate-arange-section",
|
|
cl::Hidden,
|
|
cl::desc("Generate dwarf aranges"),
|
|
cl::init(false));
|
|
|
|
namespace {
|
|
enum DefaultOnOff { Default, Enable, Disable };
|
|
}
|
|
|
|
static cl::opt<DefaultOnOff>
|
|
DwarfAccelTables("dwarf-accel-tables", cl::Hidden,
|
|
cl::desc("Output prototype dwarf accelerator tables."),
|
|
cl::values(clEnumVal(Default, "Default for platform"),
|
|
clEnumVal(Enable, "Enabled"),
|
|
clEnumVal(Disable, "Disabled"), clEnumValEnd),
|
|
cl::init(Default));
|
|
|
|
static cl::opt<DefaultOnOff>
|
|
SplitDwarf("split-dwarf", cl::Hidden,
|
|
cl::desc("Output DWARF5 split debug info."),
|
|
cl::values(clEnumVal(Default, "Default for platform"),
|
|
clEnumVal(Enable, "Enabled"),
|
|
clEnumVal(Disable, "Disabled"), clEnumValEnd),
|
|
cl::init(Default));
|
|
|
|
static cl::opt<DefaultOnOff>
|
|
DwarfPubSections("generate-dwarf-pub-sections", cl::Hidden,
|
|
cl::desc("Generate DWARF pubnames and pubtypes sections"),
|
|
cl::values(clEnumVal(Default, "Default for platform"),
|
|
clEnumVal(Enable, "Enabled"),
|
|
clEnumVal(Disable, "Disabled"), clEnumValEnd),
|
|
cl::init(Default));
|
|
|
|
static const char *const DWARFGroupName = "DWARF Emission";
|
|
static const char *const DbgTimerName = "DWARF Debug Writer";
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// resolve - Look in the DwarfDebug map for the MDNode that
|
|
/// corresponds to the reference.
|
|
template <typename T> T DbgVariable::resolve(DIRef<T> Ref) const {
|
|
return DD->resolve(Ref);
|
|
}
|
|
|
|
bool DbgVariable::isBlockByrefVariable() const {
|
|
assert(Var.isVariable() && "Invalid complex DbgVariable!");
|
|
return Var.isBlockByrefVariable(DD->getTypeIdentifierMap());
|
|
}
|
|
|
|
DIType DbgVariable::getType() const {
|
|
DIType Ty = Var.getType().resolve(DD->getTypeIdentifierMap());
|
|
// FIXME: isBlockByrefVariable should be reformulated in terms of complex
|
|
// addresses instead.
|
|
if (Var.isBlockByrefVariable(DD->getTypeIdentifierMap())) {
|
|
/* Byref variables, in Blocks, are declared by the programmer as
|
|
"SomeType VarName;", but the compiler creates a
|
|
__Block_byref_x_VarName struct, and gives the variable VarName
|
|
either the struct, or a pointer to the struct, as its type. This
|
|
is necessary for various behind-the-scenes things the compiler
|
|
needs to do with by-reference variables in blocks.
|
|
|
|
However, as far as the original *programmer* is concerned, the
|
|
variable should still have type 'SomeType', as originally declared.
|
|
|
|
The following function dives into the __Block_byref_x_VarName
|
|
struct to find the original type of the variable. This will be
|
|
passed back to the code generating the type for the Debug
|
|
Information Entry for the variable 'VarName'. 'VarName' will then
|
|
have the original type 'SomeType' in its debug information.
|
|
|
|
The original type 'SomeType' will be the type of the field named
|
|
'VarName' inside the __Block_byref_x_VarName struct.
|
|
|
|
NOTE: In order for this to not completely fail on the debugger
|
|
side, the Debug Information Entry for the variable VarName needs to
|
|
have a DW_AT_location that tells the debugger how to unwind through
|
|
the pointers and __Block_byref_x_VarName struct to find the actual
|
|
value of the variable. The function addBlockByrefType does this. */
|
|
DIType subType = Ty;
|
|
uint16_t tag = Ty.getTag();
|
|
|
|
if (tag == dwarf::DW_TAG_pointer_type)
|
|
subType = resolve(DIDerivedType(Ty).getTypeDerivedFrom());
|
|
|
|
DIArray Elements = DICompositeType(subType).getElements();
|
|
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
|
|
DIDerivedType DT(Elements.getElement(i));
|
|
if (getName() == DT.getName())
|
|
return (resolve(DT.getTypeDerivedFrom()));
|
|
}
|
|
}
|
|
return Ty;
|
|
}
|
|
|
|
static LLVM_CONSTEXPR DwarfAccelTable::Atom TypeAtoms[] = {
|
|
DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4),
|
|
DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag, dwarf::DW_FORM_data2),
|
|
DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)};
|
|
|
|
DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
|
|
: Asm(A), MMI(Asm->MMI), PrevLabel(nullptr), GlobalRangeCount(0),
|
|
InfoHolder(A, *this, "info_string", DIEValueAllocator),
|
|
UsedNonDefaultText(false),
|
|
SkeletonHolder(A, *this, "skel_string", DIEValueAllocator),
|
|
IsDarwin(Triple(A->getTargetTriple()).isOSDarwin()),
|
|
AccelNames(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
|
|
dwarf::DW_FORM_data4)),
|
|
AccelObjC(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
|
|
dwarf::DW_FORM_data4)),
|
|
AccelNamespace(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
|
|
dwarf::DW_FORM_data4)),
|
|
AccelTypes(TypeAtoms) {
|
|
|
|
DwarfInfoSectionSym = DwarfAbbrevSectionSym = DwarfStrSectionSym = nullptr;
|
|
DwarfDebugRangeSectionSym = DwarfDebugLocSectionSym = nullptr;
|
|
DwarfLineSectionSym = nullptr;
|
|
DwarfAddrSectionSym = nullptr;
|
|
DwarfAbbrevDWOSectionSym = DwarfStrDWOSectionSym = nullptr;
|
|
FunctionBeginSym = FunctionEndSym = nullptr;
|
|
CurFn = nullptr;
|
|
CurMI = nullptr;
|
|
|
|
// Turn on accelerator tables for Darwin by default, pubnames by
|
|
// default for non-Darwin, and handle split dwarf.
|
|
if (DwarfAccelTables == Default)
|
|
HasDwarfAccelTables = IsDarwin;
|
|
else
|
|
HasDwarfAccelTables = DwarfAccelTables == Enable;
|
|
|
|
if (SplitDwarf == Default)
|
|
HasSplitDwarf = false;
|
|
else
|
|
HasSplitDwarf = SplitDwarf == Enable;
|
|
|
|
if (DwarfPubSections == Default)
|
|
HasDwarfPubSections = !IsDarwin;
|
|
else
|
|
HasDwarfPubSections = DwarfPubSections == Enable;
|
|
|
|
unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
|
|
DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
|
|
: MMI->getModule()->getDwarfVersion();
|
|
|
|
Asm->OutStreamer.getContext().setDwarfVersion(DwarfVersion);
|
|
|
|
{
|
|
NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
|
|
beginModule();
|
|
}
|
|
}
|
|
|
|
// Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
|
|
DwarfDebug::~DwarfDebug() { }
|
|
|
|
// Switch to the specified MCSection and emit an assembler
|
|
// temporary label to it if SymbolStem is specified.
|
|
static MCSymbol *emitSectionSym(AsmPrinter *Asm, const MCSection *Section,
|
|
const char *SymbolStem = nullptr) {
|
|
Asm->OutStreamer.SwitchSection(Section);
|
|
if (!SymbolStem)
|
|
return nullptr;
|
|
|
|
MCSymbol *TmpSym = Asm->GetTempSymbol(SymbolStem);
|
|
Asm->OutStreamer.EmitLabel(TmpSym);
|
|
return TmpSym;
|
|
}
|
|
|
|
static bool isObjCClass(StringRef Name) {
|
|
return Name.startswith("+") || Name.startswith("-");
|
|
}
|
|
|
|
static bool hasObjCCategory(StringRef Name) {
|
|
if (!isObjCClass(Name))
|
|
return false;
|
|
|
|
return Name.find(") ") != StringRef::npos;
|
|
}
|
|
|
|
static void getObjCClassCategory(StringRef In, StringRef &Class,
|
|
StringRef &Category) {
|
|
if (!hasObjCCategory(In)) {
|
|
Class = In.slice(In.find('[') + 1, In.find(' '));
|
|
Category = "";
|
|
return;
|
|
}
|
|
|
|
Class = In.slice(In.find('[') + 1, In.find('('));
|
|
Category = In.slice(In.find('[') + 1, In.find(' '));
|
|
return;
|
|
}
|
|
|
|
static StringRef getObjCMethodName(StringRef In) {
|
|
return In.slice(In.find(' ') + 1, In.find(']'));
|
|
}
|
|
|
|
// Helper for sorting sections into a stable output order.
|
|
static bool SectionSort(const MCSection *A, const MCSection *B) {
|
|
std::string LA = (A ? A->getLabelBeginName() : "");
|
|
std::string LB = (B ? B->getLabelBeginName() : "");
|
|
return LA < LB;
|
|
}
|
|
|
|
// Add the various names to the Dwarf accelerator table names.
|
|
// TODO: Determine whether or not we should add names for programs
|
|
// that do not have a DW_AT_name or DW_AT_linkage_name field - this
|
|
// is only slightly different than the lookup of non-standard ObjC names.
|
|
void DwarfDebug::addSubprogramNames(DISubprogram SP, DIE &Die) {
|
|
if (!SP.isDefinition())
|
|
return;
|
|
addAccelName(SP.getName(), Die);
|
|
|
|
// If the linkage name is different than the name, go ahead and output
|
|
// that as well into the name table.
|
|
if (SP.getLinkageName() != "" && SP.getName() != SP.getLinkageName())
|
|
addAccelName(SP.getLinkageName(), Die);
|
|
|
|
// If this is an Objective-C selector name add it to the ObjC accelerator
|
|
// too.
|
|
if (isObjCClass(SP.getName())) {
|
|
StringRef Class, Category;
|
|
getObjCClassCategory(SP.getName(), Class, Category);
|
|
addAccelObjC(Class, Die);
|
|
if (Category != "")
|
|
addAccelObjC(Category, Die);
|
|
// Also add the base method name to the name table.
|
|
addAccelName(getObjCMethodName(SP.getName()), Die);
|
|
}
|
|
}
|
|
|
|
/// isSubprogramContext - Return true if Context is either a subprogram
|
|
/// or another context nested inside a subprogram.
|
|
bool DwarfDebug::isSubprogramContext(const MDNode *Context) {
|
|
if (!Context)
|
|
return false;
|
|
DIDescriptor D(Context);
|
|
if (D.isSubprogram())
|
|
return true;
|
|
if (D.isType())
|
|
return isSubprogramContext(resolve(DIType(Context).getContext()));
|
|
return false;
|
|
}
|
|
|
|
/// Check whether we should create a DIE for the given Scope, return true
|
|
/// if we don't create a DIE (the corresponding DIE is null).
|
|
bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
|
|
if (Scope->isAbstractScope())
|
|
return false;
|
|
|
|
// We don't create a DIE if there is no Range.
|
|
const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
|
|
if (Ranges.empty())
|
|
return true;
|
|
|
|
if (Ranges.size() > 1)
|
|
return false;
|
|
|
|
// We don't create a DIE if we have a single Range and the end label
|
|
// is null.
|
|
return !getLabelAfterInsn(Ranges.front().second);
|
|
}
|
|
|
|
template <typename Func> void forBothCUs(DwarfCompileUnit &CU, Func F) {
|
|
F(CU);
|
|
if (auto *SkelCU = CU.getSkeleton())
|
|
F(*SkelCU);
|
|
}
|
|
|
|
void DwarfDebug::constructAbstractSubprogramScopeDIE(LexicalScope *Scope) {
|
|
assert(Scope && Scope->getScopeNode());
|
|
assert(Scope->isAbstractScope());
|
|
assert(!Scope->getInlinedAt());
|
|
|
|
const MDNode *SP = Scope->getScopeNode();
|
|
|
|
ProcessedSPNodes.insert(SP);
|
|
|
|
// Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
|
|
// was inlined from another compile unit.
|
|
auto &CU = SPMap[SP];
|
|
forBothCUs(*CU, [&](DwarfCompileUnit &CU) {
|
|
CU.constructAbstractSubprogramScopeDIE(Scope);
|
|
});
|
|
}
|
|
|
|
void DwarfDebug::addGnuPubAttributes(DwarfUnit &U, DIE &D) const {
|
|
if (!GenerateGnuPubSections)
|
|
return;
|
|
|
|
U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
|
|
}
|
|
|
|
// Create new DwarfCompileUnit for the given metadata node with tag
|
|
// DW_TAG_compile_unit.
|
|
DwarfCompileUnit &DwarfDebug::constructDwarfCompileUnit(DICompileUnit DIUnit) {
|
|
StringRef FN = DIUnit.getFilename();
|
|
CompilationDir = DIUnit.getDirectory();
|
|
|
|
auto OwnedUnit = make_unique<DwarfCompileUnit>(
|
|
InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
|
|
DwarfCompileUnit &NewCU = *OwnedUnit;
|
|
DIE &Die = NewCU.getUnitDie();
|
|
InfoHolder.addUnit(std::move(OwnedUnit));
|
|
if (useSplitDwarf())
|
|
NewCU.setSkeleton(constructSkeletonCU(NewCU));
|
|
|
|
// LTO with assembly output shares a single line table amongst multiple CUs.
|
|
// To avoid the compilation directory being ambiguous, let the line table
|
|
// explicitly describe the directory of all files, never relying on the
|
|
// compilation directory.
|
|
if (!Asm->OutStreamer.hasRawTextSupport() || SingleCU)
|
|
Asm->OutStreamer.getContext().setMCLineTableCompilationDir(
|
|
NewCU.getUniqueID(), CompilationDir);
|
|
|
|
NewCU.addString(Die, dwarf::DW_AT_producer, DIUnit.getProducer());
|
|
NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
|
|
DIUnit.getLanguage());
|
|
NewCU.addString(Die, dwarf::DW_AT_name, FN);
|
|
|
|
if (!useSplitDwarf()) {
|
|
NewCU.initStmtList(DwarfLineSectionSym);
|
|
|
|
// If we're using split dwarf the compilation dir is going to be in the
|
|
// skeleton CU and so we don't need to duplicate it here.
|
|
if (!CompilationDir.empty())
|
|
NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
|
|
|
|
addGnuPubAttributes(NewCU, Die);
|
|
}
|
|
|
|
if (DIUnit.isOptimized())
|
|
NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
|
|
|
|
StringRef Flags = DIUnit.getFlags();
|
|
if (!Flags.empty())
|
|
NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
|
|
|
|
if (unsigned RVer = DIUnit.getRunTimeVersion())
|
|
NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
|
|
dwarf::DW_FORM_data1, RVer);
|
|
|
|
if (useSplitDwarf())
|
|
NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoDWOSection(),
|
|
DwarfInfoDWOSectionSym);
|
|
else
|
|
NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection(),
|
|
DwarfInfoSectionSym);
|
|
|
|
CUMap.insert(std::make_pair(DIUnit, &NewCU));
|
|
CUDieMap.insert(std::make_pair(&Die, &NewCU));
|
|
return NewCU;
|
|
}
|
|
|
|
void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
|
|
const MDNode *N) {
|
|
DIImportedEntity Module(N);
|
|
assert(Module.Verify());
|
|
if (DIE *D = TheCU.getOrCreateContextDIE(Module.getContext()))
|
|
D->addChild(TheCU.constructImportedEntityDIE(Module));
|
|
}
|
|
|
|
// Emit all Dwarf sections that should come prior to the content. Create
|
|
// global DIEs and emit initial debug info sections. This is invoked by
|
|
// the target AsmPrinter.
|
|
void DwarfDebug::beginModule() {
|
|
if (DisableDebugInfoPrinting)
|
|
return;
|
|
|
|
const Module *M = MMI->getModule();
|
|
|
|
FunctionDIs = makeSubprogramMap(*M);
|
|
|
|
NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu");
|
|
if (!CU_Nodes)
|
|
return;
|
|
TypeIdentifierMap = generateDITypeIdentifierMap(CU_Nodes);
|
|
|
|
// Emit initial sections so we can reference labels later.
|
|
emitSectionLabels();
|
|
|
|
SingleCU = CU_Nodes->getNumOperands() == 1;
|
|
|
|
for (MDNode *N : CU_Nodes->operands()) {
|
|
DICompileUnit CUNode(N);
|
|
DwarfCompileUnit &CU = constructDwarfCompileUnit(CUNode);
|
|
DIArray ImportedEntities = CUNode.getImportedEntities();
|
|
for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i)
|
|
ScopesWithImportedEntities.push_back(std::make_pair(
|
|
DIImportedEntity(ImportedEntities.getElement(i)).getContext(),
|
|
ImportedEntities.getElement(i)));
|
|
std::sort(ScopesWithImportedEntities.begin(),
|
|
ScopesWithImportedEntities.end(), less_first());
|
|
DIArray GVs = CUNode.getGlobalVariables();
|
|
for (unsigned i = 0, e = GVs.getNumElements(); i != e; ++i)
|
|
CU.getOrCreateGlobalVariableDIE(DIGlobalVariable(GVs.getElement(i)));
|
|
DIArray SPs = CUNode.getSubprograms();
|
|
for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i)
|
|
SPMap.insert(std::make_pair(SPs.getElement(i), &CU));
|
|
DIArray EnumTypes = CUNode.getEnumTypes();
|
|
for (unsigned i = 0, e = EnumTypes.getNumElements(); i != e; ++i) {
|
|
DIType Ty(EnumTypes.getElement(i));
|
|
// The enum types array by design contains pointers to
|
|
// MDNodes rather than DIRefs. Unique them here.
|
|
DIType UniqueTy(resolve(Ty.getRef()));
|
|
CU.getOrCreateTypeDIE(UniqueTy);
|
|
}
|
|
DIArray RetainedTypes = CUNode.getRetainedTypes();
|
|
for (unsigned i = 0, e = RetainedTypes.getNumElements(); i != e; ++i) {
|
|
DIType Ty(RetainedTypes.getElement(i));
|
|
// The retained types array by design contains pointers to
|
|
// MDNodes rather than DIRefs. Unique them here.
|
|
DIType UniqueTy(resolve(Ty.getRef()));
|
|
CU.getOrCreateTypeDIE(UniqueTy);
|
|
}
|
|
// Emit imported_modules last so that the relevant context is already
|
|
// available.
|
|
for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i)
|
|
constructAndAddImportedEntityDIE(CU, ImportedEntities.getElement(i));
|
|
}
|
|
|
|
// Tell MMI that we have debug info.
|
|
MMI->setDebugInfoAvailability(true);
|
|
|
|
// Prime section data.
|
|
SectionMap[Asm->getObjFileLowering().getTextSection()];
|
|
}
|
|
|
|
void DwarfDebug::finishVariableDefinitions() {
|
|
for (const auto &Var : ConcreteVariables) {
|
|
DIE *VariableDie = Var->getDIE();
|
|
assert(VariableDie);
|
|
// FIXME: Consider the time-space tradeoff of just storing the unit pointer
|
|
// in the ConcreteVariables list, rather than looking it up again here.
|
|
// DIE::getUnit isn't simple - it walks parent pointers, etc.
|
|
DwarfCompileUnit *Unit = lookupUnit(VariableDie->getUnit());
|
|
assert(Unit);
|
|
DbgVariable *AbsVar = getExistingAbstractVariable(Var->getVariable());
|
|
if (AbsVar && AbsVar->getDIE()) {
|
|
Unit->addDIEEntry(*VariableDie, dwarf::DW_AT_abstract_origin,
|
|
*AbsVar->getDIE());
|
|
} else
|
|
Unit->applyVariableAttributes(*Var, *VariableDie);
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::finishSubprogramDefinitions() {
|
|
for (const auto &P : SPMap)
|
|
forBothCUs(*P.second, [&](DwarfCompileUnit &CU) {
|
|
CU.finishSubprogramDefinition(DISubprogram(P.first));
|
|
});
|
|
}
|
|
|
|
|
|
// Collect info for variables that were optimized out.
|
|
void DwarfDebug::collectDeadVariables() {
|
|
const Module *M = MMI->getModule();
|
|
|
|
if (NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu")) {
|
|
for (MDNode *N : CU_Nodes->operands()) {
|
|
DICompileUnit TheCU(N);
|
|
// Construct subprogram DIE and add variables DIEs.
|
|
DwarfCompileUnit *SPCU =
|
|
static_cast<DwarfCompileUnit *>(CUMap.lookup(TheCU));
|
|
assert(SPCU && "Unable to find Compile Unit!");
|
|
DIArray Subprograms = TheCU.getSubprograms();
|
|
for (unsigned i = 0, e = Subprograms.getNumElements(); i != e; ++i) {
|
|
DISubprogram SP(Subprograms.getElement(i));
|
|
if (ProcessedSPNodes.count(SP) != 0)
|
|
continue;
|
|
SPCU->collectDeadVariables(SP);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::finalizeModuleInfo() {
|
|
finishSubprogramDefinitions();
|
|
|
|
finishVariableDefinitions();
|
|
|
|
// Collect info for variables that were optimized out.
|
|
collectDeadVariables();
|
|
|
|
// Handle anything that needs to be done on a per-unit basis after
|
|
// all other generation.
|
|
for (const auto &P : CUMap) {
|
|
auto &TheCU = *P.second;
|
|
// Emit DW_AT_containing_type attribute to connect types with their
|
|
// vtable holding type.
|
|
TheCU.constructContainingTypeDIEs();
|
|
|
|
// Add CU specific attributes if we need to add any.
|
|
// If we're splitting the dwarf out now that we've got the entire
|
|
// CU then add the dwo id to it.
|
|
auto *SkCU = TheCU.getSkeleton();
|
|
if (useSplitDwarf()) {
|
|
// Emit a unique identifier for this CU.
|
|
uint64_t ID = DIEHash(Asm).computeCUSignature(TheCU.getUnitDie());
|
|
TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
|
|
dwarf::DW_FORM_data8, ID);
|
|
SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
|
|
dwarf::DW_FORM_data8, ID);
|
|
|
|
// We don't keep track of which addresses are used in which CU so this
|
|
// is a bit pessimistic under LTO.
|
|
if (!AddrPool.isEmpty())
|
|
SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_addr_base,
|
|
DwarfAddrSectionSym, DwarfAddrSectionSym);
|
|
if (!SkCU->getRangeLists().empty())
|
|
SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
|
|
DwarfDebugRangeSectionSym,
|
|
DwarfDebugRangeSectionSym);
|
|
}
|
|
|
|
// If we have code split among multiple sections or non-contiguous
|
|
// ranges of code then emit a DW_AT_ranges attribute on the unit that will
|
|
// remain in the .o file, otherwise add a DW_AT_low_pc.
|
|
// FIXME: We should use ranges allow reordering of code ala
|
|
// .subsections_via_symbols in mach-o. This would mean turning on
|
|
// ranges for all subprogram DIEs for mach-o.
|
|
DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
|
|
if (unsigned NumRanges = TheCU.getRanges().size()) {
|
|
if (NumRanges > 1)
|
|
// A DW_AT_low_pc attribute may also be specified in combination with
|
|
// DW_AT_ranges to specify the default base address for use in
|
|
// location lists (see Section 2.6.2) and range lists (see Section
|
|
// 2.17.3).
|
|
U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
|
|
else
|
|
TheCU.setBaseAddress(TheCU.getRanges().front().getStart());
|
|
U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
|
|
}
|
|
}
|
|
|
|
// Compute DIE offsets and sizes.
|
|
InfoHolder.computeSizeAndOffsets();
|
|
if (useSplitDwarf())
|
|
SkeletonHolder.computeSizeAndOffsets();
|
|
}
|
|
|
|
void DwarfDebug::endSections() {
|
|
// Filter labels by section.
|
|
for (const SymbolCU &SCU : ArangeLabels) {
|
|
if (SCU.Sym->isInSection()) {
|
|
// Make a note of this symbol and it's section.
|
|
const MCSection *Section = &SCU.Sym->getSection();
|
|
if (!Section->getKind().isMetadata())
|
|
SectionMap[Section].push_back(SCU);
|
|
} else {
|
|
// Some symbols (e.g. common/bss on mach-o) can have no section but still
|
|
// appear in the output. This sucks as we rely on sections to build
|
|
// arange spans. We can do it without, but it's icky.
|
|
SectionMap[nullptr].push_back(SCU);
|
|
}
|
|
}
|
|
|
|
// Build a list of sections used.
|
|
std::vector<const MCSection *> Sections;
|
|
for (const auto &it : SectionMap) {
|
|
const MCSection *Section = it.first;
|
|
Sections.push_back(Section);
|
|
}
|
|
|
|
// Sort the sections into order.
|
|
// This is only done to ensure consistent output order across different runs.
|
|
std::sort(Sections.begin(), Sections.end(), SectionSort);
|
|
|
|
// Add terminating symbols for each section.
|
|
for (unsigned ID = 0, E = Sections.size(); ID != E; ID++) {
|
|
const MCSection *Section = Sections[ID];
|
|
MCSymbol *Sym = nullptr;
|
|
|
|
if (Section) {
|
|
// We can't call MCSection::getLabelEndName, as it's only safe to do so
|
|
// if we know the section name up-front. For user-created sections, the
|
|
// resulting label may not be valid to use as a label. (section names can
|
|
// use a greater set of characters on some systems)
|
|
Sym = Asm->GetTempSymbol("debug_end", ID);
|
|
Asm->OutStreamer.SwitchSection(Section);
|
|
Asm->OutStreamer.EmitLabel(Sym);
|
|
}
|
|
|
|
// Insert a final terminator.
|
|
SectionMap[Section].push_back(SymbolCU(nullptr, Sym));
|
|
}
|
|
}
|
|
|
|
// Emit all Dwarf sections that should come after the content.
|
|
void DwarfDebug::endModule() {
|
|
assert(CurFn == nullptr);
|
|
assert(CurMI == nullptr);
|
|
|
|
// If we aren't actually generating debug info (check beginModule -
|
|
// conditionalized on !DisableDebugInfoPrinting and the presence of the
|
|
// llvm.dbg.cu metadata node)
|
|
if (!DwarfInfoSectionSym)
|
|
return;
|
|
|
|
// End any existing sections.
|
|
// TODO: Does this need to happen?
|
|
endSections();
|
|
|
|
// Finalize the debug info for the module.
|
|
finalizeModuleInfo();
|
|
|
|
emitDebugStr();
|
|
|
|
// Emit all the DIEs into a debug info section.
|
|
emitDebugInfo();
|
|
|
|
// Corresponding abbreviations into a abbrev section.
|
|
emitAbbreviations();
|
|
|
|
// Emit info into a debug aranges section.
|
|
if (GenerateARangeSection)
|
|
emitDebugARanges();
|
|
|
|
// Emit info into a debug ranges section.
|
|
emitDebugRanges();
|
|
|
|
if (useSplitDwarf()) {
|
|
emitDebugStrDWO();
|
|
emitDebugInfoDWO();
|
|
emitDebugAbbrevDWO();
|
|
emitDebugLineDWO();
|
|
emitDebugLocDWO();
|
|
// Emit DWO addresses.
|
|
AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
|
|
} else
|
|
// Emit info into a debug loc section.
|
|
emitDebugLoc();
|
|
|
|
// Emit info into the dwarf accelerator table sections.
|
|
if (useDwarfAccelTables()) {
|
|
emitAccelNames();
|
|
emitAccelObjC();
|
|
emitAccelNamespaces();
|
|
emitAccelTypes();
|
|
}
|
|
|
|
// Emit the pubnames and pubtypes sections if requested.
|
|
if (HasDwarfPubSections) {
|
|
emitDebugPubNames(GenerateGnuPubSections);
|
|
emitDebugPubTypes(GenerateGnuPubSections);
|
|
}
|
|
|
|
// clean up.
|
|
SPMap.clear();
|
|
AbstractVariables.clear();
|
|
}
|
|
|
|
// Find abstract variable, if any, associated with Var.
|
|
DbgVariable *DwarfDebug::getExistingAbstractVariable(const DIVariable &DV,
|
|
DIVariable &Cleansed) {
|
|
LLVMContext &Ctx = DV->getContext();
|
|
// More then one inlined variable corresponds to one abstract variable.
|
|
// FIXME: This duplication of variables when inlining should probably be
|
|
// removed. It's done to allow each DIVariable to describe its location
|
|
// because the DebugLoc on the dbg.value/declare isn't accurate. We should
|
|
// make it accurate then remove this duplication/cleansing stuff.
|
|
Cleansed = cleanseInlinedVariable(DV, Ctx);
|
|
auto I = AbstractVariables.find(Cleansed);
|
|
if (I != AbstractVariables.end())
|
|
return I->second.get();
|
|
return nullptr;
|
|
}
|
|
|
|
DbgVariable *DwarfDebug::getExistingAbstractVariable(const DIVariable &DV) {
|
|
DIVariable Cleansed;
|
|
return getExistingAbstractVariable(DV, Cleansed);
|
|
}
|
|
|
|
void DwarfDebug::createAbstractVariable(const DIVariable &Var,
|
|
LexicalScope *Scope) {
|
|
auto AbsDbgVariable = make_unique<DbgVariable>(Var, DIExpression(), this);
|
|
InfoHolder.addScopeVariable(Scope, AbsDbgVariable.get());
|
|
AbstractVariables[Var] = std::move(AbsDbgVariable);
|
|
}
|
|
|
|
void DwarfDebug::ensureAbstractVariableIsCreated(const DIVariable &DV,
|
|
const MDNode *ScopeNode) {
|
|
DIVariable Cleansed = DV;
|
|
if (getExistingAbstractVariable(DV, Cleansed))
|
|
return;
|
|
|
|
createAbstractVariable(Cleansed, LScopes.getOrCreateAbstractScope(ScopeNode));
|
|
}
|
|
|
|
void
|
|
DwarfDebug::ensureAbstractVariableIsCreatedIfScoped(const DIVariable &DV,
|
|
const MDNode *ScopeNode) {
|
|
DIVariable Cleansed = DV;
|
|
if (getExistingAbstractVariable(DV, Cleansed))
|
|
return;
|
|
|
|
if (LexicalScope *Scope = LScopes.findAbstractScope(ScopeNode))
|
|
createAbstractVariable(Cleansed, Scope);
|
|
}
|
|
|
|
// Collect variable information from side table maintained by MMI.
|
|
void DwarfDebug::collectVariableInfoFromMMITable(
|
|
SmallPtrSetImpl<const MDNode *> &Processed) {
|
|
for (const auto &VI : MMI->getVariableDbgInfo()) {
|
|
if (!VI.Var)
|
|
continue;
|
|
Processed.insert(VI.Var);
|
|
LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
|
|
|
|
// If variable scope is not found then skip this variable.
|
|
if (!Scope)
|
|
continue;
|
|
|
|
DIVariable DV(VI.Var);
|
|
DIExpression Expr(VI.Expr);
|
|
ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
|
|
auto RegVar = make_unique<DbgVariable>(DV, Expr, this, VI.Slot);
|
|
if (InfoHolder.addScopeVariable(Scope, RegVar.get()))
|
|
ConcreteVariables.push_back(std::move(RegVar));
|
|
}
|
|
}
|
|
|
|
// Get .debug_loc entry for the instruction range starting at MI.
|
|
static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) {
|
|
const MDNode *Expr = MI->getDebugExpression();
|
|
const MDNode *Var = MI->getDebugVariable();
|
|
|
|
assert(MI->getNumOperands() == 4);
|
|
if (MI->getOperand(0).isReg()) {
|
|
MachineLocation MLoc;
|
|
// If the second operand is an immediate, this is a
|
|
// register-indirect address.
|
|
if (!MI->getOperand(1).isImm())
|
|
MLoc.set(MI->getOperand(0).getReg());
|
|
else
|
|
MLoc.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm());
|
|
return DebugLocEntry::Value(Var, Expr, MLoc);
|
|
}
|
|
if (MI->getOperand(0).isImm())
|
|
return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getImm());
|
|
if (MI->getOperand(0).isFPImm())
|
|
return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getFPImm());
|
|
if (MI->getOperand(0).isCImm())
|
|
return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getCImm());
|
|
|
|
llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
|
|
}
|
|
|
|
/// Determine whether two variable pieces overlap.
|
|
static bool piecesOverlap(DIExpression P1, DIExpression P2) {
|
|
if (!P1.isBitPiece() || !P2.isBitPiece())
|
|
return true;
|
|
unsigned l1 = P1.getBitPieceOffset();
|
|
unsigned l2 = P2.getBitPieceOffset();
|
|
unsigned r1 = l1 + P1.getBitPieceSize();
|
|
unsigned r2 = l2 + P2.getBitPieceSize();
|
|
// True where [l1,r1[ and [r1,r2[ overlap.
|
|
return (l1 < r2) && (l2 < r1);
|
|
}
|
|
|
|
/// Build the location list for all DBG_VALUEs in the function that
|
|
/// describe the same variable. If the ranges of several independent
|
|
/// pieces of the same variable overlap partially, split them up and
|
|
/// combine the ranges. The resulting DebugLocEntries are will have
|
|
/// strict monotonically increasing begin addresses and will never
|
|
/// overlap.
|
|
//
|
|
// Input:
|
|
//
|
|
// Ranges History [var, loc, piece ofs size]
|
|
// 0 | [x, (reg0, piece 0, 32)]
|
|
// 1 | | [x, (reg1, piece 32, 32)] <- IsPieceOfPrevEntry
|
|
// 2 | | ...
|
|
// 3 | [clobber reg0]
|
|
// 4 [x, (mem, piece 0, 64)] <- overlapping with both previous pieces of
|
|
// x.
|
|
//
|
|
// Output:
|
|
//
|
|
// [0-1] [x, (reg0, piece 0, 32)]
|
|
// [1-3] [x, (reg0, piece 0, 32), (reg1, piece 32, 32)]
|
|
// [3-4] [x, (reg1, piece 32, 32)]
|
|
// [4- ] [x, (mem, piece 0, 64)]
|
|
void
|
|
DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
|
|
const DbgValueHistoryMap::InstrRanges &Ranges) {
|
|
SmallVector<DebugLocEntry::Value, 4> OpenRanges;
|
|
|
|
for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
|
|
const MachineInstr *Begin = I->first;
|
|
const MachineInstr *End = I->second;
|
|
assert(Begin->isDebugValue() && "Invalid History entry");
|
|
|
|
// Check if a variable is inaccessible in this range.
|
|
if (Begin->getNumOperands() > 1 &&
|
|
Begin->getOperand(0).isReg() && !Begin->getOperand(0).getReg()) {
|
|
OpenRanges.clear();
|
|
continue;
|
|
}
|
|
|
|
// If this piece overlaps with any open ranges, truncate them.
|
|
DIExpression DIExpr = Begin->getDebugExpression();
|
|
auto Last = std::remove_if(OpenRanges.begin(), OpenRanges.end(),
|
|
[&](DebugLocEntry::Value R) {
|
|
return piecesOverlap(DIExpr, R.getExpression());
|
|
});
|
|
OpenRanges.erase(Last, OpenRanges.end());
|
|
|
|
const MCSymbol *StartLabel = getLabelBeforeInsn(Begin);
|
|
assert(StartLabel && "Forgot label before DBG_VALUE starting a range!");
|
|
|
|
const MCSymbol *EndLabel;
|
|
if (End != nullptr)
|
|
EndLabel = getLabelAfterInsn(End);
|
|
else if (std::next(I) == Ranges.end())
|
|
EndLabel = FunctionEndSym;
|
|
else
|
|
EndLabel = getLabelBeforeInsn(std::next(I)->first);
|
|
assert(EndLabel && "Forgot label after instruction ending a range!");
|
|
|
|
DEBUG(dbgs() << "DotDebugLoc: " << *Begin << "\n");
|
|
|
|
auto Value = getDebugLocValue(Begin);
|
|
DebugLocEntry Loc(StartLabel, EndLabel, Value);
|
|
bool couldMerge = false;
|
|
|
|
// If this is a piece, it may belong to the current DebugLocEntry.
|
|
if (DIExpr.isBitPiece()) {
|
|
// Add this value to the list of open ranges.
|
|
OpenRanges.push_back(Value);
|
|
|
|
// Attempt to add the piece to the last entry.
|
|
if (!DebugLoc.empty())
|
|
if (DebugLoc.back().MergeValues(Loc))
|
|
couldMerge = true;
|
|
}
|
|
|
|
if (!couldMerge) {
|
|
// Need to add a new DebugLocEntry. Add all values from still
|
|
// valid non-overlapping pieces.
|
|
if (OpenRanges.size())
|
|
Loc.addValues(OpenRanges);
|
|
|
|
DebugLoc.push_back(std::move(Loc));
|
|
}
|
|
|
|
// Attempt to coalesce the ranges of two otherwise identical
|
|
// DebugLocEntries.
|
|
auto CurEntry = DebugLoc.rbegin();
|
|
auto PrevEntry = std::next(CurEntry);
|
|
if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
|
|
DebugLoc.pop_back();
|
|
|
|
DEBUG({
|
|
dbgs() << CurEntry->getValues().size() << " Values:\n";
|
|
for (auto Value : CurEntry->getValues()) {
|
|
Value.getVariable()->dump();
|
|
Value.getExpression()->dump();
|
|
}
|
|
dbgs() << "-----\n";
|
|
});
|
|
}
|
|
}
|
|
|
|
|
|
// Find variables for each lexical scope.
|
|
void
|
|
DwarfDebug::collectVariableInfo(DwarfCompileUnit &TheCU, DISubprogram SP,
|
|
SmallPtrSetImpl<const MDNode *> &Processed) {
|
|
// Grab the variable info that was squirreled away in the MMI side-table.
|
|
collectVariableInfoFromMMITable(Processed);
|
|
|
|
for (const auto &I : DbgValues) {
|
|
DIVariable DV(I.first);
|
|
if (Processed.count(DV))
|
|
continue;
|
|
|
|
// Instruction ranges, specifying where DV is accessible.
|
|
const auto &Ranges = I.second;
|
|
if (Ranges.empty())
|
|
continue;
|
|
|
|
LexicalScope *Scope = nullptr;
|
|
if (MDNode *IA = DV.getInlinedAt())
|
|
Scope = LScopes.findInlinedScope(DV.getContext(), IA);
|
|
else
|
|
Scope = LScopes.findLexicalScope(DV.getContext());
|
|
// If variable scope is not found then skip this variable.
|
|
if (!Scope)
|
|
continue;
|
|
|
|
Processed.insert(DV);
|
|
const MachineInstr *MInsn = Ranges.front().first;
|
|
assert(MInsn->isDebugValue() && "History must begin with debug value");
|
|
ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
|
|
ConcreteVariables.push_back(make_unique<DbgVariable>(MInsn, this));
|
|
DbgVariable *RegVar = ConcreteVariables.back().get();
|
|
InfoHolder.addScopeVariable(Scope, RegVar);
|
|
|
|
// Check if the first DBG_VALUE is valid for the rest of the function.
|
|
if (Ranges.size() == 1 && Ranges.front().second == nullptr)
|
|
continue;
|
|
|
|
// Handle multiple DBG_VALUE instructions describing one variable.
|
|
RegVar->setDotDebugLocOffset(DotDebugLocEntries.size());
|
|
|
|
DotDebugLocEntries.resize(DotDebugLocEntries.size() + 1);
|
|
DebugLocList &LocList = DotDebugLocEntries.back();
|
|
LocList.CU = &TheCU;
|
|
LocList.Label =
|
|
Asm->GetTempSymbol("debug_loc", DotDebugLocEntries.size() - 1);
|
|
|
|
// Build the location list for this variable.
|
|
buildLocationList(LocList.List, Ranges);
|
|
}
|
|
|
|
// Collect info for variables that were optimized out.
|
|
DIArray Variables = SP.getVariables();
|
|
for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) {
|
|
DIVariable DV(Variables.getElement(i));
|
|
assert(DV.isVariable());
|
|
if (!Processed.insert(DV).second)
|
|
continue;
|
|
if (LexicalScope *Scope = LScopes.findLexicalScope(DV.getContext())) {
|
|
ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
|
|
DIExpression NoExpr;
|
|
ConcreteVariables.push_back(make_unique<DbgVariable>(DV, NoExpr, this));
|
|
InfoHolder.addScopeVariable(Scope, ConcreteVariables.back().get());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return Label preceding the instruction.
|
|
MCSymbol *DwarfDebug::getLabelBeforeInsn(const MachineInstr *MI) {
|
|
MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
|
|
assert(Label && "Didn't insert label before instruction");
|
|
return Label;
|
|
}
|
|
|
|
// Return Label immediately following the instruction.
|
|
MCSymbol *DwarfDebug::getLabelAfterInsn(const MachineInstr *MI) {
|
|
return LabelsAfterInsn.lookup(MI);
|
|
}
|
|
|
|
// Process beginning of an instruction.
|
|
void DwarfDebug::beginInstruction(const MachineInstr *MI) {
|
|
assert(CurMI == nullptr);
|
|
CurMI = MI;
|
|
// Check if source location changes, but ignore DBG_VALUE locations.
|
|
if (!MI->isDebugValue()) {
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
if (DL != PrevInstLoc && (!DL.isUnknown() || UnknownLocations)) {
|
|
unsigned Flags = 0;
|
|
PrevInstLoc = DL;
|
|
if (DL == PrologEndLoc) {
|
|
Flags |= DWARF2_FLAG_PROLOGUE_END;
|
|
PrologEndLoc = DebugLoc();
|
|
Flags |= DWARF2_FLAG_IS_STMT;
|
|
}
|
|
if (DL.getLine() !=
|
|
Asm->OutStreamer.getContext().getCurrentDwarfLoc().getLine())
|
|
Flags |= DWARF2_FLAG_IS_STMT;
|
|
|
|
if (!DL.isUnknown()) {
|
|
const MDNode *Scope = DL.getScope(Asm->MF->getFunction()->getContext());
|
|
recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
|
|
} else
|
|
recordSourceLine(0, 0, nullptr, 0);
|
|
}
|
|
}
|
|
|
|
// Insert labels where requested.
|
|
DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
|
|
LabelsBeforeInsn.find(MI);
|
|
|
|
// No label needed.
|
|
if (I == LabelsBeforeInsn.end())
|
|
return;
|
|
|
|
// Label already assigned.
|
|
if (I->second)
|
|
return;
|
|
|
|
if (!PrevLabel) {
|
|
PrevLabel = MMI->getContext().CreateTempSymbol();
|
|
Asm->OutStreamer.EmitLabel(PrevLabel);
|
|
}
|
|
I->second = PrevLabel;
|
|
}
|
|
|
|
// Process end of an instruction.
|
|
void DwarfDebug::endInstruction() {
|
|
assert(CurMI != nullptr);
|
|
// Don't create a new label after DBG_VALUE instructions.
|
|
// They don't generate code.
|
|
if (!CurMI->isDebugValue())
|
|
PrevLabel = nullptr;
|
|
|
|
DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
|
|
LabelsAfterInsn.find(CurMI);
|
|
CurMI = nullptr;
|
|
|
|
// No label needed.
|
|
if (I == LabelsAfterInsn.end())
|
|
return;
|
|
|
|
// Label already assigned.
|
|
if (I->second)
|
|
return;
|
|
|
|
// We need a label after this instruction.
|
|
if (!PrevLabel) {
|
|
PrevLabel = MMI->getContext().CreateTempSymbol();
|
|
Asm->OutStreamer.EmitLabel(PrevLabel);
|
|
}
|
|
I->second = PrevLabel;
|
|
}
|
|
|
|
// Each LexicalScope has first instruction and last instruction to mark
|
|
// beginning and end of a scope respectively. Create an inverse map that list
|
|
// scopes starts (and ends) with an instruction. One instruction may start (or
|
|
// end) multiple scopes. Ignore scopes that are not reachable.
|
|
void DwarfDebug::identifyScopeMarkers() {
|
|
SmallVector<LexicalScope *, 4> WorkList;
|
|
WorkList.push_back(LScopes.getCurrentFunctionScope());
|
|
while (!WorkList.empty()) {
|
|
LexicalScope *S = WorkList.pop_back_val();
|
|
|
|
const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
|
|
if (!Children.empty())
|
|
WorkList.append(Children.begin(), Children.end());
|
|
|
|
if (S->isAbstractScope())
|
|
continue;
|
|
|
|
for (const InsnRange &R : S->getRanges()) {
|
|
assert(R.first && "InsnRange does not have first instruction!");
|
|
assert(R.second && "InsnRange does not have second instruction!");
|
|
requestLabelBeforeInsn(R.first);
|
|
requestLabelAfterInsn(R.second);
|
|
}
|
|
}
|
|
}
|
|
|
|
static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
|
|
// First known non-DBG_VALUE and non-frame setup location marks
|
|
// the beginning of the function body.
|
|
for (const auto &MBB : *MF)
|
|
for (const auto &MI : MBB)
|
|
if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
|
|
!MI.getDebugLoc().isUnknown()) {
|
|
// Did the target forget to set the FrameSetup flag for CFI insns?
|
|
assert(!MI.isCFIInstruction() &&
|
|
"First non-frame-setup instruction is a CFI instruction.");
|
|
return MI.getDebugLoc();
|
|
}
|
|
return DebugLoc();
|
|
}
|
|
|
|
// Gather pre-function debug information. Assumes being called immediately
|
|
// after the function entry point has been emitted.
|
|
void DwarfDebug::beginFunction(const MachineFunction *MF) {
|
|
CurFn = MF;
|
|
|
|
// If there's no debug info for the function we're not going to do anything.
|
|
if (!MMI->hasDebugInfo())
|
|
return;
|
|
|
|
auto DI = FunctionDIs.find(MF->getFunction());
|
|
if (DI == FunctionDIs.end())
|
|
return;
|
|
|
|
// Grab the lexical scopes for the function, if we don't have any of those
|
|
// then we're not going to be able to do anything.
|
|
LScopes.initialize(*MF);
|
|
if (LScopes.empty())
|
|
return;
|
|
|
|
assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
|
|
|
|
// Make sure that each lexical scope will have a begin/end label.
|
|
identifyScopeMarkers();
|
|
|
|
// Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
|
|
// belongs to so that we add to the correct per-cu line table in the
|
|
// non-asm case.
|
|
LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
|
|
// FnScope->getScopeNode() and DI->second should represent the same function,
|
|
// though they may not be the same MDNode due to inline functions merged in
|
|
// LTO where the debug info metadata still differs (either due to distinct
|
|
// written differences - two versions of a linkonce_odr function
|
|
// written/copied into two separate files, or some sub-optimal metadata that
|
|
// isn't structurally identical (see: file path/name info from clang, which
|
|
// includes the directory of the cpp file being built, even when the file name
|
|
// is absolute (such as an <> lookup header)))
|
|
DwarfCompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode());
|
|
assert(TheCU && "Unable to find compile unit!");
|
|
if (Asm->OutStreamer.hasRawTextSupport())
|
|
// Use a single line table if we are generating assembly.
|
|
Asm->OutStreamer.getContext().setDwarfCompileUnitID(0);
|
|
else
|
|
Asm->OutStreamer.getContext().setDwarfCompileUnitID(TheCU->getUniqueID());
|
|
|
|
// Emit a label for the function so that we have a beginning address.
|
|
FunctionBeginSym = Asm->GetTempSymbol("func_begin", Asm->getFunctionNumber());
|
|
// Assumes in correct section after the entry point.
|
|
Asm->OutStreamer.EmitLabel(FunctionBeginSym);
|
|
|
|
// Calculate history for local variables.
|
|
calculateDbgValueHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(),
|
|
DbgValues);
|
|
|
|
// Request labels for the full history.
|
|
for (const auto &I : DbgValues) {
|
|
const auto &Ranges = I.second;
|
|
if (Ranges.empty())
|
|
continue;
|
|
|
|
// The first mention of a function argument gets the FunctionBeginSym
|
|
// label, so arguments are visible when breaking at function entry.
|
|
DIVariable DIVar(Ranges.front().first->getDebugVariable());
|
|
if (DIVar.isVariable() && DIVar.getTag() == dwarf::DW_TAG_arg_variable &&
|
|
getDISubprogram(DIVar.getContext()).describes(MF->getFunction())) {
|
|
LabelsBeforeInsn[Ranges.front().first] = FunctionBeginSym;
|
|
if (Ranges.front().first->getDebugExpression().isBitPiece()) {
|
|
// Mark all non-overlapping initial pieces.
|
|
for (auto I = Ranges.begin(); I != Ranges.end(); ++I) {
|
|
DIExpression Piece = I->first->getDebugExpression();
|
|
if (std::all_of(Ranges.begin(), I,
|
|
[&](DbgValueHistoryMap::InstrRange Pred) {
|
|
return !piecesOverlap(Piece, Pred.first->getDebugExpression());
|
|
}))
|
|
LabelsBeforeInsn[I->first] = FunctionBeginSym;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const auto &Range : Ranges) {
|
|
requestLabelBeforeInsn(Range.first);
|
|
if (Range.second)
|
|
requestLabelAfterInsn(Range.second);
|
|
}
|
|
}
|
|
|
|
PrevInstLoc = DebugLoc();
|
|
PrevLabel = FunctionBeginSym;
|
|
|
|
// Record beginning of function.
|
|
PrologEndLoc = findPrologueEndLoc(MF);
|
|
if (!PrologEndLoc.isUnknown()) {
|
|
DebugLoc FnStartDL =
|
|
PrologEndLoc.getFnDebugLoc(MF->getFunction()->getContext());
|
|
|
|
// We'd like to list the prologue as "not statements" but GDB behaves
|
|
// poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
|
|
recordSourceLine(FnStartDL.getLine(), FnStartDL.getCol(),
|
|
FnStartDL.getScope(MF->getFunction()->getContext()),
|
|
DWARF2_FLAG_IS_STMT);
|
|
}
|
|
}
|
|
|
|
// Gather and emit post-function debug information.
|
|
void DwarfDebug::endFunction(const MachineFunction *MF) {
|
|
assert(CurFn == MF &&
|
|
"endFunction should be called with the same function as beginFunction");
|
|
|
|
if (!MMI->hasDebugInfo() || LScopes.empty() ||
|
|
!FunctionDIs.count(MF->getFunction())) {
|
|
// If we don't have a lexical scope for this function then there will
|
|
// be a hole in the range information. Keep note of this by setting the
|
|
// previously used section to nullptr.
|
|
PrevCU = nullptr;
|
|
CurFn = nullptr;
|
|
return;
|
|
}
|
|
|
|
// Define end label for subprogram.
|
|
FunctionEndSym = Asm->GetTempSymbol("func_end", Asm->getFunctionNumber());
|
|
// Assumes in correct section after the entry point.
|
|
Asm->OutStreamer.EmitLabel(FunctionEndSym);
|
|
|
|
// Set DwarfDwarfCompileUnitID in MCContext to default value.
|
|
Asm->OutStreamer.getContext().setDwarfCompileUnitID(0);
|
|
|
|
LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
|
|
DISubprogram SP(FnScope->getScopeNode());
|
|
DwarfCompileUnit &TheCU = *SPMap.lookup(SP);
|
|
|
|
SmallPtrSet<const MDNode *, 16> ProcessedVars;
|
|
collectVariableInfo(TheCU, SP, ProcessedVars);
|
|
|
|
// Add the range of this function to the list of ranges for the CU.
|
|
TheCU.addRange(RangeSpan(FunctionBeginSym, FunctionEndSym));
|
|
|
|
// Under -gmlt, skip building the subprogram if there are no inlined
|
|
// subroutines inside it.
|
|
if (TheCU.getCUNode().getEmissionKind() == DIBuilder::LineTablesOnly &&
|
|
LScopes.getAbstractScopesList().empty() && !IsDarwin) {
|
|
assert(InfoHolder.getScopeVariables().empty());
|
|
assert(DbgValues.empty());
|
|
// FIXME: This wouldn't be true in LTO with a -g (with inlining) CU followed
|
|
// by a -gmlt CU. Add a test and remove this assertion.
|
|
assert(AbstractVariables.empty());
|
|
LabelsBeforeInsn.clear();
|
|
LabelsAfterInsn.clear();
|
|
PrevLabel = nullptr;
|
|
CurFn = nullptr;
|
|
return;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
|
|
#endif
|
|
// Construct abstract scopes.
|
|
for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
|
|
DISubprogram SP(AScope->getScopeNode());
|
|
assert(SP.isSubprogram());
|
|
// Collect info for variables that were optimized out.
|
|
DIArray Variables = SP.getVariables();
|
|
for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) {
|
|
DIVariable DV(Variables.getElement(i));
|
|
assert(DV && DV.isVariable());
|
|
if (!ProcessedVars.insert(DV).second)
|
|
continue;
|
|
ensureAbstractVariableIsCreated(DV, DV.getContext());
|
|
assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
|
|
&& "ensureAbstractVariableIsCreated inserted abstract scopes");
|
|
}
|
|
constructAbstractSubprogramScopeDIE(AScope);
|
|
}
|
|
|
|
TheCU.constructSubprogramScopeDIE(FnScope);
|
|
if (auto *SkelCU = TheCU.getSkeleton())
|
|
if (!LScopes.getAbstractScopesList().empty())
|
|
SkelCU->constructSubprogramScopeDIE(FnScope);
|
|
|
|
// Clear debug info
|
|
// Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
|
|
// DbgVariables except those that are also in AbstractVariables (since they
|
|
// can be used cross-function)
|
|
InfoHolder.getScopeVariables().clear();
|
|
DbgValues.clear();
|
|
LabelsBeforeInsn.clear();
|
|
LabelsAfterInsn.clear();
|
|
PrevLabel = nullptr;
|
|
CurFn = nullptr;
|
|
}
|
|
|
|
// Register a source line with debug info. Returns the unique label that was
|
|
// emitted and which provides correspondence to the source line list.
|
|
void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
|
|
unsigned Flags) {
|
|
StringRef Fn;
|
|
StringRef Dir;
|
|
unsigned Src = 1;
|
|
unsigned Discriminator = 0;
|
|
if (DIScope Scope = DIScope(S)) {
|
|
assert(Scope.isScope());
|
|
Fn = Scope.getFilename();
|
|
Dir = Scope.getDirectory();
|
|
if (Scope.isLexicalBlockFile())
|
|
Discriminator = DILexicalBlockFile(S).getDiscriminator();
|
|
|
|
unsigned CUID = Asm->OutStreamer.getContext().getDwarfCompileUnitID();
|
|
Src = static_cast<DwarfCompileUnit &>(*InfoHolder.getUnits()[CUID])
|
|
.getOrCreateSourceID(Fn, Dir);
|
|
}
|
|
Asm->OutStreamer.EmitDwarfLocDirective(Src, Line, Col, Flags, 0,
|
|
Discriminator, Fn);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Emit Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Emit initial Dwarf sections with a label at the start of each one.
|
|
void DwarfDebug::emitSectionLabels() {
|
|
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
|
|
|
|
// Dwarf sections base addresses.
|
|
DwarfInfoSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfInfoSection(), "section_info");
|
|
if (useSplitDwarf()) {
|
|
DwarfInfoDWOSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfInfoDWOSection(), "section_info_dwo");
|
|
DwarfTypesDWOSectionSym = emitSectionSym(
|
|
Asm, TLOF.getDwarfTypesDWOSection(), "section_types_dwo");
|
|
}
|
|
DwarfAbbrevSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfAbbrevSection(), "section_abbrev");
|
|
if (useSplitDwarf())
|
|
DwarfAbbrevDWOSectionSym = emitSectionSym(
|
|
Asm, TLOF.getDwarfAbbrevDWOSection(), "section_abbrev_dwo");
|
|
if (GenerateARangeSection)
|
|
emitSectionSym(Asm, TLOF.getDwarfARangesSection());
|
|
|
|
DwarfLineSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfLineSection(), "section_line");
|
|
if (GenerateGnuPubSections) {
|
|
DwarfGnuPubNamesSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfGnuPubNamesSection());
|
|
DwarfGnuPubTypesSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfGnuPubTypesSection());
|
|
} else if (HasDwarfPubSections) {
|
|
emitSectionSym(Asm, TLOF.getDwarfPubNamesSection());
|
|
emitSectionSym(Asm, TLOF.getDwarfPubTypesSection());
|
|
}
|
|
|
|
DwarfStrSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfStrSection(), "info_string");
|
|
if (useSplitDwarf()) {
|
|
DwarfStrDWOSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfStrDWOSection(), "skel_string");
|
|
DwarfAddrSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfAddrSection(), "addr_sec");
|
|
DwarfDebugLocSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfLocDWOSection(), "skel_loc");
|
|
} else
|
|
DwarfDebugLocSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfLocSection(), "section_debug_loc");
|
|
DwarfDebugRangeSectionSym =
|
|
emitSectionSym(Asm, TLOF.getDwarfRangesSection(), "debug_range");
|
|
}
|
|
|
|
// Recursively emits a debug information entry.
|
|
void DwarfDebug::emitDIE(DIE &Die) {
|
|
// Get the abbreviation for this DIE.
|
|
const DIEAbbrev &Abbrev = Die.getAbbrev();
|
|
|
|
// Emit the code (index) for the abbreviation.
|
|
if (Asm->isVerbose())
|
|
Asm->OutStreamer.AddComment("Abbrev [" + Twine(Abbrev.getNumber()) +
|
|
"] 0x" + Twine::utohexstr(Die.getOffset()) +
|
|
":0x" + Twine::utohexstr(Die.getSize()) + " " +
|
|
dwarf::TagString(Abbrev.getTag()));
|
|
Asm->EmitULEB128(Abbrev.getNumber());
|
|
|
|
const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
|
|
const SmallVectorImpl<DIEAbbrevData> &AbbrevData = Abbrev.getData();
|
|
|
|
// Emit the DIE attribute values.
|
|
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
|
|
dwarf::Attribute Attr = AbbrevData[i].getAttribute();
|
|
dwarf::Form Form = AbbrevData[i].getForm();
|
|
assert(Form && "Too many attributes for DIE (check abbreviation)");
|
|
|
|
if (Asm->isVerbose()) {
|
|
Asm->OutStreamer.AddComment(dwarf::AttributeString(Attr));
|
|
if (Attr == dwarf::DW_AT_accessibility)
|
|
Asm->OutStreamer.AddComment(dwarf::AccessibilityString(
|
|
cast<DIEInteger>(Values[i])->getValue()));
|
|
}
|
|
|
|
// Emit an attribute using the defined form.
|
|
Values[i]->EmitValue(Asm, Form);
|
|
}
|
|
|
|
// Emit the DIE children if any.
|
|
if (Abbrev.hasChildren()) {
|
|
for (auto &Child : Die.getChildren())
|
|
emitDIE(*Child);
|
|
|
|
Asm->OutStreamer.AddComment("End Of Children Mark");
|
|
Asm->EmitInt8(0);
|
|
}
|
|
}
|
|
|
|
// Emit the debug info section.
|
|
void DwarfDebug::emitDebugInfo() {
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
|
|
Holder.emitUnits(DwarfAbbrevSectionSym);
|
|
}
|
|
|
|
// Emit the abbreviation section.
|
|
void DwarfDebug::emitAbbreviations() {
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
|
|
Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
|
|
}
|
|
|
|
// Emit the last address of the section and the end of the line matrix.
|
|
void DwarfDebug::emitEndOfLineMatrix(unsigned SectionEnd) {
|
|
// Define last address of section.
|
|
Asm->OutStreamer.AddComment("Extended Op");
|
|
Asm->EmitInt8(0);
|
|
|
|
Asm->OutStreamer.AddComment("Op size");
|
|
Asm->EmitInt8(Asm->getDataLayout().getPointerSize() + 1);
|
|
Asm->OutStreamer.AddComment("DW_LNE_set_address");
|
|
Asm->EmitInt8(dwarf::DW_LNE_set_address);
|
|
|
|
Asm->OutStreamer.AddComment("Section end label");
|
|
|
|
Asm->OutStreamer.EmitSymbolValue(
|
|
Asm->GetTempSymbol("section_end", SectionEnd),
|
|
Asm->getDataLayout().getPointerSize());
|
|
|
|
// Mark end of matrix.
|
|
Asm->OutStreamer.AddComment("DW_LNE_end_sequence");
|
|
Asm->EmitInt8(0);
|
|
Asm->EmitInt8(1);
|
|
Asm->EmitInt8(1);
|
|
}
|
|
|
|
void DwarfDebug::emitAccel(DwarfAccelTable &Accel, const MCSection *Section,
|
|
StringRef TableName, StringRef SymName) {
|
|
Accel.FinalizeTable(Asm, TableName);
|
|
Asm->OutStreamer.SwitchSection(Section);
|
|
auto *SectionBegin = Asm->GetTempSymbol(SymName);
|
|
Asm->OutStreamer.EmitLabel(SectionBegin);
|
|
|
|
// Emit the full data.
|
|
Accel.Emit(Asm, SectionBegin, this, DwarfStrSectionSym);
|
|
}
|
|
|
|
// Emit visible names into a hashed accelerator table section.
|
|
void DwarfDebug::emitAccelNames() {
|
|
emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
|
|
"Names", "names_begin");
|
|
}
|
|
|
|
// Emit objective C classes and categories into a hashed accelerator table
|
|
// section.
|
|
void DwarfDebug::emitAccelObjC() {
|
|
emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
|
|
"ObjC", "objc_begin");
|
|
}
|
|
|
|
// Emit namespace dies into a hashed accelerator table.
|
|
void DwarfDebug::emitAccelNamespaces() {
|
|
emitAccel(AccelNamespace,
|
|
Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
|
|
"namespac", "namespac_begin");
|
|
}
|
|
|
|
// Emit type dies into a hashed accelerator table.
|
|
void DwarfDebug::emitAccelTypes() {
|
|
emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
|
|
"types", "types_begin");
|
|
}
|
|
|
|
// Public name handling.
|
|
// The format for the various pubnames:
|
|
//
|
|
// dwarf pubnames - offset/name pairs where the offset is the offset into the CU
|
|
// for the DIE that is named.
|
|
//
|
|
// gnu pubnames - offset/index value/name tuples where the offset is the offset
|
|
// into the CU and the index value is computed according to the type of value
|
|
// for the DIE that is named.
|
|
//
|
|
// For type units the offset is the offset of the skeleton DIE. For split dwarf
|
|
// it's the offset within the debug_info/debug_types dwo section, however, the
|
|
// reference in the pubname header doesn't change.
|
|
|
|
/// computeIndexValue - Compute the gdb index value for the DIE and CU.
|
|
static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
|
|
const DIE *Die) {
|
|
dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
|
|
|
|
// We could have a specification DIE that has our most of our knowledge,
|
|
// look for that now.
|
|
DIEValue *SpecVal = Die->findAttribute(dwarf::DW_AT_specification);
|
|
if (SpecVal) {
|
|
DIE &SpecDIE = cast<DIEEntry>(SpecVal)->getEntry();
|
|
if (SpecDIE.findAttribute(dwarf::DW_AT_external))
|
|
Linkage = dwarf::GIEL_EXTERNAL;
|
|
} else if (Die->findAttribute(dwarf::DW_AT_external))
|
|
Linkage = dwarf::GIEL_EXTERNAL;
|
|
|
|
switch (Die->getTag()) {
|
|
case dwarf::DW_TAG_class_type:
|
|
case dwarf::DW_TAG_structure_type:
|
|
case dwarf::DW_TAG_union_type:
|
|
case dwarf::DW_TAG_enumeration_type:
|
|
return dwarf::PubIndexEntryDescriptor(
|
|
dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus
|
|
? dwarf::GIEL_STATIC
|
|
: dwarf::GIEL_EXTERNAL);
|
|
case dwarf::DW_TAG_typedef:
|
|
case dwarf::DW_TAG_base_type:
|
|
case dwarf::DW_TAG_subrange_type:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
|
|
case dwarf::DW_TAG_namespace:
|
|
return dwarf::GIEK_TYPE;
|
|
case dwarf::DW_TAG_subprogram:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
|
|
case dwarf::DW_TAG_variable:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
|
|
case dwarf::DW_TAG_enumerator:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
|
|
dwarf::GIEL_STATIC);
|
|
default:
|
|
return dwarf::GIEK_NONE;
|
|
}
|
|
}
|
|
|
|
/// emitDebugPubNames - Emit visible names into a debug pubnames section.
|
|
///
|
|
void DwarfDebug::emitDebugPubNames(bool GnuStyle) {
|
|
const MCSection *PSec =
|
|
GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
|
|
: Asm->getObjFileLowering().getDwarfPubNamesSection();
|
|
|
|
emitDebugPubSection(GnuStyle, PSec, "Names",
|
|
&DwarfCompileUnit::getGlobalNames);
|
|
}
|
|
|
|
void DwarfDebug::emitDebugPubSection(
|
|
bool GnuStyle, const MCSection *PSec, StringRef Name,
|
|
const StringMap<const DIE *> &(DwarfCompileUnit::*Accessor)() const) {
|
|
for (const auto &NU : CUMap) {
|
|
DwarfCompileUnit *TheU = NU.second;
|
|
|
|
const auto &Globals = (TheU->*Accessor)();
|
|
|
|
if (Globals.empty())
|
|
continue;
|
|
|
|
if (auto *Skeleton = TheU->getSkeleton())
|
|
TheU = Skeleton;
|
|
unsigned ID = TheU->getUniqueID();
|
|
|
|
// Start the dwarf pubnames section.
|
|
Asm->OutStreamer.SwitchSection(PSec);
|
|
|
|
// Emit the header.
|
|
Asm->OutStreamer.AddComment("Length of Public " + Name + " Info");
|
|
MCSymbol *BeginLabel = Asm->GetTempSymbol("pub" + Name + "_begin", ID);
|
|
MCSymbol *EndLabel = Asm->GetTempSymbol("pub" + Name + "_end", ID);
|
|
Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
|
|
|
|
Asm->OutStreamer.EmitLabel(BeginLabel);
|
|
|
|
Asm->OutStreamer.AddComment("DWARF Version");
|
|
Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION);
|
|
|
|
Asm->OutStreamer.AddComment("Offset of Compilation Unit Info");
|
|
Asm->EmitSectionOffset(TheU->getLabelBegin(), TheU->getSectionSym());
|
|
|
|
Asm->OutStreamer.AddComment("Compilation Unit Length");
|
|
Asm->EmitInt32(TheU->getLength());
|
|
|
|
// Emit the pubnames for this compilation unit.
|
|
for (const auto &GI : Globals) {
|
|
const char *Name = GI.getKeyData();
|
|
const DIE *Entity = GI.second;
|
|
|
|
Asm->OutStreamer.AddComment("DIE offset");
|
|
Asm->EmitInt32(Entity->getOffset());
|
|
|
|
if (GnuStyle) {
|
|
dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
|
|
Asm->OutStreamer.AddComment(
|
|
Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " +
|
|
dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
|
|
Asm->EmitInt8(Desc.toBits());
|
|
}
|
|
|
|
Asm->OutStreamer.AddComment("External Name");
|
|
Asm->OutStreamer.EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
|
|
}
|
|
|
|
Asm->OutStreamer.AddComment("End Mark");
|
|
Asm->EmitInt32(0);
|
|
Asm->OutStreamer.EmitLabel(EndLabel);
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::emitDebugPubTypes(bool GnuStyle) {
|
|
const MCSection *PSec =
|
|
GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
|
|
: Asm->getObjFileLowering().getDwarfPubTypesSection();
|
|
|
|
emitDebugPubSection(GnuStyle, PSec, "Types",
|
|
&DwarfCompileUnit::getGlobalTypes);
|
|
}
|
|
|
|
// Emit visible names into a debug str section.
|
|
void DwarfDebug::emitDebugStr() {
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection());
|
|
}
|
|
|
|
/// Emits an optimal (=sorted) sequence of DW_OP_pieces.
|
|
void DwarfDebug::emitLocPieces(ByteStreamer &Streamer,
|
|
const DITypeIdentifierMap &Map,
|
|
ArrayRef<DebugLocEntry::Value> Values) {
|
|
assert(std::all_of(Values.begin(), Values.end(), [](DebugLocEntry::Value P) {
|
|
return P.isBitPiece();
|
|
}) && "all values are expected to be pieces");
|
|
assert(std::is_sorted(Values.begin(), Values.end()) &&
|
|
"pieces are expected to be sorted");
|
|
|
|
unsigned Offset = 0;
|
|
for (auto Piece : Values) {
|
|
DIExpression Expr = Piece.getExpression();
|
|
unsigned PieceOffset = Expr.getBitPieceOffset();
|
|
unsigned PieceSize = Expr.getBitPieceSize();
|
|
assert(Offset <= PieceOffset && "overlapping or duplicate pieces");
|
|
if (Offset < PieceOffset) {
|
|
// The DWARF spec seriously mandates pieces with no locations for gaps.
|
|
Asm->EmitDwarfOpPiece(Streamer, PieceOffset-Offset);
|
|
Offset += PieceOffset-Offset;
|
|
}
|
|
Offset += PieceSize;
|
|
|
|
#ifndef NDEBUG
|
|
DIVariable Var = Piece.getVariable();
|
|
unsigned VarSize = Var.getSizeInBits(Map);
|
|
assert(PieceSize+PieceOffset <= VarSize
|
|
&& "piece is larger than or outside of variable");
|
|
assert(PieceSize != VarSize
|
|
&& "piece covers entire variable");
|
|
#endif
|
|
emitDebugLocValue(Streamer, Piece, PieceOffset);
|
|
}
|
|
}
|
|
|
|
|
|
void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
|
|
const DebugLocEntry &Entry) {
|
|
const DebugLocEntry::Value Value = Entry.getValues()[0];
|
|
if (Value.isBitPiece())
|
|
// Emit all pieces that belong to the same variable and range.
|
|
return emitLocPieces(Streamer, TypeIdentifierMap, Entry.getValues());
|
|
|
|
assert(Entry.getValues().size() == 1 && "only pieces may have >1 value");
|
|
emitDebugLocValue(Streamer, Value);
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLocValue(ByteStreamer &Streamer,
|
|
const DebugLocEntry::Value &Value,
|
|
unsigned PieceOffsetInBits) {
|
|
DIVariable DV = Value.getVariable();
|
|
DebugLocDwarfExpression DwarfExpr(*Asm, Streamer);
|
|
|
|
// Regular entry.
|
|
if (Value.isInt()) {
|
|
DIBasicType BTy(resolve(DV.getType()));
|
|
if (BTy.Verify() && (BTy.getEncoding() == dwarf::DW_ATE_signed ||
|
|
BTy.getEncoding() == dwarf::DW_ATE_signed_char))
|
|
DwarfExpr.AddSignedConstant(Value.getInt());
|
|
else
|
|
DwarfExpr.AddUnsignedConstant(Value.getInt());
|
|
} else if (Value.isLocation()) {
|
|
MachineLocation Loc = Value.getLoc();
|
|
DIExpression Expr = Value.getExpression();
|
|
if (!Expr || (Expr.getNumElements() == 0))
|
|
// Regular entry.
|
|
Asm->EmitDwarfRegOp(Streamer, Loc);
|
|
else {
|
|
// Complex address entry.
|
|
if (Loc.getOffset()) {
|
|
DwarfExpr.AddMachineRegIndirect(Loc.getReg(), Loc.getOffset());
|
|
DwarfExpr.AddExpression(Expr.begin(), Expr.end(), PieceOffsetInBits);
|
|
} else
|
|
DwarfExpr.AddMachineRegExpression(Expr, Loc.getReg(),
|
|
PieceOffsetInBits);
|
|
}
|
|
}
|
|
// else ... ignore constant fp. There is not any good way to
|
|
// to represent them here in dwarf.
|
|
// FIXME: ^
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLocEntryLocation(const DebugLocEntry &Entry) {
|
|
Asm->OutStreamer.AddComment("Loc expr size");
|
|
MCSymbol *begin = Asm->OutStreamer.getContext().CreateTempSymbol();
|
|
MCSymbol *end = Asm->OutStreamer.getContext().CreateTempSymbol();
|
|
Asm->EmitLabelDifference(end, begin, 2);
|
|
Asm->OutStreamer.EmitLabel(begin);
|
|
// Emit the entry.
|
|
APByteStreamer Streamer(*Asm);
|
|
emitDebugLocEntry(Streamer, Entry);
|
|
// Close the range.
|
|
Asm->OutStreamer.EmitLabel(end);
|
|
}
|
|
|
|
// Emit locations into the debug loc section.
|
|
void DwarfDebug::emitDebugLoc() {
|
|
// Start the dwarf loc section.
|
|
Asm->OutStreamer.SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfLocSection());
|
|
unsigned char Size = Asm->getDataLayout().getPointerSize();
|
|
for (const auto &DebugLoc : DotDebugLocEntries) {
|
|
Asm->OutStreamer.EmitLabel(DebugLoc.Label);
|
|
const DwarfCompileUnit *CU = DebugLoc.CU;
|
|
for (const auto &Entry : DebugLoc.List) {
|
|
// Set up the range. This range is relative to the entry point of the
|
|
// compile unit. This is a hard coded 0 for low_pc when we're emitting
|
|
// ranges, or the DW_AT_low_pc on the compile unit otherwise.
|
|
if (auto *Base = CU->getBaseAddress()) {
|
|
Asm->EmitLabelDifference(Entry.getBeginSym(), Base, Size);
|
|
Asm->EmitLabelDifference(Entry.getEndSym(), Base, Size);
|
|
} else {
|
|
Asm->OutStreamer.EmitSymbolValue(Entry.getBeginSym(), Size);
|
|
Asm->OutStreamer.EmitSymbolValue(Entry.getEndSym(), Size);
|
|
}
|
|
|
|
emitDebugLocEntryLocation(Entry);
|
|
}
|
|
Asm->OutStreamer.EmitIntValue(0, Size);
|
|
Asm->OutStreamer.EmitIntValue(0, Size);
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLocDWO() {
|
|
Asm->OutStreamer.SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfLocDWOSection());
|
|
for (const auto &DebugLoc : DotDebugLocEntries) {
|
|
Asm->OutStreamer.EmitLabel(DebugLoc.Label);
|
|
for (const auto &Entry : DebugLoc.List) {
|
|
// Just always use start_length for now - at least that's one address
|
|
// rather than two. We could get fancier and try to, say, reuse an
|
|
// address we know we've emitted elsewhere (the start of the function?
|
|
// The start of the CU or CU subrange that encloses this range?)
|
|
Asm->EmitInt8(dwarf::DW_LLE_start_length_entry);
|
|
unsigned idx = AddrPool.getIndex(Entry.getBeginSym());
|
|
Asm->EmitULEB128(idx);
|
|
Asm->EmitLabelDifference(Entry.getEndSym(), Entry.getBeginSym(), 4);
|
|
|
|
emitDebugLocEntryLocation(Entry);
|
|
}
|
|
Asm->EmitInt8(dwarf::DW_LLE_end_of_list_entry);
|
|
}
|
|
}
|
|
|
|
struct ArangeSpan {
|
|
const MCSymbol *Start, *End;
|
|
};
|
|
|
|
// Emit a debug aranges section, containing a CU lookup for any
|
|
// address we can tie back to a CU.
|
|
void DwarfDebug::emitDebugARanges() {
|
|
// Start the dwarf aranges section.
|
|
Asm->OutStreamer.SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfARangesSection());
|
|
|
|
typedef DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> SpansType;
|
|
|
|
SpansType Spans;
|
|
|
|
// Build a list of sections used.
|
|
std::vector<const MCSection *> Sections;
|
|
for (const auto &it : SectionMap) {
|
|
const MCSection *Section = it.first;
|
|
Sections.push_back(Section);
|
|
}
|
|
|
|
// Sort the sections into order.
|
|
// This is only done to ensure consistent output order across different runs.
|
|
std::sort(Sections.begin(), Sections.end(), SectionSort);
|
|
|
|
// Build a set of address spans, sorted by CU.
|
|
for (const MCSection *Section : Sections) {
|
|
SmallVector<SymbolCU, 8> &List = SectionMap[Section];
|
|
if (List.size() < 2)
|
|
continue;
|
|
|
|
// If we have no section (e.g. common), just write out
|
|
// individual spans for each symbol.
|
|
if (!Section) {
|
|
for (const SymbolCU &Cur : List) {
|
|
ArangeSpan Span;
|
|
Span.Start = Cur.Sym;
|
|
Span.End = nullptr;
|
|
if (Cur.CU)
|
|
Spans[Cur.CU].push_back(Span);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Sort the symbols by offset within the section.
|
|
std::sort(List.begin(), List.end(),
|
|
[&](const SymbolCU &A, const SymbolCU &B) {
|
|
unsigned IA = A.Sym ? Asm->OutStreamer.GetSymbolOrder(A.Sym) : 0;
|
|
unsigned IB = B.Sym ? Asm->OutStreamer.GetSymbolOrder(B.Sym) : 0;
|
|
|
|
// Symbols with no order assigned should be placed at the end.
|
|
// (e.g. section end labels)
|
|
if (IA == 0)
|
|
return false;
|
|
if (IB == 0)
|
|
return true;
|
|
return IA < IB;
|
|
});
|
|
|
|
// Build spans between each label.
|
|
const MCSymbol *StartSym = List[0].Sym;
|
|
for (size_t n = 1, e = List.size(); n < e; n++) {
|
|
const SymbolCU &Prev = List[n - 1];
|
|
const SymbolCU &Cur = List[n];
|
|
|
|
// Try and build the longest span we can within the same CU.
|
|
if (Cur.CU != Prev.CU) {
|
|
ArangeSpan Span;
|
|
Span.Start = StartSym;
|
|
Span.End = Cur.Sym;
|
|
Spans[Prev.CU].push_back(Span);
|
|
StartSym = Cur.Sym;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned PtrSize = Asm->getDataLayout().getPointerSize();
|
|
|
|
// Build a list of CUs used.
|
|
std::vector<DwarfCompileUnit *> CUs;
|
|
for (const auto &it : Spans) {
|
|
DwarfCompileUnit *CU = it.first;
|
|
CUs.push_back(CU);
|
|
}
|
|
|
|
// Sort the CU list (again, to ensure consistent output order).
|
|
std::sort(CUs.begin(), CUs.end(), [](const DwarfUnit *A, const DwarfUnit *B) {
|
|
return A->getUniqueID() < B->getUniqueID();
|
|
});
|
|
|
|
// Emit an arange table for each CU we used.
|
|
for (DwarfCompileUnit *CU : CUs) {
|
|
std::vector<ArangeSpan> &List = Spans[CU];
|
|
|
|
// Describe the skeleton CU's offset and length, not the dwo file's.
|
|
if (auto *Skel = CU->getSkeleton())
|
|
CU = Skel;
|
|
|
|
// Emit size of content not including length itself.
|
|
unsigned ContentSize =
|
|
sizeof(int16_t) + // DWARF ARange version number
|
|
sizeof(int32_t) + // Offset of CU in the .debug_info section
|
|
sizeof(int8_t) + // Pointer Size (in bytes)
|
|
sizeof(int8_t); // Segment Size (in bytes)
|
|
|
|
unsigned TupleSize = PtrSize * 2;
|
|
|
|
// 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
|
|
unsigned Padding =
|
|
OffsetToAlignment(sizeof(int32_t) + ContentSize, TupleSize);
|
|
|
|
ContentSize += Padding;
|
|
ContentSize += (List.size() + 1) * TupleSize;
|
|
|
|
// For each compile unit, write the list of spans it covers.
|
|
Asm->OutStreamer.AddComment("Length of ARange Set");
|
|
Asm->EmitInt32(ContentSize);
|
|
Asm->OutStreamer.AddComment("DWARF Arange version number");
|
|
Asm->EmitInt16(dwarf::DW_ARANGES_VERSION);
|
|
Asm->OutStreamer.AddComment("Offset Into Debug Info Section");
|
|
Asm->EmitSectionOffset(CU->getLabelBegin(), CU->getSectionSym());
|
|
Asm->OutStreamer.AddComment("Address Size (in bytes)");
|
|
Asm->EmitInt8(PtrSize);
|
|
Asm->OutStreamer.AddComment("Segment Size (in bytes)");
|
|
Asm->EmitInt8(0);
|
|
|
|
Asm->OutStreamer.EmitFill(Padding, 0xff);
|
|
|
|
for (const ArangeSpan &Span : List) {
|
|
Asm->EmitLabelReference(Span.Start, PtrSize);
|
|
|
|
// Calculate the size as being from the span start to it's end.
|
|
if (Span.End) {
|
|
Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
|
|
} else {
|
|
// For symbols without an end marker (e.g. common), we
|
|
// write a single arange entry containing just that one symbol.
|
|
uint64_t Size = SymSize[Span.Start];
|
|
if (Size == 0)
|
|
Size = 1;
|
|
|
|
Asm->OutStreamer.EmitIntValue(Size, PtrSize);
|
|
}
|
|
}
|
|
|
|
Asm->OutStreamer.AddComment("ARange terminator");
|
|
Asm->OutStreamer.EmitIntValue(0, PtrSize);
|
|
Asm->OutStreamer.EmitIntValue(0, PtrSize);
|
|
}
|
|
}
|
|
|
|
// Emit visible names into a debug ranges section.
|
|
void DwarfDebug::emitDebugRanges() {
|
|
// Start the dwarf ranges section.
|
|
Asm->OutStreamer.SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfRangesSection());
|
|
|
|
// Size for our labels.
|
|
unsigned char Size = Asm->getDataLayout().getPointerSize();
|
|
|
|
// Grab the specific ranges for the compile units in the module.
|
|
for (const auto &I : CUMap) {
|
|
DwarfCompileUnit *TheCU = I.second;
|
|
|
|
if (auto *Skel = TheCU->getSkeleton())
|
|
TheCU = Skel;
|
|
|
|
// Iterate over the misc ranges for the compile units in the module.
|
|
for (const RangeSpanList &List : TheCU->getRangeLists()) {
|
|
// Emit our symbol so we can find the beginning of the range.
|
|
Asm->OutStreamer.EmitLabel(List.getSym());
|
|
|
|
for (const RangeSpan &Range : List.getRanges()) {
|
|
const MCSymbol *Begin = Range.getStart();
|
|
const MCSymbol *End = Range.getEnd();
|
|
assert(Begin && "Range without a begin symbol?");
|
|
assert(End && "Range without an end symbol?");
|
|
if (auto *Base = TheCU->getBaseAddress()) {
|
|
Asm->EmitLabelDifference(Begin, Base, Size);
|
|
Asm->EmitLabelDifference(End, Base, Size);
|
|
} else {
|
|
Asm->OutStreamer.EmitSymbolValue(Begin, Size);
|
|
Asm->OutStreamer.EmitSymbolValue(End, Size);
|
|
}
|
|
}
|
|
|
|
// And terminate the list with two 0 values.
|
|
Asm->OutStreamer.EmitIntValue(0, Size);
|
|
Asm->OutStreamer.EmitIntValue(0, Size);
|
|
}
|
|
}
|
|
}
|
|
|
|
// DWARF5 Experimental Separate Dwarf emitters.
|
|
|
|
void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
|
|
std::unique_ptr<DwarfUnit> NewU) {
|
|
NewU->addString(Die, dwarf::DW_AT_GNU_dwo_name,
|
|
U.getCUNode().getSplitDebugFilename());
|
|
|
|
if (!CompilationDir.empty())
|
|
NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
|
|
|
|
addGnuPubAttributes(*NewU, Die);
|
|
|
|
SkeletonHolder.addUnit(std::move(NewU));
|
|
}
|
|
|
|
// This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list,
|
|
// DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id,
|
|
// DW_AT_addr_base, DW_AT_ranges_base.
|
|
DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
|
|
|
|
auto OwnedUnit = make_unique<DwarfCompileUnit>(
|
|
CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder);
|
|
DwarfCompileUnit &NewCU = *OwnedUnit;
|
|
NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection(),
|
|
DwarfInfoSectionSym);
|
|
|
|
NewCU.initStmtList(DwarfLineSectionSym);
|
|
|
|
initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
|
|
|
|
return NewCU;
|
|
}
|
|
|
|
// Emit the .debug_info.dwo section for separated dwarf. This contains the
|
|
// compile units that would normally be in debug_info.
|
|
void DwarfDebug::emitDebugInfoDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf debug info?");
|
|
// Don't pass an abbrev symbol, using a constant zero instead so as not to
|
|
// emit relocations into the dwo file.
|
|
InfoHolder.emitUnits(/* AbbrevSymbol */ nullptr);
|
|
}
|
|
|
|
// Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
|
|
// abbreviations for the .debug_info.dwo section.
|
|
void DwarfDebug::emitDebugAbbrevDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf?");
|
|
InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLineDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf?");
|
|
Asm->OutStreamer.SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfLineDWOSection());
|
|
SplitTypeUnitFileTable.Emit(Asm->OutStreamer);
|
|
}
|
|
|
|
// Emit the .debug_str.dwo section for separated dwarf. This contains the
|
|
// string section and is identical in format to traditional .debug_str
|
|
// sections.
|
|
void DwarfDebug::emitDebugStrDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf?");
|
|
const MCSection *OffSec =
|
|
Asm->getObjFileLowering().getDwarfStrOffDWOSection();
|
|
InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
|
|
OffSec);
|
|
}
|
|
|
|
MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
|
|
if (!useSplitDwarf())
|
|
return nullptr;
|
|
if (SingleCU)
|
|
SplitTypeUnitFileTable.setCompilationDir(CU.getCUNode().getDirectory());
|
|
return &SplitTypeUnitFileTable;
|
|
}
|
|
|
|
static uint64_t makeTypeSignature(StringRef Identifier) {
|
|
MD5 Hash;
|
|
Hash.update(Identifier);
|
|
// ... take the least significant 8 bytes and return those. Our MD5
|
|
// implementation always returns its results in little endian, swap bytes
|
|
// appropriately.
|
|
MD5::MD5Result Result;
|
|
Hash.final(Result);
|
|
return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
|
|
}
|
|
|
|
void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
|
|
StringRef Identifier, DIE &RefDie,
|
|
DICompositeType CTy) {
|
|
// Fast path if we're building some type units and one has already used the
|
|
// address pool we know we're going to throw away all this work anyway, so
|
|
// don't bother building dependent types.
|
|
if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
|
|
return;
|
|
|
|
const DwarfTypeUnit *&TU = DwarfTypeUnits[CTy];
|
|
if (TU) {
|
|
CU.addDIETypeSignature(RefDie, *TU);
|
|
return;
|
|
}
|
|
|
|
bool TopLevelType = TypeUnitsUnderConstruction.empty();
|
|
AddrPool.resetUsedFlag();
|
|
|
|
auto OwnedUnit = make_unique<DwarfTypeUnit>(
|
|
InfoHolder.getUnits().size() + TypeUnitsUnderConstruction.size(), CU, Asm,
|
|
this, &InfoHolder, getDwoLineTable(CU));
|
|
DwarfTypeUnit &NewTU = *OwnedUnit;
|
|
DIE &UnitDie = NewTU.getUnitDie();
|
|
TU = &NewTU;
|
|
TypeUnitsUnderConstruction.push_back(
|
|
std::make_pair(std::move(OwnedUnit), CTy));
|
|
|
|
NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
|
|
CU.getLanguage());
|
|
|
|
uint64_t Signature = makeTypeSignature(Identifier);
|
|
NewTU.setTypeSignature(Signature);
|
|
|
|
if (useSplitDwarf())
|
|
NewTU.initSection(Asm->getObjFileLowering().getDwarfTypesDWOSection());
|
|
else {
|
|
CU.applyStmtList(UnitDie);
|
|
NewTU.initSection(
|
|
Asm->getObjFileLowering().getDwarfTypesSection(Signature));
|
|
}
|
|
|
|
NewTU.setType(NewTU.createTypeDIE(CTy));
|
|
|
|
if (TopLevelType) {
|
|
auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
|
|
TypeUnitsUnderConstruction.clear();
|
|
|
|
// Types referencing entries in the address table cannot be placed in type
|
|
// units.
|
|
if (AddrPool.hasBeenUsed()) {
|
|
|
|
// Remove all the types built while building this type.
|
|
// This is pessimistic as some of these types might not be dependent on
|
|
// the type that used an address.
|
|
for (const auto &TU : TypeUnitsToAdd)
|
|
DwarfTypeUnits.erase(TU.second);
|
|
|
|
// Construct this type in the CU directly.
|
|
// This is inefficient because all the dependent types will be rebuilt
|
|
// from scratch, including building them in type units, discovering that
|
|
// they depend on addresses, throwing them out and rebuilding them.
|
|
CU.constructTypeDIE(RefDie, CTy);
|
|
return;
|
|
}
|
|
|
|
// If the type wasn't dependent on fission addresses, finish adding the type
|
|
// and all its dependent types.
|
|
for (auto &TU : TypeUnitsToAdd)
|
|
InfoHolder.addUnit(std::move(TU.first));
|
|
}
|
|
CU.addDIETypeSignature(RefDie, NewTU);
|
|
}
|
|
|
|
// Accelerator table mutators - add each name along with its companion
|
|
// DIE to the proper table while ensuring that the name that we're going
|
|
// to reference is in the string table. We do this since the names we
|
|
// add may not only be identical to the names in the DIE.
|
|
void DwarfDebug::addAccelName(StringRef Name, const DIE &Die) {
|
|
if (!useDwarfAccelTables())
|
|
return;
|
|
AccelNames.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
|
|
&Die);
|
|
}
|
|
|
|
void DwarfDebug::addAccelObjC(StringRef Name, const DIE &Die) {
|
|
if (!useDwarfAccelTables())
|
|
return;
|
|
AccelObjC.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
|
|
&Die);
|
|
}
|
|
|
|
void DwarfDebug::addAccelNamespace(StringRef Name, const DIE &Die) {
|
|
if (!useDwarfAccelTables())
|
|
return;
|
|
AccelNamespace.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
|
|
&Die);
|
|
}
|
|
|
|
void DwarfDebug::addAccelType(StringRef Name, const DIE &Die, char Flags) {
|
|
if (!useDwarfAccelTables())
|
|
return;
|
|
AccelTypes.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
|
|
&Die);
|
|
}
|