forked from OSchip/llvm-project
1141 lines
47 KiB
C++
1141 lines
47 KiB
C++
//===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a light-weight runtime support library that is useful
|
|
// for sparse tensor manipulations. The functionality provided in this library
|
|
// is meant to simplify benchmarking, testing, and debugging MLIR code that
|
|
// operates on sparse tensors. The provided functionality is **not** part
|
|
// of core MLIR, however.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/ExecutionEngine/SparseTensorUtils.h"
|
|
#include "mlir/ExecutionEngine/CRunnerUtils.h"
|
|
|
|
#ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cctype>
|
|
#include <cinttypes>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Internal support for storing and reading sparse tensors.
|
|
//
|
|
// The following memory-resident sparse storage schemes are supported:
|
|
//
|
|
// (a) A coordinate scheme for temporarily storing and lexicographically
|
|
// sorting a sparse tensor by index (SparseTensorCOO).
|
|
//
|
|
// (b) A "one-size-fits-all" sparse tensor storage scheme defined by
|
|
// per-dimension sparse/dense annnotations together with a dimension
|
|
// ordering used by MLIR compiler-generated code (SparseTensorStorage).
|
|
//
|
|
// The following external formats are supported:
|
|
//
|
|
// (1) Matrix Market Exchange (MME): *.mtx
|
|
// https://math.nist.gov/MatrixMarket/formats.html
|
|
//
|
|
// (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
|
|
// http://frostt.io/tensors/file-formats.html
|
|
//
|
|
// Two public APIs are supported:
|
|
//
|
|
// (I) Methods operating on MLIR buffers (memrefs) to interact with sparse
|
|
// tensors. These methods should be used exclusively by MLIR
|
|
// compiler-generated code.
|
|
//
|
|
// (II) Methods that accept C-style data structures to interact with sparse
|
|
// tensors. These methods can be used by any external runtime that wants
|
|
// to interact with MLIR compiler-generated code.
|
|
//
|
|
// In both cases (I) and (II), the SparseTensorStorage format is externally
|
|
// only visible as an opaque pointer.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
static constexpr int kColWidth = 1025;
|
|
|
|
/// A sparse tensor element in coordinate scheme (value and indices).
|
|
/// For example, a rank-1 vector element would look like
|
|
/// ({i}, a[i])
|
|
/// and a rank-5 tensor element like
|
|
/// ({i,j,k,l,m}, a[i,j,k,l,m])
|
|
template <typename V>
|
|
struct Element {
|
|
Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){};
|
|
std::vector<uint64_t> indices;
|
|
V value;
|
|
};
|
|
|
|
/// A memory-resident sparse tensor in coordinate scheme (collection of
|
|
/// elements). This data structure is used to read a sparse tensor from
|
|
/// any external format into memory and sort the elements lexicographically
|
|
/// by indices before passing it back to the client (most packed storage
|
|
/// formats require the elements to appear in lexicographic index order).
|
|
template <typename V>
|
|
struct SparseTensorCOO {
|
|
public:
|
|
SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity)
|
|
: sizes(szs), iteratorLocked(false), iteratorPos(0) {
|
|
if (capacity)
|
|
elements.reserve(capacity);
|
|
}
|
|
/// Adds element as indices and value.
|
|
void add(const std::vector<uint64_t> &ind, V val) {
|
|
assert(!iteratorLocked && "Attempt to add() after startIterator()");
|
|
uint64_t rank = getRank();
|
|
assert(rank == ind.size());
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
assert(ind[r] < sizes[r]); // within bounds
|
|
elements.emplace_back(ind, val);
|
|
}
|
|
/// Sorts elements lexicographically by index.
|
|
void sort() {
|
|
assert(!iteratorLocked && "Attempt to sort() after startIterator()");
|
|
// TODO: we may want to cache an `isSorted` bit, to avoid
|
|
// unnecessary/redundant sorting.
|
|
std::sort(elements.begin(), elements.end(), lexOrder);
|
|
}
|
|
/// Returns rank.
|
|
uint64_t getRank() const { return sizes.size(); }
|
|
/// Getter for sizes array.
|
|
const std::vector<uint64_t> &getSizes() const { return sizes; }
|
|
/// Getter for elements array.
|
|
const std::vector<Element<V>> &getElements() const { return elements; }
|
|
|
|
/// Switch into iterator mode.
|
|
void startIterator() {
|
|
iteratorLocked = true;
|
|
iteratorPos = 0;
|
|
}
|
|
/// Get the next element.
|
|
const Element<V> *getNext() {
|
|
assert(iteratorLocked && "Attempt to getNext() before startIterator()");
|
|
if (iteratorPos < elements.size())
|
|
return &(elements[iteratorPos++]);
|
|
iteratorLocked = false;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Factory method. Permutes the original dimensions according to
|
|
/// the given ordering and expects subsequent add() calls to honor
|
|
/// that same ordering for the given indices. The result is a
|
|
/// fully permuted coordinate scheme.
|
|
static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank,
|
|
const uint64_t *sizes,
|
|
const uint64_t *perm,
|
|
uint64_t capacity = 0) {
|
|
std::vector<uint64_t> permsz(rank);
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
permsz[perm[r]] = sizes[r];
|
|
return new SparseTensorCOO<V>(permsz, capacity);
|
|
}
|
|
|
|
private:
|
|
/// Returns true if indices of e1 < indices of e2.
|
|
static bool lexOrder(const Element<V> &e1, const Element<V> &e2) {
|
|
uint64_t rank = e1.indices.size();
|
|
assert(rank == e2.indices.size());
|
|
for (uint64_t r = 0; r < rank; r++) {
|
|
if (e1.indices[r] == e2.indices[r])
|
|
continue;
|
|
return e1.indices[r] < e2.indices[r];
|
|
}
|
|
return false;
|
|
}
|
|
const std::vector<uint64_t> sizes; // per-dimension sizes
|
|
std::vector<Element<V>> elements;
|
|
bool iteratorLocked;
|
|
unsigned iteratorPos;
|
|
};
|
|
|
|
/// Abstract base class of sparse tensor storage. Note that we use
|
|
/// function overloading to implement "partial" method specialization.
|
|
class SparseTensorStorageBase {
|
|
public:
|
|
/// Dimension size query.
|
|
virtual uint64_t getDimSize(uint64_t) = 0;
|
|
|
|
/// Overhead storage.
|
|
virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); }
|
|
virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); }
|
|
virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); }
|
|
virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); }
|
|
virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); }
|
|
virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); }
|
|
virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); }
|
|
virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); }
|
|
|
|
/// Primary storage.
|
|
virtual void getValues(std::vector<double> **) { fatal("valf64"); }
|
|
virtual void getValues(std::vector<float> **) { fatal("valf32"); }
|
|
virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); }
|
|
virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); }
|
|
virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); }
|
|
virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); }
|
|
|
|
/// Element-wise insertion in lexicographic index order.
|
|
virtual void lexInsert(const uint64_t *, double) { fatal("insf64"); }
|
|
virtual void lexInsert(const uint64_t *, float) { fatal("insf32"); }
|
|
virtual void lexInsert(const uint64_t *, int64_t) { fatal("insi64"); }
|
|
virtual void lexInsert(const uint64_t *, int32_t) { fatal("insi32"); }
|
|
virtual void lexInsert(const uint64_t *, int16_t) { fatal("ins16"); }
|
|
virtual void lexInsert(const uint64_t *, int8_t) { fatal("insi8"); }
|
|
|
|
/// Expanded insertion.
|
|
virtual void expInsert(uint64_t *, double *, bool *, uint64_t *, uint64_t) {
|
|
fatal("expf64");
|
|
}
|
|
virtual void expInsert(uint64_t *, float *, bool *, uint64_t *, uint64_t) {
|
|
fatal("expf32");
|
|
}
|
|
virtual void expInsert(uint64_t *, int64_t *, bool *, uint64_t *, uint64_t) {
|
|
fatal("expi64");
|
|
}
|
|
virtual void expInsert(uint64_t *, int32_t *, bool *, uint64_t *, uint64_t) {
|
|
fatal("expi32");
|
|
}
|
|
virtual void expInsert(uint64_t *, int16_t *, bool *, uint64_t *, uint64_t) {
|
|
fatal("expi16");
|
|
}
|
|
virtual void expInsert(uint64_t *, int8_t *, bool *, uint64_t *, uint64_t) {
|
|
fatal("expi8");
|
|
}
|
|
|
|
/// Finishes insertion.
|
|
virtual void endInsert() = 0;
|
|
|
|
virtual ~SparseTensorStorageBase() = default;
|
|
|
|
private:
|
|
void fatal(const char *tp) {
|
|
fprintf(stderr, "unsupported %s\n", tp);
|
|
exit(1);
|
|
}
|
|
};
|
|
|
|
/// A memory-resident sparse tensor using a storage scheme based on
|
|
/// per-dimension sparse/dense annotations. This data structure provides a
|
|
/// bufferized form of a sparse tensor type. In contrast to generating setup
|
|
/// methods for each differently annotated sparse tensor, this method provides
|
|
/// a convenient "one-size-fits-all" solution that simply takes an input tensor
|
|
/// and annotations to implement all required setup in a general manner.
|
|
template <typename P, typename I, typename V>
|
|
class SparseTensorStorage : public SparseTensorStorageBase {
|
|
public:
|
|
/// Constructs a sparse tensor storage scheme with the given dimensions,
|
|
/// permutation, and per-dimension dense/sparse annotations, using
|
|
/// the coordinate scheme tensor for the initial contents if provided.
|
|
SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm,
|
|
const DimLevelType *sparsity,
|
|
SparseTensorCOO<V> *tensor = nullptr)
|
|
: sizes(szs), rev(getRank()), idx(getRank()), pointers(getRank()),
|
|
indices(getRank()) {
|
|
uint64_t rank = getRank();
|
|
// Store "reverse" permutation.
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
rev[perm[r]] = r;
|
|
// Provide hints on capacity of pointers and indices.
|
|
// TODO: needs fine-tuning based on sparsity
|
|
bool allDense = true;
|
|
uint64_t sz = 1;
|
|
for (uint64_t r = 0; r < rank; r++) {
|
|
sz *= sizes[r];
|
|
if (sparsity[r] == DimLevelType::kCompressed) {
|
|
pointers[r].reserve(sz + 1);
|
|
indices[r].reserve(sz);
|
|
sz = 1;
|
|
allDense = false;
|
|
} else {
|
|
assert(sparsity[r] == DimLevelType::kDense &&
|
|
"singleton not yet supported");
|
|
}
|
|
}
|
|
// Prepare sparse pointer structures for all dimensions.
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
if (sparsity[r] == DimLevelType::kCompressed)
|
|
pointers[r].push_back(0);
|
|
// Then assign contents from coordinate scheme tensor if provided.
|
|
if (tensor) {
|
|
// Lexicographically sort the tensor, to ensure precondition of `fromCOO`.
|
|
tensor->sort();
|
|
const std::vector<Element<V>> &elements = tensor->getElements();
|
|
uint64_t nnz = elements.size();
|
|
values.reserve(nnz);
|
|
fromCOO(elements, 0, nnz, 0);
|
|
} else if (allDense) {
|
|
values.resize(sz, 0);
|
|
}
|
|
}
|
|
|
|
~SparseTensorStorage() override = default;
|
|
|
|
/// Get the rank of the tensor.
|
|
uint64_t getRank() const { return sizes.size(); }
|
|
|
|
/// Get the size in the given dimension of the tensor.
|
|
uint64_t getDimSize(uint64_t d) override {
|
|
assert(d < getRank());
|
|
return sizes[d];
|
|
}
|
|
|
|
/// Partially specialize these getter methods based on template types.
|
|
void getPointers(std::vector<P> **out, uint64_t d) override {
|
|
assert(d < getRank());
|
|
*out = &pointers[d];
|
|
}
|
|
void getIndices(std::vector<I> **out, uint64_t d) override {
|
|
assert(d < getRank());
|
|
*out = &indices[d];
|
|
}
|
|
void getValues(std::vector<V> **out) override { *out = &values; }
|
|
|
|
/// Partially specialize lexicographical insertions based on template types.
|
|
void lexInsert(const uint64_t *cursor, V val) override {
|
|
// First, wrap up pending insertion path.
|
|
uint64_t diff = 0;
|
|
uint64_t top = 0;
|
|
if (!values.empty()) {
|
|
diff = lexDiff(cursor);
|
|
endPath(diff + 1);
|
|
top = idx[diff] + 1;
|
|
}
|
|
// Then continue with insertion path.
|
|
insPath(cursor, diff, top, val);
|
|
}
|
|
|
|
/// Partially specialize expanded insertions based on template types.
|
|
/// Note that this method resets the values/filled-switch array back
|
|
/// to all-zero/false while only iterating over the nonzero elements.
|
|
void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added,
|
|
uint64_t count) override {
|
|
if (count == 0)
|
|
return;
|
|
// Sort.
|
|
std::sort(added, added + count);
|
|
// Restore insertion path for first insert.
|
|
uint64_t rank = getRank();
|
|
uint64_t index = added[0];
|
|
cursor[rank - 1] = index;
|
|
lexInsert(cursor, values[index]);
|
|
assert(filled[index]);
|
|
values[index] = 0;
|
|
filled[index] = false;
|
|
// Subsequent insertions are quick.
|
|
for (uint64_t i = 1; i < count; i++) {
|
|
assert(index < added[i] && "non-lexicographic insertion");
|
|
index = added[i];
|
|
cursor[rank - 1] = index;
|
|
insPath(cursor, rank - 1, added[i - 1] + 1, values[index]);
|
|
assert(filled[index]);
|
|
values[index] = 0.0;
|
|
filled[index] = false;
|
|
}
|
|
}
|
|
|
|
/// Finalizes lexicographic insertions.
|
|
void endInsert() override {
|
|
if (values.empty())
|
|
endDim(0);
|
|
else
|
|
endPath(0);
|
|
}
|
|
|
|
/// Returns this sparse tensor storage scheme as a new memory-resident
|
|
/// sparse tensor in coordinate scheme with the given dimension order.
|
|
SparseTensorCOO<V> *toCOO(const uint64_t *perm) {
|
|
// Restore original order of the dimension sizes and allocate coordinate
|
|
// scheme with desired new ordering specified in perm.
|
|
uint64_t rank = getRank();
|
|
std::vector<uint64_t> orgsz(rank);
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
orgsz[rev[r]] = sizes[r];
|
|
SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO(
|
|
rank, orgsz.data(), perm, values.size());
|
|
// Populate coordinate scheme restored from old ordering and changed with
|
|
// new ordering. Rather than applying both reorderings during the recursion,
|
|
// we compute the combine permutation in advance.
|
|
std::vector<uint64_t> reord(rank);
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
reord[r] = perm[rev[r]];
|
|
toCOO(*tensor, reord, 0, 0);
|
|
assert(tensor->getElements().size() == values.size());
|
|
return tensor;
|
|
}
|
|
|
|
/// Factory method. Constructs a sparse tensor storage scheme with the given
|
|
/// dimensions, permutation, and per-dimension dense/sparse annotations,
|
|
/// using the coordinate scheme tensor for the initial contents if provided.
|
|
/// In the latter case, the coordinate scheme must respect the same
|
|
/// permutation as is desired for the new sparse tensor storage.
|
|
static SparseTensorStorage<P, I, V> *
|
|
newSparseTensor(uint64_t rank, const uint64_t *sizes, const uint64_t *perm,
|
|
const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) {
|
|
SparseTensorStorage<P, I, V> *n = nullptr;
|
|
if (tensor) {
|
|
assert(tensor->getRank() == rank);
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
assert(sizes[r] == 0 || tensor->getSizes()[perm[r]] == sizes[r]);
|
|
n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity,
|
|
tensor);
|
|
delete tensor;
|
|
} else {
|
|
std::vector<uint64_t> permsz(rank);
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
permsz[perm[r]] = sizes[r];
|
|
n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
private:
|
|
/// Initializes sparse tensor storage scheme from a memory-resident sparse
|
|
/// tensor in coordinate scheme. This method prepares the pointers and
|
|
/// indices arrays under the given per-dimension dense/sparse annotations.
|
|
/// Precondition: the `elements` must be lexicographically sorted.
|
|
void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo,
|
|
uint64_t hi, uint64_t d) {
|
|
// Once dimensions are exhausted, insert the numerical values.
|
|
assert(d <= getRank());
|
|
if (d == getRank()) {
|
|
assert(lo < hi && hi <= elements.size());
|
|
values.push_back(elements[lo].value);
|
|
return;
|
|
}
|
|
// Visit all elements in this interval.
|
|
uint64_t full = 0;
|
|
while (lo < hi) {
|
|
assert(lo < elements.size() && hi <= elements.size());
|
|
// Find segment in interval with same index elements in this dimension.
|
|
uint64_t i = elements[lo].indices[d];
|
|
uint64_t seg = lo + 1;
|
|
while (seg < hi && elements[seg].indices[d] == i)
|
|
seg++;
|
|
// Handle segment in interval for sparse or dense dimension.
|
|
if (isCompressedDim(d)) {
|
|
indices[d].push_back(i);
|
|
} else {
|
|
// For dense storage we must fill in all the zero values between
|
|
// the previous element (when last we ran this for-loop) and the
|
|
// current element.
|
|
for (; full < i; full++)
|
|
endDim(d + 1);
|
|
full++;
|
|
}
|
|
fromCOO(elements, lo, seg, d + 1);
|
|
// And move on to next segment in interval.
|
|
lo = seg;
|
|
}
|
|
// Finalize the sparse pointer structure at this dimension.
|
|
if (isCompressedDim(d)) {
|
|
pointers[d].push_back(indices[d].size());
|
|
} else {
|
|
// For dense storage we must fill in all the zero values after
|
|
// the last element.
|
|
for (uint64_t sz = sizes[d]; full < sz; full++)
|
|
endDim(d + 1);
|
|
}
|
|
}
|
|
|
|
/// Stores the sparse tensor storage scheme into a memory-resident sparse
|
|
/// tensor in coordinate scheme.
|
|
void toCOO(SparseTensorCOO<V> &tensor, std::vector<uint64_t> &reord,
|
|
uint64_t pos, uint64_t d) {
|
|
assert(d <= getRank());
|
|
if (d == getRank()) {
|
|
assert(pos < values.size());
|
|
tensor.add(idx, values[pos]);
|
|
} else if (isCompressedDim(d)) {
|
|
// Sparse dimension.
|
|
for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) {
|
|
idx[reord[d]] = indices[d][ii];
|
|
toCOO(tensor, reord, ii, d + 1);
|
|
}
|
|
} else {
|
|
// Dense dimension.
|
|
for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) {
|
|
idx[reord[d]] = i;
|
|
toCOO(tensor, reord, off + i, d + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Ends a deeper, never seen before dimension.
|
|
void endDim(uint64_t d) {
|
|
assert(d <= getRank());
|
|
if (d == getRank()) {
|
|
values.push_back(0);
|
|
} else if (isCompressedDim(d)) {
|
|
pointers[d].push_back(indices[d].size());
|
|
} else {
|
|
for (uint64_t full = 0, sz = sizes[d]; full < sz; full++)
|
|
endDim(d + 1);
|
|
}
|
|
}
|
|
|
|
/// Wraps up a single insertion path, inner to outer.
|
|
void endPath(uint64_t diff) {
|
|
uint64_t rank = getRank();
|
|
assert(diff <= rank);
|
|
for (uint64_t i = 0; i < rank - diff; i++) {
|
|
uint64_t d = rank - i - 1;
|
|
if (isCompressedDim(d)) {
|
|
pointers[d].push_back(indices[d].size());
|
|
} else {
|
|
for (uint64_t full = idx[d] + 1, sz = sizes[d]; full < sz; full++)
|
|
endDim(d + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Continues a single insertion path, outer to inner.
|
|
void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) {
|
|
uint64_t rank = getRank();
|
|
assert(diff < rank);
|
|
for (uint64_t d = diff; d < rank; d++) {
|
|
uint64_t i = cursor[d];
|
|
if (isCompressedDim(d)) {
|
|
indices[d].push_back(i);
|
|
} else {
|
|
for (uint64_t full = top; full < i; full++)
|
|
endDim(d + 1);
|
|
}
|
|
top = 0;
|
|
idx[d] = i;
|
|
}
|
|
values.push_back(val);
|
|
}
|
|
|
|
/// Finds the lexicographic differing dimension.
|
|
uint64_t lexDiff(const uint64_t *cursor) {
|
|
for (uint64_t r = 0, rank = getRank(); r < rank; r++)
|
|
if (cursor[r] > idx[r])
|
|
return r;
|
|
else
|
|
assert(cursor[r] == idx[r] && "non-lexicographic insertion");
|
|
assert(0 && "duplication insertion");
|
|
return -1u;
|
|
}
|
|
|
|
/// Returns true if dimension is compressed.
|
|
inline bool isCompressedDim(uint64_t d) const {
|
|
return (!pointers[d].empty());
|
|
}
|
|
|
|
private:
|
|
std::vector<uint64_t> sizes; // per-dimension sizes
|
|
std::vector<uint64_t> rev; // "reverse" permutation
|
|
std::vector<uint64_t> idx; // index cursor
|
|
std::vector<std::vector<P>> pointers;
|
|
std::vector<std::vector<I>> indices;
|
|
std::vector<V> values;
|
|
};
|
|
|
|
/// Helper to convert string to lower case.
|
|
static char *toLower(char *token) {
|
|
for (char *c = token; *c; c++)
|
|
*c = tolower(*c);
|
|
return token;
|
|
}
|
|
|
|
/// Read the MME header of a general sparse matrix of type real.
|
|
static void readMMEHeader(FILE *file, char *filename, char *line,
|
|
uint64_t *idata, bool *isSymmetric) {
|
|
char header[64];
|
|
char object[64];
|
|
char format[64];
|
|
char field[64];
|
|
char symmetry[64];
|
|
// Read header line.
|
|
if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field,
|
|
symmetry) != 5) {
|
|
fprintf(stderr, "Corrupt header in %s\n", filename);
|
|
exit(1);
|
|
}
|
|
*isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0);
|
|
// Make sure this is a general sparse matrix.
|
|
if (strcmp(toLower(header), "%%matrixmarket") ||
|
|
strcmp(toLower(object), "matrix") ||
|
|
strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") ||
|
|
(strcmp(toLower(symmetry), "general") && !(*isSymmetric))) {
|
|
fprintf(stderr,
|
|
"Cannot find a general sparse matrix with type real in %s\n",
|
|
filename);
|
|
exit(1);
|
|
}
|
|
// Skip comments.
|
|
while (true) {
|
|
if (!fgets(line, kColWidth, file)) {
|
|
fprintf(stderr, "Cannot find data in %s\n", filename);
|
|
exit(1);
|
|
}
|
|
if (line[0] != '%')
|
|
break;
|
|
}
|
|
// Next line contains M N NNZ.
|
|
idata[0] = 2; // rank
|
|
if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3,
|
|
idata + 1) != 3) {
|
|
fprintf(stderr, "Cannot find size in %s\n", filename);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/// Read the "extended" FROSTT header. Although not part of the documented
|
|
/// format, we assume that the file starts with optional comments followed
|
|
/// by two lines that define the rank, the number of nonzeros, and the
|
|
/// dimensions sizes (one per rank) of the sparse tensor.
|
|
static void readExtFROSTTHeader(FILE *file, char *filename, char *line,
|
|
uint64_t *idata) {
|
|
// Skip comments.
|
|
while (true) {
|
|
if (!fgets(line, kColWidth, file)) {
|
|
fprintf(stderr, "Cannot find data in %s\n", filename);
|
|
exit(1);
|
|
}
|
|
if (line[0] != '#')
|
|
break;
|
|
}
|
|
// Next line contains RANK and NNZ.
|
|
if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) {
|
|
fprintf(stderr, "Cannot find metadata in %s\n", filename);
|
|
exit(1);
|
|
}
|
|
// Followed by a line with the dimension sizes (one per rank).
|
|
for (uint64_t r = 0; r < idata[0]; r++) {
|
|
if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) {
|
|
fprintf(stderr, "Cannot find dimension size %s\n", filename);
|
|
exit(1);
|
|
}
|
|
}
|
|
fgets(line, kColWidth, file); // end of line
|
|
}
|
|
|
|
/// Reads a sparse tensor with the given filename into a memory-resident
|
|
/// sparse tensor in coordinate scheme.
|
|
template <typename V>
|
|
static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank,
|
|
const uint64_t *sizes,
|
|
const uint64_t *perm) {
|
|
// Open the file.
|
|
FILE *file = fopen(filename, "r");
|
|
if (!file) {
|
|
fprintf(stderr, "Cannot find %s\n", filename);
|
|
exit(1);
|
|
}
|
|
// Perform some file format dependent set up.
|
|
char line[kColWidth];
|
|
uint64_t idata[512];
|
|
bool isSymmetric = false;
|
|
if (strstr(filename, ".mtx")) {
|
|
readMMEHeader(file, filename, line, idata, &isSymmetric);
|
|
} else if (strstr(filename, ".tns")) {
|
|
readExtFROSTTHeader(file, filename, line, idata);
|
|
} else {
|
|
fprintf(stderr, "Unknown format %s\n", filename);
|
|
exit(1);
|
|
}
|
|
// Prepare sparse tensor object with per-dimension sizes
|
|
// and the number of nonzeros as initial capacity.
|
|
assert(rank == idata[0] && "rank mismatch");
|
|
uint64_t nnz = idata[1];
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
assert((sizes[r] == 0 || sizes[r] == idata[2 + r]) &&
|
|
"dimension size mismatch");
|
|
SparseTensorCOO<V> *tensor =
|
|
SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz);
|
|
// Read all nonzero elements.
|
|
std::vector<uint64_t> indices(rank);
|
|
for (uint64_t k = 0; k < nnz; k++) {
|
|
if (!fgets(line, kColWidth, file)) {
|
|
fprintf(stderr, "Cannot find next line of data in %s\n", filename);
|
|
exit(1);
|
|
}
|
|
char *linePtr = line;
|
|
for (uint64_t r = 0; r < rank; r++) {
|
|
uint64_t idx = strtoul(linePtr, &linePtr, 10);
|
|
// Add 0-based index.
|
|
indices[perm[r]] = idx - 1;
|
|
}
|
|
// The external formats always store the numerical values with the type
|
|
// double, but we cast these values to the sparse tensor object type.
|
|
double value = strtod(linePtr, &linePtr);
|
|
tensor->add(indices, value);
|
|
// We currently chose to deal with symmetric matrices by fully constructing
|
|
// them. In the future, we may want to make symmetry implicit for storage
|
|
// reasons.
|
|
if (isSymmetric && indices[0] != indices[1])
|
|
tensor->add({indices[1], indices[0]}, value);
|
|
}
|
|
// Close the file and return tensor.
|
|
fclose(file);
|
|
return tensor;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
extern "C" {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Public API with methods that operate on MLIR buffers (memrefs) to interact
|
|
// with sparse tensors, which are only visible as opaque pointers externally.
|
|
// These methods should be used exclusively by MLIR compiler-generated code.
|
|
//
|
|
// Some macro magic is used to generate implementations for all required type
|
|
// combinations that can be called from MLIR compiler-generated code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define CASE(p, i, v, P, I, V) \
|
|
if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \
|
|
SparseTensorCOO<V> *tensor = nullptr; \
|
|
if (action <= Action::kFromCOO) { \
|
|
if (action == Action::kFromFile) { \
|
|
char *filename = static_cast<char *>(ptr); \
|
|
tensor = openSparseTensorCOO<V>(filename, rank, sizes, perm); \
|
|
} else if (action == Action::kFromCOO) { \
|
|
tensor = static_cast<SparseTensorCOO<V> *>(ptr); \
|
|
} else { \
|
|
assert(action == Action::kEmpty); \
|
|
} \
|
|
return SparseTensorStorage<P, I, V>::newSparseTensor(rank, sizes, perm, \
|
|
sparsity, tensor); \
|
|
} \
|
|
if (action == Action::kEmptyCOO) \
|
|
return SparseTensorCOO<V>::newSparseTensorCOO(rank, sizes, perm); \
|
|
tensor = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \
|
|
if (action == Action::kToIterator) { \
|
|
tensor->startIterator(); \
|
|
} else { \
|
|
assert(action == Action::kToCOO); \
|
|
} \
|
|
return tensor; \
|
|
}
|
|
|
|
#define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V)
|
|
|
|
#define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \
|
|
void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \
|
|
assert(ref &&tensor); \
|
|
std::vector<TYPE> *v; \
|
|
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \
|
|
ref->basePtr = ref->data = v->data(); \
|
|
ref->offset = 0; \
|
|
ref->sizes[0] = v->size(); \
|
|
ref->strides[0] = 1; \
|
|
}
|
|
|
|
#define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \
|
|
void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \
|
|
index_t d) { \
|
|
assert(ref &&tensor); \
|
|
std::vector<TYPE> *v; \
|
|
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \
|
|
ref->basePtr = ref->data = v->data(); \
|
|
ref->offset = 0; \
|
|
ref->sizes[0] = v->size(); \
|
|
ref->strides[0] = 1; \
|
|
}
|
|
|
|
#define IMPL_ADDELT(NAME, TYPE) \
|
|
void *_mlir_ciface_##NAME(void *tensor, TYPE value, \
|
|
StridedMemRefType<index_t, 1> *iref, \
|
|
StridedMemRefType<index_t, 1> *pref) { \
|
|
assert(tensor &&iref &&pref); \
|
|
assert(iref->strides[0] == 1 && pref->strides[0] == 1); \
|
|
assert(iref->sizes[0] == pref->sizes[0]); \
|
|
const index_t *indx = iref->data + iref->offset; \
|
|
const index_t *perm = pref->data + pref->offset; \
|
|
uint64_t isize = iref->sizes[0]; \
|
|
std::vector<index_t> indices(isize); \
|
|
for (uint64_t r = 0; r < isize; r++) \
|
|
indices[perm[r]] = indx[r]; \
|
|
static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \
|
|
return tensor; \
|
|
}
|
|
|
|
#define IMPL_GETNEXT(NAME, V) \
|
|
bool _mlir_ciface_##NAME(void *tensor, StridedMemRefType<index_t, 1> *iref, \
|
|
StridedMemRefType<V, 0> *vref) { \
|
|
assert(tensor &&iref &&vref); \
|
|
assert(iref->strides[0] == 1); \
|
|
index_t *indx = iref->data + iref->offset; \
|
|
V *value = vref->data + vref->offset; \
|
|
const uint64_t isize = iref->sizes[0]; \
|
|
auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \
|
|
const Element<V> *elem = iter->getNext(); \
|
|
if (elem == nullptr) { \
|
|
delete iter; \
|
|
return false; \
|
|
} \
|
|
for (uint64_t r = 0; r < isize; r++) \
|
|
indx[r] = elem->indices[r]; \
|
|
*value = elem->value; \
|
|
return true; \
|
|
}
|
|
|
|
#define IMPL_LEXINSERT(NAME, V) \
|
|
void _mlir_ciface_##NAME(void *tensor, StridedMemRefType<index_t, 1> *cref, \
|
|
V val) { \
|
|
assert(tensor &&cref); \
|
|
assert(cref->strides[0] == 1); \
|
|
index_t *cursor = cref->data + cref->offset; \
|
|
assert(cursor); \
|
|
static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \
|
|
}
|
|
|
|
#define IMPL_EXPINSERT(NAME, V) \
|
|
void _mlir_ciface_##NAME( \
|
|
void *tensor, StridedMemRefType<index_t, 1> *cref, \
|
|
StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \
|
|
StridedMemRefType<index_t, 1> *aref, index_t count) { \
|
|
assert(tensor &&cref &&vref &&fref &&aref); \
|
|
assert(cref->strides[0] == 1); \
|
|
assert(vref->strides[0] == 1); \
|
|
assert(fref->strides[0] == 1); \
|
|
assert(aref->strides[0] == 1); \
|
|
assert(vref->sizes[0] == fref->sizes[0]); \
|
|
index_t *cursor = cref->data + cref->offset; \
|
|
V *values = vref->data + vref->offset; \
|
|
bool *filled = fref->data + fref->offset; \
|
|
index_t *added = aref->data + aref->offset; \
|
|
static_cast<SparseTensorStorageBase *>(tensor)->expInsert( \
|
|
cursor, values, filled, added, count); \
|
|
}
|
|
|
|
// Assume index_t is in fact uint64_t, so that _mlir_ciface_newSparseTensor
|
|
// can safely rewrite kIndex to kU64. We make this assertion to guarantee
|
|
// that this file cannot get out of sync with its header.
|
|
static_assert(std::is_same<index_t, uint64_t>::value,
|
|
"Expected index_t == uint64_t");
|
|
|
|
/// Constructs a new sparse tensor. This is the "swiss army knife"
|
|
/// method for materializing sparse tensors into the computation.
|
|
///
|
|
/// Action:
|
|
/// kEmpty = returns empty storage to fill later
|
|
/// kFromFile = returns storage, where ptr contains filename to read
|
|
/// kFromCOO = returns storage, where ptr contains coordinate scheme to assign
|
|
/// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO
|
|
/// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO
|
|
/// kToIterator = returns iterator from storage in ptr (call getNext() to use)
|
|
void *
|
|
_mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT
|
|
StridedMemRefType<index_t, 1> *sref,
|
|
StridedMemRefType<index_t, 1> *pref,
|
|
OverheadType ptrTp, OverheadType indTp,
|
|
PrimaryType valTp, Action action, void *ptr) {
|
|
assert(aref && sref && pref);
|
|
assert(aref->strides[0] == 1 && sref->strides[0] == 1 &&
|
|
pref->strides[0] == 1);
|
|
assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]);
|
|
const DimLevelType *sparsity = aref->data + aref->offset;
|
|
const index_t *sizes = sref->data + sref->offset;
|
|
const index_t *perm = pref->data + pref->offset;
|
|
uint64_t rank = aref->sizes[0];
|
|
|
|
// Rewrite kIndex to kU64, to avoid introducing a bunch of new cases.
|
|
// This is safe because of the static_assert above.
|
|
if (ptrTp == OverheadType::kIndex)
|
|
ptrTp = OverheadType::kU64;
|
|
if (indTp == OverheadType::kIndex)
|
|
indTp = OverheadType::kU64;
|
|
|
|
// Double matrices with all combinations of overhead storage.
|
|
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t,
|
|
uint64_t, double);
|
|
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t,
|
|
uint32_t, double);
|
|
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t,
|
|
uint16_t, double);
|
|
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t,
|
|
uint8_t, double);
|
|
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t,
|
|
uint64_t, double);
|
|
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t,
|
|
uint32_t, double);
|
|
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t,
|
|
uint16_t, double);
|
|
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t,
|
|
uint8_t, double);
|
|
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t,
|
|
uint64_t, double);
|
|
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t,
|
|
uint32_t, double);
|
|
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t,
|
|
uint16_t, double);
|
|
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t,
|
|
uint8_t, double);
|
|
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t,
|
|
uint64_t, double);
|
|
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t,
|
|
uint32_t, double);
|
|
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t,
|
|
uint16_t, double);
|
|
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t,
|
|
uint8_t, double);
|
|
|
|
// Float matrices with all combinations of overhead storage.
|
|
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t,
|
|
uint64_t, float);
|
|
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t,
|
|
uint32_t, float);
|
|
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t,
|
|
uint16_t, float);
|
|
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t,
|
|
uint8_t, float);
|
|
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t,
|
|
uint64_t, float);
|
|
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t,
|
|
uint32_t, float);
|
|
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t,
|
|
uint16_t, float);
|
|
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t,
|
|
uint8_t, float);
|
|
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t,
|
|
uint64_t, float);
|
|
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t,
|
|
uint32_t, float);
|
|
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t,
|
|
uint16_t, float);
|
|
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t,
|
|
uint8_t, float);
|
|
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t,
|
|
uint64_t, float);
|
|
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t,
|
|
uint32_t, float);
|
|
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t,
|
|
uint16_t, float);
|
|
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t,
|
|
uint8_t, float);
|
|
|
|
// Integral matrices with both overheads of the same type.
|
|
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t);
|
|
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t);
|
|
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t);
|
|
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t);
|
|
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t);
|
|
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t);
|
|
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t);
|
|
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t);
|
|
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t);
|
|
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t);
|
|
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t);
|
|
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t);
|
|
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t);
|
|
|
|
// Unsupported case (add above if needed).
|
|
fputs("unsupported combination of types\n", stderr);
|
|
exit(1);
|
|
}
|
|
|
|
/// Methods that provide direct access to pointers.
|
|
IMPL_GETOVERHEAD(sparsePointers, index_t, getPointers)
|
|
IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers)
|
|
IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers)
|
|
IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers)
|
|
IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers)
|
|
|
|
/// Methods that provide direct access to indices.
|
|
IMPL_GETOVERHEAD(sparseIndices, index_t, getIndices)
|
|
IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices)
|
|
IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices)
|
|
IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices)
|
|
IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices)
|
|
|
|
/// Methods that provide direct access to values.
|
|
IMPL_SPARSEVALUES(sparseValuesF64, double, getValues)
|
|
IMPL_SPARSEVALUES(sparseValuesF32, float, getValues)
|
|
IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues)
|
|
IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues)
|
|
IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues)
|
|
IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues)
|
|
|
|
/// Helper to add value to coordinate scheme, one per value type.
|
|
IMPL_ADDELT(addEltF64, double)
|
|
IMPL_ADDELT(addEltF32, float)
|
|
IMPL_ADDELT(addEltI64, int64_t)
|
|
IMPL_ADDELT(addEltI32, int32_t)
|
|
IMPL_ADDELT(addEltI16, int16_t)
|
|
IMPL_ADDELT(addEltI8, int8_t)
|
|
|
|
/// Helper to enumerate elements of coordinate scheme, one per value type.
|
|
IMPL_GETNEXT(getNextF64, double)
|
|
IMPL_GETNEXT(getNextF32, float)
|
|
IMPL_GETNEXT(getNextI64, int64_t)
|
|
IMPL_GETNEXT(getNextI32, int32_t)
|
|
IMPL_GETNEXT(getNextI16, int16_t)
|
|
IMPL_GETNEXT(getNextI8, int8_t)
|
|
|
|
/// Helper to insert elements in lexicographical index order, one per value
|
|
/// type.
|
|
IMPL_LEXINSERT(lexInsertF64, double)
|
|
IMPL_LEXINSERT(lexInsertF32, float)
|
|
IMPL_LEXINSERT(lexInsertI64, int64_t)
|
|
IMPL_LEXINSERT(lexInsertI32, int32_t)
|
|
IMPL_LEXINSERT(lexInsertI16, int16_t)
|
|
IMPL_LEXINSERT(lexInsertI8, int8_t)
|
|
|
|
/// Helper to insert using expansion, one per value type.
|
|
IMPL_EXPINSERT(expInsertF64, double)
|
|
IMPL_EXPINSERT(expInsertF32, float)
|
|
IMPL_EXPINSERT(expInsertI64, int64_t)
|
|
IMPL_EXPINSERT(expInsertI32, int32_t)
|
|
IMPL_EXPINSERT(expInsertI16, int16_t)
|
|
IMPL_EXPINSERT(expInsertI8, int8_t)
|
|
|
|
#undef CASE
|
|
#undef IMPL_SPARSEVALUES
|
|
#undef IMPL_GETOVERHEAD
|
|
#undef IMPL_ADDELT
|
|
#undef IMPL_GETNEXT
|
|
#undef IMPL_LEXINSERT
|
|
#undef IMPL_EXPINSERT
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Public API with methods that accept C-style data structures to interact
|
|
// with sparse tensors, which are only visible as opaque pointers externally.
|
|
// These methods can be used both by MLIR compiler-generated code as well as by
|
|
// an external runtime that wants to interact with MLIR compiler-generated code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Helper method to read a sparse tensor filename from the environment,
|
|
/// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc.
|
|
char *getTensorFilename(index_t id) {
|
|
char var[80];
|
|
sprintf(var, "TENSOR%" PRIu64, id);
|
|
char *env = getenv(var);
|
|
return env;
|
|
}
|
|
|
|
/// Returns size of sparse tensor in given dimension.
|
|
index_t sparseDimSize(void *tensor, index_t d) {
|
|
return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d);
|
|
}
|
|
|
|
/// Finalizes lexicographic insertions.
|
|
void endInsert(void *tensor) {
|
|
return static_cast<SparseTensorStorageBase *>(tensor)->endInsert();
|
|
}
|
|
|
|
/// Releases sparse tensor storage.
|
|
void delSparseTensor(void *tensor) {
|
|
delete static_cast<SparseTensorStorageBase *>(tensor);
|
|
}
|
|
|
|
/// Initializes sparse tensor from a COO-flavored format expressed using C-style
|
|
/// data structures. The expected parameters are:
|
|
///
|
|
/// rank: rank of tensor
|
|
/// nse: number of specified elements (usually the nonzeros)
|
|
/// shape: array with dimension size for each rank
|
|
/// values: a "nse" array with values for all specified elements
|
|
/// indices: a flat "nse x rank" array with indices for all specified elements
|
|
///
|
|
/// For example, the sparse matrix
|
|
/// | 1.0 0.0 0.0 |
|
|
/// | 0.0 5.0 3.0 |
|
|
/// can be passed as
|
|
/// rank = 2
|
|
/// nse = 3
|
|
/// shape = [2, 3]
|
|
/// values = [1.0, 5.0, 3.0]
|
|
/// indices = [ 0, 0, 1, 1, 1, 2]
|
|
//
|
|
// TODO: for now f64 tensors only, no dim ordering, all dimensions compressed
|
|
//
|
|
void *convertToMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape,
|
|
double *values, uint64_t *indices) {
|
|
// Setup all-dims compressed and default ordering.
|
|
std::vector<DimLevelType> sparse(rank, DimLevelType::kCompressed);
|
|
std::vector<uint64_t> perm(rank);
|
|
std::iota(perm.begin(), perm.end(), 0);
|
|
// Convert external format to internal COO.
|
|
SparseTensorCOO<double> *tensor = SparseTensorCOO<double>::newSparseTensorCOO(
|
|
rank, shape, perm.data(), nse);
|
|
std::vector<uint64_t> idx(rank);
|
|
for (uint64_t i = 0, base = 0; i < nse; i++) {
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
idx[r] = indices[base + r];
|
|
tensor->add(idx, values[i]);
|
|
base += rank;
|
|
}
|
|
// Return sparse tensor storage format as opaque pointer.
|
|
return SparseTensorStorage<uint64_t, uint64_t, double>::newSparseTensor(
|
|
rank, shape, perm.data(), sparse.data(), tensor);
|
|
}
|
|
|
|
/// Converts a sparse tensor to COO-flavored format expressed using C-style
|
|
/// data structures. The expected output parameters are pointers for these
|
|
/// values:
|
|
///
|
|
/// rank: rank of tensor
|
|
/// nse: number of specified elements (usually the nonzeros)
|
|
/// shape: array with dimension size for each rank
|
|
/// values: a "nse" array with values for all specified elements
|
|
/// indices: a flat "nse x rank" array with indices for all specified elements
|
|
///
|
|
/// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned
|
|
/// from convertToMLIRSparseTensor.
|
|
///
|
|
// TODO: Currently, values are copied from SparseTensorStorage to
|
|
// SparseTensorCOO, then to the output. We may want to reduce the number of
|
|
// copies.
|
|
//
|
|
// TODO: for now f64 tensors only, no dim ordering, all dimensions compressed
|
|
//
|
|
void convertFromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse,
|
|
uint64_t **pShape, double **pValues,
|
|
uint64_t **pIndices) {
|
|
SparseTensorStorage<uint64_t, uint64_t, double> *sparseTensor =
|
|
static_cast<SparseTensorStorage<uint64_t, uint64_t, double> *>(tensor);
|
|
uint64_t rank = sparseTensor->getRank();
|
|
std::vector<uint64_t> perm(rank);
|
|
std::iota(perm.begin(), perm.end(), 0);
|
|
SparseTensorCOO<double> *coo = sparseTensor->toCOO(perm.data());
|
|
|
|
const std::vector<Element<double>> &elements = coo->getElements();
|
|
uint64_t nse = elements.size();
|
|
|
|
uint64_t *shape = new uint64_t[rank];
|
|
for (uint64_t i = 0; i < rank; i++)
|
|
shape[i] = coo->getSizes()[i];
|
|
|
|
double *values = new double[nse];
|
|
uint64_t *indices = new uint64_t[rank * nse];
|
|
|
|
for (uint64_t i = 0, base = 0; i < nse; i++) {
|
|
values[i] = elements[i].value;
|
|
for (uint64_t j = 0; j < rank; j++)
|
|
indices[base + j] = elements[i].indices[j];
|
|
base += rank;
|
|
}
|
|
|
|
delete coo;
|
|
*pRank = rank;
|
|
*pNse = nse;
|
|
*pShape = shape;
|
|
*pValues = values;
|
|
*pIndices = indices;
|
|
}
|
|
} // extern "C"
|
|
|
|
#endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
|