llvm-project/mlir/lib/ExecutionEngine/SparseTensorUtils.cpp

1141 lines
47 KiB
C++

//===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a light-weight runtime support library that is useful
// for sparse tensor manipulations. The functionality provided in this library
// is meant to simplify benchmarking, testing, and debugging MLIR code that
// operates on sparse tensors. The provided functionality is **not** part
// of core MLIR, however.
//
//===----------------------------------------------------------------------===//
#include "mlir/ExecutionEngine/SparseTensorUtils.h"
#include "mlir/ExecutionEngine/CRunnerUtils.h"
#ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cinttypes>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <numeric>
#include <vector>
//===----------------------------------------------------------------------===//
//
// Internal support for storing and reading sparse tensors.
//
// The following memory-resident sparse storage schemes are supported:
//
// (a) A coordinate scheme for temporarily storing and lexicographically
// sorting a sparse tensor by index (SparseTensorCOO).
//
// (b) A "one-size-fits-all" sparse tensor storage scheme defined by
// per-dimension sparse/dense annnotations together with a dimension
// ordering used by MLIR compiler-generated code (SparseTensorStorage).
//
// The following external formats are supported:
//
// (1) Matrix Market Exchange (MME): *.mtx
// https://math.nist.gov/MatrixMarket/formats.html
//
// (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
// http://frostt.io/tensors/file-formats.html
//
// Two public APIs are supported:
//
// (I) Methods operating on MLIR buffers (memrefs) to interact with sparse
// tensors. These methods should be used exclusively by MLIR
// compiler-generated code.
//
// (II) Methods that accept C-style data structures to interact with sparse
// tensors. These methods can be used by any external runtime that wants
// to interact with MLIR compiler-generated code.
//
// In both cases (I) and (II), the SparseTensorStorage format is externally
// only visible as an opaque pointer.
//
//===----------------------------------------------------------------------===//
namespace {
static constexpr int kColWidth = 1025;
/// A sparse tensor element in coordinate scheme (value and indices).
/// For example, a rank-1 vector element would look like
/// ({i}, a[i])
/// and a rank-5 tensor element like
/// ({i,j,k,l,m}, a[i,j,k,l,m])
template <typename V>
struct Element {
Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){};
std::vector<uint64_t> indices;
V value;
};
/// A memory-resident sparse tensor in coordinate scheme (collection of
/// elements). This data structure is used to read a sparse tensor from
/// any external format into memory and sort the elements lexicographically
/// by indices before passing it back to the client (most packed storage
/// formats require the elements to appear in lexicographic index order).
template <typename V>
struct SparseTensorCOO {
public:
SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity)
: sizes(szs), iteratorLocked(false), iteratorPos(0) {
if (capacity)
elements.reserve(capacity);
}
/// Adds element as indices and value.
void add(const std::vector<uint64_t> &ind, V val) {
assert(!iteratorLocked && "Attempt to add() after startIterator()");
uint64_t rank = getRank();
assert(rank == ind.size());
for (uint64_t r = 0; r < rank; r++)
assert(ind[r] < sizes[r]); // within bounds
elements.emplace_back(ind, val);
}
/// Sorts elements lexicographically by index.
void sort() {
assert(!iteratorLocked && "Attempt to sort() after startIterator()");
// TODO: we may want to cache an `isSorted` bit, to avoid
// unnecessary/redundant sorting.
std::sort(elements.begin(), elements.end(), lexOrder);
}
/// Returns rank.
uint64_t getRank() const { return sizes.size(); }
/// Getter for sizes array.
const std::vector<uint64_t> &getSizes() const { return sizes; }
/// Getter for elements array.
const std::vector<Element<V>> &getElements() const { return elements; }
/// Switch into iterator mode.
void startIterator() {
iteratorLocked = true;
iteratorPos = 0;
}
/// Get the next element.
const Element<V> *getNext() {
assert(iteratorLocked && "Attempt to getNext() before startIterator()");
if (iteratorPos < elements.size())
return &(elements[iteratorPos++]);
iteratorLocked = false;
return nullptr;
}
/// Factory method. Permutes the original dimensions according to
/// the given ordering and expects subsequent add() calls to honor
/// that same ordering for the given indices. The result is a
/// fully permuted coordinate scheme.
static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank,
const uint64_t *sizes,
const uint64_t *perm,
uint64_t capacity = 0) {
std::vector<uint64_t> permsz(rank);
for (uint64_t r = 0; r < rank; r++)
permsz[perm[r]] = sizes[r];
return new SparseTensorCOO<V>(permsz, capacity);
}
private:
/// Returns true if indices of e1 < indices of e2.
static bool lexOrder(const Element<V> &e1, const Element<V> &e2) {
uint64_t rank = e1.indices.size();
assert(rank == e2.indices.size());
for (uint64_t r = 0; r < rank; r++) {
if (e1.indices[r] == e2.indices[r])
continue;
return e1.indices[r] < e2.indices[r];
}
return false;
}
const std::vector<uint64_t> sizes; // per-dimension sizes
std::vector<Element<V>> elements;
bool iteratorLocked;
unsigned iteratorPos;
};
/// Abstract base class of sparse tensor storage. Note that we use
/// function overloading to implement "partial" method specialization.
class SparseTensorStorageBase {
public:
/// Dimension size query.
virtual uint64_t getDimSize(uint64_t) = 0;
/// Overhead storage.
virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); }
virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); }
virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); }
virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); }
virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); }
virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); }
virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); }
virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); }
/// Primary storage.
virtual void getValues(std::vector<double> **) { fatal("valf64"); }
virtual void getValues(std::vector<float> **) { fatal("valf32"); }
virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); }
virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); }
virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); }
virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); }
/// Element-wise insertion in lexicographic index order.
virtual void lexInsert(const uint64_t *, double) { fatal("insf64"); }
virtual void lexInsert(const uint64_t *, float) { fatal("insf32"); }
virtual void lexInsert(const uint64_t *, int64_t) { fatal("insi64"); }
virtual void lexInsert(const uint64_t *, int32_t) { fatal("insi32"); }
virtual void lexInsert(const uint64_t *, int16_t) { fatal("ins16"); }
virtual void lexInsert(const uint64_t *, int8_t) { fatal("insi8"); }
/// Expanded insertion.
virtual void expInsert(uint64_t *, double *, bool *, uint64_t *, uint64_t) {
fatal("expf64");
}
virtual void expInsert(uint64_t *, float *, bool *, uint64_t *, uint64_t) {
fatal("expf32");
}
virtual void expInsert(uint64_t *, int64_t *, bool *, uint64_t *, uint64_t) {
fatal("expi64");
}
virtual void expInsert(uint64_t *, int32_t *, bool *, uint64_t *, uint64_t) {
fatal("expi32");
}
virtual void expInsert(uint64_t *, int16_t *, bool *, uint64_t *, uint64_t) {
fatal("expi16");
}
virtual void expInsert(uint64_t *, int8_t *, bool *, uint64_t *, uint64_t) {
fatal("expi8");
}
/// Finishes insertion.
virtual void endInsert() = 0;
virtual ~SparseTensorStorageBase() = default;
private:
void fatal(const char *tp) {
fprintf(stderr, "unsupported %s\n", tp);
exit(1);
}
};
/// A memory-resident sparse tensor using a storage scheme based on
/// per-dimension sparse/dense annotations. This data structure provides a
/// bufferized form of a sparse tensor type. In contrast to generating setup
/// methods for each differently annotated sparse tensor, this method provides
/// a convenient "one-size-fits-all" solution that simply takes an input tensor
/// and annotations to implement all required setup in a general manner.
template <typename P, typename I, typename V>
class SparseTensorStorage : public SparseTensorStorageBase {
public:
/// Constructs a sparse tensor storage scheme with the given dimensions,
/// permutation, and per-dimension dense/sparse annotations, using
/// the coordinate scheme tensor for the initial contents if provided.
SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm,
const DimLevelType *sparsity,
SparseTensorCOO<V> *tensor = nullptr)
: sizes(szs), rev(getRank()), idx(getRank()), pointers(getRank()),
indices(getRank()) {
uint64_t rank = getRank();
// Store "reverse" permutation.
for (uint64_t r = 0; r < rank; r++)
rev[perm[r]] = r;
// Provide hints on capacity of pointers and indices.
// TODO: needs fine-tuning based on sparsity
bool allDense = true;
uint64_t sz = 1;
for (uint64_t r = 0; r < rank; r++) {
sz *= sizes[r];
if (sparsity[r] == DimLevelType::kCompressed) {
pointers[r].reserve(sz + 1);
indices[r].reserve(sz);
sz = 1;
allDense = false;
} else {
assert(sparsity[r] == DimLevelType::kDense &&
"singleton not yet supported");
}
}
// Prepare sparse pointer structures for all dimensions.
for (uint64_t r = 0; r < rank; r++)
if (sparsity[r] == DimLevelType::kCompressed)
pointers[r].push_back(0);
// Then assign contents from coordinate scheme tensor if provided.
if (tensor) {
// Lexicographically sort the tensor, to ensure precondition of `fromCOO`.
tensor->sort();
const std::vector<Element<V>> &elements = tensor->getElements();
uint64_t nnz = elements.size();
values.reserve(nnz);
fromCOO(elements, 0, nnz, 0);
} else if (allDense) {
values.resize(sz, 0);
}
}
~SparseTensorStorage() override = default;
/// Get the rank of the tensor.
uint64_t getRank() const { return sizes.size(); }
/// Get the size in the given dimension of the tensor.
uint64_t getDimSize(uint64_t d) override {
assert(d < getRank());
return sizes[d];
}
/// Partially specialize these getter methods based on template types.
void getPointers(std::vector<P> **out, uint64_t d) override {
assert(d < getRank());
*out = &pointers[d];
}
void getIndices(std::vector<I> **out, uint64_t d) override {
assert(d < getRank());
*out = &indices[d];
}
void getValues(std::vector<V> **out) override { *out = &values; }
/// Partially specialize lexicographical insertions based on template types.
void lexInsert(const uint64_t *cursor, V val) override {
// First, wrap up pending insertion path.
uint64_t diff = 0;
uint64_t top = 0;
if (!values.empty()) {
diff = lexDiff(cursor);
endPath(diff + 1);
top = idx[diff] + 1;
}
// Then continue with insertion path.
insPath(cursor, diff, top, val);
}
/// Partially specialize expanded insertions based on template types.
/// Note that this method resets the values/filled-switch array back
/// to all-zero/false while only iterating over the nonzero elements.
void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added,
uint64_t count) override {
if (count == 0)
return;
// Sort.
std::sort(added, added + count);
// Restore insertion path for first insert.
uint64_t rank = getRank();
uint64_t index = added[0];
cursor[rank - 1] = index;
lexInsert(cursor, values[index]);
assert(filled[index]);
values[index] = 0;
filled[index] = false;
// Subsequent insertions are quick.
for (uint64_t i = 1; i < count; i++) {
assert(index < added[i] && "non-lexicographic insertion");
index = added[i];
cursor[rank - 1] = index;
insPath(cursor, rank - 1, added[i - 1] + 1, values[index]);
assert(filled[index]);
values[index] = 0.0;
filled[index] = false;
}
}
/// Finalizes lexicographic insertions.
void endInsert() override {
if (values.empty())
endDim(0);
else
endPath(0);
}
/// Returns this sparse tensor storage scheme as a new memory-resident
/// sparse tensor in coordinate scheme with the given dimension order.
SparseTensorCOO<V> *toCOO(const uint64_t *perm) {
// Restore original order of the dimension sizes and allocate coordinate
// scheme with desired new ordering specified in perm.
uint64_t rank = getRank();
std::vector<uint64_t> orgsz(rank);
for (uint64_t r = 0; r < rank; r++)
orgsz[rev[r]] = sizes[r];
SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO(
rank, orgsz.data(), perm, values.size());
// Populate coordinate scheme restored from old ordering and changed with
// new ordering. Rather than applying both reorderings during the recursion,
// we compute the combine permutation in advance.
std::vector<uint64_t> reord(rank);
for (uint64_t r = 0; r < rank; r++)
reord[r] = perm[rev[r]];
toCOO(*tensor, reord, 0, 0);
assert(tensor->getElements().size() == values.size());
return tensor;
}
/// Factory method. Constructs a sparse tensor storage scheme with the given
/// dimensions, permutation, and per-dimension dense/sparse annotations,
/// using the coordinate scheme tensor for the initial contents if provided.
/// In the latter case, the coordinate scheme must respect the same
/// permutation as is desired for the new sparse tensor storage.
static SparseTensorStorage<P, I, V> *
newSparseTensor(uint64_t rank, const uint64_t *sizes, const uint64_t *perm,
const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) {
SparseTensorStorage<P, I, V> *n = nullptr;
if (tensor) {
assert(tensor->getRank() == rank);
for (uint64_t r = 0; r < rank; r++)
assert(sizes[r] == 0 || tensor->getSizes()[perm[r]] == sizes[r]);
n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity,
tensor);
delete tensor;
} else {
std::vector<uint64_t> permsz(rank);
for (uint64_t r = 0; r < rank; r++)
permsz[perm[r]] = sizes[r];
n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity);
}
return n;
}
private:
/// Initializes sparse tensor storage scheme from a memory-resident sparse
/// tensor in coordinate scheme. This method prepares the pointers and
/// indices arrays under the given per-dimension dense/sparse annotations.
/// Precondition: the `elements` must be lexicographically sorted.
void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo,
uint64_t hi, uint64_t d) {
// Once dimensions are exhausted, insert the numerical values.
assert(d <= getRank());
if (d == getRank()) {
assert(lo < hi && hi <= elements.size());
values.push_back(elements[lo].value);
return;
}
// Visit all elements in this interval.
uint64_t full = 0;
while (lo < hi) {
assert(lo < elements.size() && hi <= elements.size());
// Find segment in interval with same index elements in this dimension.
uint64_t i = elements[lo].indices[d];
uint64_t seg = lo + 1;
while (seg < hi && elements[seg].indices[d] == i)
seg++;
// Handle segment in interval for sparse or dense dimension.
if (isCompressedDim(d)) {
indices[d].push_back(i);
} else {
// For dense storage we must fill in all the zero values between
// the previous element (when last we ran this for-loop) and the
// current element.
for (; full < i; full++)
endDim(d + 1);
full++;
}
fromCOO(elements, lo, seg, d + 1);
// And move on to next segment in interval.
lo = seg;
}
// Finalize the sparse pointer structure at this dimension.
if (isCompressedDim(d)) {
pointers[d].push_back(indices[d].size());
} else {
// For dense storage we must fill in all the zero values after
// the last element.
for (uint64_t sz = sizes[d]; full < sz; full++)
endDim(d + 1);
}
}
/// Stores the sparse tensor storage scheme into a memory-resident sparse
/// tensor in coordinate scheme.
void toCOO(SparseTensorCOO<V> &tensor, std::vector<uint64_t> &reord,
uint64_t pos, uint64_t d) {
assert(d <= getRank());
if (d == getRank()) {
assert(pos < values.size());
tensor.add(idx, values[pos]);
} else if (isCompressedDim(d)) {
// Sparse dimension.
for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) {
idx[reord[d]] = indices[d][ii];
toCOO(tensor, reord, ii, d + 1);
}
} else {
// Dense dimension.
for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) {
idx[reord[d]] = i;
toCOO(tensor, reord, off + i, d + 1);
}
}
}
/// Ends a deeper, never seen before dimension.
void endDim(uint64_t d) {
assert(d <= getRank());
if (d == getRank()) {
values.push_back(0);
} else if (isCompressedDim(d)) {
pointers[d].push_back(indices[d].size());
} else {
for (uint64_t full = 0, sz = sizes[d]; full < sz; full++)
endDim(d + 1);
}
}
/// Wraps up a single insertion path, inner to outer.
void endPath(uint64_t diff) {
uint64_t rank = getRank();
assert(diff <= rank);
for (uint64_t i = 0; i < rank - diff; i++) {
uint64_t d = rank - i - 1;
if (isCompressedDim(d)) {
pointers[d].push_back(indices[d].size());
} else {
for (uint64_t full = idx[d] + 1, sz = sizes[d]; full < sz; full++)
endDim(d + 1);
}
}
}
/// Continues a single insertion path, outer to inner.
void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) {
uint64_t rank = getRank();
assert(diff < rank);
for (uint64_t d = diff; d < rank; d++) {
uint64_t i = cursor[d];
if (isCompressedDim(d)) {
indices[d].push_back(i);
} else {
for (uint64_t full = top; full < i; full++)
endDim(d + 1);
}
top = 0;
idx[d] = i;
}
values.push_back(val);
}
/// Finds the lexicographic differing dimension.
uint64_t lexDiff(const uint64_t *cursor) {
for (uint64_t r = 0, rank = getRank(); r < rank; r++)
if (cursor[r] > idx[r])
return r;
else
assert(cursor[r] == idx[r] && "non-lexicographic insertion");
assert(0 && "duplication insertion");
return -1u;
}
/// Returns true if dimension is compressed.
inline bool isCompressedDim(uint64_t d) const {
return (!pointers[d].empty());
}
private:
std::vector<uint64_t> sizes; // per-dimension sizes
std::vector<uint64_t> rev; // "reverse" permutation
std::vector<uint64_t> idx; // index cursor
std::vector<std::vector<P>> pointers;
std::vector<std::vector<I>> indices;
std::vector<V> values;
};
/// Helper to convert string to lower case.
static char *toLower(char *token) {
for (char *c = token; *c; c++)
*c = tolower(*c);
return token;
}
/// Read the MME header of a general sparse matrix of type real.
static void readMMEHeader(FILE *file, char *filename, char *line,
uint64_t *idata, bool *isSymmetric) {
char header[64];
char object[64];
char format[64];
char field[64];
char symmetry[64];
// Read header line.
if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field,
symmetry) != 5) {
fprintf(stderr, "Corrupt header in %s\n", filename);
exit(1);
}
*isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0);
// Make sure this is a general sparse matrix.
if (strcmp(toLower(header), "%%matrixmarket") ||
strcmp(toLower(object), "matrix") ||
strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") ||
(strcmp(toLower(symmetry), "general") && !(*isSymmetric))) {
fprintf(stderr,
"Cannot find a general sparse matrix with type real in %s\n",
filename);
exit(1);
}
// Skip comments.
while (true) {
if (!fgets(line, kColWidth, file)) {
fprintf(stderr, "Cannot find data in %s\n", filename);
exit(1);
}
if (line[0] != '%')
break;
}
// Next line contains M N NNZ.
idata[0] = 2; // rank
if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3,
idata + 1) != 3) {
fprintf(stderr, "Cannot find size in %s\n", filename);
exit(1);
}
}
/// Read the "extended" FROSTT header. Although not part of the documented
/// format, we assume that the file starts with optional comments followed
/// by two lines that define the rank, the number of nonzeros, and the
/// dimensions sizes (one per rank) of the sparse tensor.
static void readExtFROSTTHeader(FILE *file, char *filename, char *line,
uint64_t *idata) {
// Skip comments.
while (true) {
if (!fgets(line, kColWidth, file)) {
fprintf(stderr, "Cannot find data in %s\n", filename);
exit(1);
}
if (line[0] != '#')
break;
}
// Next line contains RANK and NNZ.
if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) {
fprintf(stderr, "Cannot find metadata in %s\n", filename);
exit(1);
}
// Followed by a line with the dimension sizes (one per rank).
for (uint64_t r = 0; r < idata[0]; r++) {
if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) {
fprintf(stderr, "Cannot find dimension size %s\n", filename);
exit(1);
}
}
fgets(line, kColWidth, file); // end of line
}
/// Reads a sparse tensor with the given filename into a memory-resident
/// sparse tensor in coordinate scheme.
template <typename V>
static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank,
const uint64_t *sizes,
const uint64_t *perm) {
// Open the file.
FILE *file = fopen(filename, "r");
if (!file) {
fprintf(stderr, "Cannot find %s\n", filename);
exit(1);
}
// Perform some file format dependent set up.
char line[kColWidth];
uint64_t idata[512];
bool isSymmetric = false;
if (strstr(filename, ".mtx")) {
readMMEHeader(file, filename, line, idata, &isSymmetric);
} else if (strstr(filename, ".tns")) {
readExtFROSTTHeader(file, filename, line, idata);
} else {
fprintf(stderr, "Unknown format %s\n", filename);
exit(1);
}
// Prepare sparse tensor object with per-dimension sizes
// and the number of nonzeros as initial capacity.
assert(rank == idata[0] && "rank mismatch");
uint64_t nnz = idata[1];
for (uint64_t r = 0; r < rank; r++)
assert((sizes[r] == 0 || sizes[r] == idata[2 + r]) &&
"dimension size mismatch");
SparseTensorCOO<V> *tensor =
SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz);
// Read all nonzero elements.
std::vector<uint64_t> indices(rank);
for (uint64_t k = 0; k < nnz; k++) {
if (!fgets(line, kColWidth, file)) {
fprintf(stderr, "Cannot find next line of data in %s\n", filename);
exit(1);
}
char *linePtr = line;
for (uint64_t r = 0; r < rank; r++) {
uint64_t idx = strtoul(linePtr, &linePtr, 10);
// Add 0-based index.
indices[perm[r]] = idx - 1;
}
// The external formats always store the numerical values with the type
// double, but we cast these values to the sparse tensor object type.
double value = strtod(linePtr, &linePtr);
tensor->add(indices, value);
// We currently chose to deal with symmetric matrices by fully constructing
// them. In the future, we may want to make symmetry implicit for storage
// reasons.
if (isSymmetric && indices[0] != indices[1])
tensor->add({indices[1], indices[0]}, value);
}
// Close the file and return tensor.
fclose(file);
return tensor;
}
} // namespace
extern "C" {
//===----------------------------------------------------------------------===//
//
// Public API with methods that operate on MLIR buffers (memrefs) to interact
// with sparse tensors, which are only visible as opaque pointers externally.
// These methods should be used exclusively by MLIR compiler-generated code.
//
// Some macro magic is used to generate implementations for all required type
// combinations that can be called from MLIR compiler-generated code.
//
//===----------------------------------------------------------------------===//
#define CASE(p, i, v, P, I, V) \
if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \
SparseTensorCOO<V> *tensor = nullptr; \
if (action <= Action::kFromCOO) { \
if (action == Action::kFromFile) { \
char *filename = static_cast<char *>(ptr); \
tensor = openSparseTensorCOO<V>(filename, rank, sizes, perm); \
} else if (action == Action::kFromCOO) { \
tensor = static_cast<SparseTensorCOO<V> *>(ptr); \
} else { \
assert(action == Action::kEmpty); \
} \
return SparseTensorStorage<P, I, V>::newSparseTensor(rank, sizes, perm, \
sparsity, tensor); \
} \
if (action == Action::kEmptyCOO) \
return SparseTensorCOO<V>::newSparseTensorCOO(rank, sizes, perm); \
tensor = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \
if (action == Action::kToIterator) { \
tensor->startIterator(); \
} else { \
assert(action == Action::kToCOO); \
} \
return tensor; \
}
#define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V)
#define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \
void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \
assert(ref &&tensor); \
std::vector<TYPE> *v; \
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \
ref->basePtr = ref->data = v->data(); \
ref->offset = 0; \
ref->sizes[0] = v->size(); \
ref->strides[0] = 1; \
}
#define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \
void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \
index_t d) { \
assert(ref &&tensor); \
std::vector<TYPE> *v; \
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \
ref->basePtr = ref->data = v->data(); \
ref->offset = 0; \
ref->sizes[0] = v->size(); \
ref->strides[0] = 1; \
}
#define IMPL_ADDELT(NAME, TYPE) \
void *_mlir_ciface_##NAME(void *tensor, TYPE value, \
StridedMemRefType<index_t, 1> *iref, \
StridedMemRefType<index_t, 1> *pref) { \
assert(tensor &&iref &&pref); \
assert(iref->strides[0] == 1 && pref->strides[0] == 1); \
assert(iref->sizes[0] == pref->sizes[0]); \
const index_t *indx = iref->data + iref->offset; \
const index_t *perm = pref->data + pref->offset; \
uint64_t isize = iref->sizes[0]; \
std::vector<index_t> indices(isize); \
for (uint64_t r = 0; r < isize; r++) \
indices[perm[r]] = indx[r]; \
static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \
return tensor; \
}
#define IMPL_GETNEXT(NAME, V) \
bool _mlir_ciface_##NAME(void *tensor, StridedMemRefType<index_t, 1> *iref, \
StridedMemRefType<V, 0> *vref) { \
assert(tensor &&iref &&vref); \
assert(iref->strides[0] == 1); \
index_t *indx = iref->data + iref->offset; \
V *value = vref->data + vref->offset; \
const uint64_t isize = iref->sizes[0]; \
auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \
const Element<V> *elem = iter->getNext(); \
if (elem == nullptr) { \
delete iter; \
return false; \
} \
for (uint64_t r = 0; r < isize; r++) \
indx[r] = elem->indices[r]; \
*value = elem->value; \
return true; \
}
#define IMPL_LEXINSERT(NAME, V) \
void _mlir_ciface_##NAME(void *tensor, StridedMemRefType<index_t, 1> *cref, \
V val) { \
assert(tensor &&cref); \
assert(cref->strides[0] == 1); \
index_t *cursor = cref->data + cref->offset; \
assert(cursor); \
static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \
}
#define IMPL_EXPINSERT(NAME, V) \
void _mlir_ciface_##NAME( \
void *tensor, StridedMemRefType<index_t, 1> *cref, \
StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \
StridedMemRefType<index_t, 1> *aref, index_t count) { \
assert(tensor &&cref &&vref &&fref &&aref); \
assert(cref->strides[0] == 1); \
assert(vref->strides[0] == 1); \
assert(fref->strides[0] == 1); \
assert(aref->strides[0] == 1); \
assert(vref->sizes[0] == fref->sizes[0]); \
index_t *cursor = cref->data + cref->offset; \
V *values = vref->data + vref->offset; \
bool *filled = fref->data + fref->offset; \
index_t *added = aref->data + aref->offset; \
static_cast<SparseTensorStorageBase *>(tensor)->expInsert( \
cursor, values, filled, added, count); \
}
// Assume index_t is in fact uint64_t, so that _mlir_ciface_newSparseTensor
// can safely rewrite kIndex to kU64. We make this assertion to guarantee
// that this file cannot get out of sync with its header.
static_assert(std::is_same<index_t, uint64_t>::value,
"Expected index_t == uint64_t");
/// Constructs a new sparse tensor. This is the "swiss army knife"
/// method for materializing sparse tensors into the computation.
///
/// Action:
/// kEmpty = returns empty storage to fill later
/// kFromFile = returns storage, where ptr contains filename to read
/// kFromCOO = returns storage, where ptr contains coordinate scheme to assign
/// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO
/// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO
/// kToIterator = returns iterator from storage in ptr (call getNext() to use)
void *
_mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT
StridedMemRefType<index_t, 1> *sref,
StridedMemRefType<index_t, 1> *pref,
OverheadType ptrTp, OverheadType indTp,
PrimaryType valTp, Action action, void *ptr) {
assert(aref && sref && pref);
assert(aref->strides[0] == 1 && sref->strides[0] == 1 &&
pref->strides[0] == 1);
assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]);
const DimLevelType *sparsity = aref->data + aref->offset;
const index_t *sizes = sref->data + sref->offset;
const index_t *perm = pref->data + pref->offset;
uint64_t rank = aref->sizes[0];
// Rewrite kIndex to kU64, to avoid introducing a bunch of new cases.
// This is safe because of the static_assert above.
if (ptrTp == OverheadType::kIndex)
ptrTp = OverheadType::kU64;
if (indTp == OverheadType::kIndex)
indTp = OverheadType::kU64;
// Double matrices with all combinations of overhead storage.
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t,
uint64_t, double);
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t,
uint32_t, double);
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t,
uint16_t, double);
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t,
uint8_t, double);
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t,
uint64_t, double);
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t,
uint32_t, double);
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t,
uint16_t, double);
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t,
uint8_t, double);
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t,
uint64_t, double);
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t,
uint32_t, double);
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t,
uint16_t, double);
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t,
uint8_t, double);
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t,
uint64_t, double);
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t,
uint32_t, double);
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t,
uint16_t, double);
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t,
uint8_t, double);
// Float matrices with all combinations of overhead storage.
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t,
uint64_t, float);
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t,
uint32_t, float);
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t,
uint16_t, float);
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t,
uint8_t, float);
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t,
uint64_t, float);
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t,
uint32_t, float);
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t,
uint16_t, float);
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t,
uint8_t, float);
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t,
uint64_t, float);
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t,
uint32_t, float);
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t,
uint16_t, float);
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t,
uint8_t, float);
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t,
uint64_t, float);
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t,
uint32_t, float);
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t,
uint16_t, float);
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t,
uint8_t, float);
// Integral matrices with both overheads of the same type.
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t);
// Unsupported case (add above if needed).
fputs("unsupported combination of types\n", stderr);
exit(1);
}
/// Methods that provide direct access to pointers.
IMPL_GETOVERHEAD(sparsePointers, index_t, getPointers)
IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers)
IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers)
IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers)
IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers)
/// Methods that provide direct access to indices.
IMPL_GETOVERHEAD(sparseIndices, index_t, getIndices)
IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices)
IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices)
IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices)
IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices)
/// Methods that provide direct access to values.
IMPL_SPARSEVALUES(sparseValuesF64, double, getValues)
IMPL_SPARSEVALUES(sparseValuesF32, float, getValues)
IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues)
IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues)
IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues)
IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues)
/// Helper to add value to coordinate scheme, one per value type.
IMPL_ADDELT(addEltF64, double)
IMPL_ADDELT(addEltF32, float)
IMPL_ADDELT(addEltI64, int64_t)
IMPL_ADDELT(addEltI32, int32_t)
IMPL_ADDELT(addEltI16, int16_t)
IMPL_ADDELT(addEltI8, int8_t)
/// Helper to enumerate elements of coordinate scheme, one per value type.
IMPL_GETNEXT(getNextF64, double)
IMPL_GETNEXT(getNextF32, float)
IMPL_GETNEXT(getNextI64, int64_t)
IMPL_GETNEXT(getNextI32, int32_t)
IMPL_GETNEXT(getNextI16, int16_t)
IMPL_GETNEXT(getNextI8, int8_t)
/// Helper to insert elements in lexicographical index order, one per value
/// type.
IMPL_LEXINSERT(lexInsertF64, double)
IMPL_LEXINSERT(lexInsertF32, float)
IMPL_LEXINSERT(lexInsertI64, int64_t)
IMPL_LEXINSERT(lexInsertI32, int32_t)
IMPL_LEXINSERT(lexInsertI16, int16_t)
IMPL_LEXINSERT(lexInsertI8, int8_t)
/// Helper to insert using expansion, one per value type.
IMPL_EXPINSERT(expInsertF64, double)
IMPL_EXPINSERT(expInsertF32, float)
IMPL_EXPINSERT(expInsertI64, int64_t)
IMPL_EXPINSERT(expInsertI32, int32_t)
IMPL_EXPINSERT(expInsertI16, int16_t)
IMPL_EXPINSERT(expInsertI8, int8_t)
#undef CASE
#undef IMPL_SPARSEVALUES
#undef IMPL_GETOVERHEAD
#undef IMPL_ADDELT
#undef IMPL_GETNEXT
#undef IMPL_LEXINSERT
#undef IMPL_EXPINSERT
//===----------------------------------------------------------------------===//
//
// Public API with methods that accept C-style data structures to interact
// with sparse tensors, which are only visible as opaque pointers externally.
// These methods can be used both by MLIR compiler-generated code as well as by
// an external runtime that wants to interact with MLIR compiler-generated code.
//
//===----------------------------------------------------------------------===//
/// Helper method to read a sparse tensor filename from the environment,
/// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc.
char *getTensorFilename(index_t id) {
char var[80];
sprintf(var, "TENSOR%" PRIu64, id);
char *env = getenv(var);
return env;
}
/// Returns size of sparse tensor in given dimension.
index_t sparseDimSize(void *tensor, index_t d) {
return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d);
}
/// Finalizes lexicographic insertions.
void endInsert(void *tensor) {
return static_cast<SparseTensorStorageBase *>(tensor)->endInsert();
}
/// Releases sparse tensor storage.
void delSparseTensor(void *tensor) {
delete static_cast<SparseTensorStorageBase *>(tensor);
}
/// Initializes sparse tensor from a COO-flavored format expressed using C-style
/// data structures. The expected parameters are:
///
/// rank: rank of tensor
/// nse: number of specified elements (usually the nonzeros)
/// shape: array with dimension size for each rank
/// values: a "nse" array with values for all specified elements
/// indices: a flat "nse x rank" array with indices for all specified elements
///
/// For example, the sparse matrix
/// | 1.0 0.0 0.0 |
/// | 0.0 5.0 3.0 |
/// can be passed as
/// rank = 2
/// nse = 3
/// shape = [2, 3]
/// values = [1.0, 5.0, 3.0]
/// indices = [ 0, 0, 1, 1, 1, 2]
//
// TODO: for now f64 tensors only, no dim ordering, all dimensions compressed
//
void *convertToMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape,
double *values, uint64_t *indices) {
// Setup all-dims compressed and default ordering.
std::vector<DimLevelType> sparse(rank, DimLevelType::kCompressed);
std::vector<uint64_t> perm(rank);
std::iota(perm.begin(), perm.end(), 0);
// Convert external format to internal COO.
SparseTensorCOO<double> *tensor = SparseTensorCOO<double>::newSparseTensorCOO(
rank, shape, perm.data(), nse);
std::vector<uint64_t> idx(rank);
for (uint64_t i = 0, base = 0; i < nse; i++) {
for (uint64_t r = 0; r < rank; r++)
idx[r] = indices[base + r];
tensor->add(idx, values[i]);
base += rank;
}
// Return sparse tensor storage format as opaque pointer.
return SparseTensorStorage<uint64_t, uint64_t, double>::newSparseTensor(
rank, shape, perm.data(), sparse.data(), tensor);
}
/// Converts a sparse tensor to COO-flavored format expressed using C-style
/// data structures. The expected output parameters are pointers for these
/// values:
///
/// rank: rank of tensor
/// nse: number of specified elements (usually the nonzeros)
/// shape: array with dimension size for each rank
/// values: a "nse" array with values for all specified elements
/// indices: a flat "nse x rank" array with indices for all specified elements
///
/// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned
/// from convertToMLIRSparseTensor.
///
// TODO: Currently, values are copied from SparseTensorStorage to
// SparseTensorCOO, then to the output. We may want to reduce the number of
// copies.
//
// TODO: for now f64 tensors only, no dim ordering, all dimensions compressed
//
void convertFromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse,
uint64_t **pShape, double **pValues,
uint64_t **pIndices) {
SparseTensorStorage<uint64_t, uint64_t, double> *sparseTensor =
static_cast<SparseTensorStorage<uint64_t, uint64_t, double> *>(tensor);
uint64_t rank = sparseTensor->getRank();
std::vector<uint64_t> perm(rank);
std::iota(perm.begin(), perm.end(), 0);
SparseTensorCOO<double> *coo = sparseTensor->toCOO(perm.data());
const std::vector<Element<double>> &elements = coo->getElements();
uint64_t nse = elements.size();
uint64_t *shape = new uint64_t[rank];
for (uint64_t i = 0; i < rank; i++)
shape[i] = coo->getSizes()[i];
double *values = new double[nse];
uint64_t *indices = new uint64_t[rank * nse];
for (uint64_t i = 0, base = 0; i < nse; i++) {
values[i] = elements[i].value;
for (uint64_t j = 0; j < rank; j++)
indices[base + j] = elements[i].indices[j];
base += rank;
}
delete coo;
*pRank = rank;
*pNse = nse;
*pShape = shape;
*pValues = values;
*pIndices = indices;
}
} // extern "C"
#endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS