forked from OSchip/llvm-project
2107 lines
75 KiB
C++
2107 lines
75 KiB
C++
//===- bolt/Core/BinaryContext.cpp - Low-level context --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the BinaryContext class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "bolt/Core/BinaryContext.h"
|
|
#include "bolt/Core/BinaryEmitter.h"
|
|
#include "bolt/Core/BinaryFunction.h"
|
|
#include "bolt/Utils/CommandLineOpts.h"
|
|
#include "bolt/Utils/NameResolver.h"
|
|
#include "bolt/Utils/Utils.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
|
|
#include "llvm/MC/MCAsmLayout.h"
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
|
|
#include "llvm/MC/MCInstPrinter.h"
|
|
#include "llvm/MC/MCObjectStreamer.h"
|
|
#include "llvm/MC/MCObjectWriter.h"
|
|
#include "llvm/MC/MCSectionELF.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Regex.h"
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <unordered_set>
|
|
|
|
using namespace llvm;
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "bolt"
|
|
|
|
namespace opts {
|
|
|
|
cl::opt<bool>
|
|
NoHugePages("no-huge-pages",
|
|
cl::desc("use regular size pages for code alignment"),
|
|
cl::ZeroOrMore,
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<bool>
|
|
PrintDebugInfo("print-debug-info",
|
|
cl::desc("print debug info when printing functions"),
|
|
cl::Hidden,
|
|
cl::ZeroOrMore,
|
|
cl::cat(BoltCategory));
|
|
|
|
cl::opt<bool>
|
|
PrintRelocations("print-relocations",
|
|
cl::desc("print relocations when printing functions/objects"),
|
|
cl::Hidden,
|
|
cl::ZeroOrMore,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<bool>
|
|
PrintMemData("print-mem-data",
|
|
cl::desc("print memory data annotations when printing functions"),
|
|
cl::Hidden,
|
|
cl::ZeroOrMore,
|
|
cl::cat(BoltCategory));
|
|
|
|
} // namespace opts
|
|
|
|
namespace llvm {
|
|
namespace bolt {
|
|
|
|
BinaryContext::BinaryContext(std::unique_ptr<MCContext> Ctx,
|
|
std::unique_ptr<DWARFContext> DwCtx,
|
|
std::unique_ptr<Triple> TheTriple,
|
|
const Target *TheTarget, std::string TripleName,
|
|
std::unique_ptr<MCCodeEmitter> MCE,
|
|
std::unique_ptr<MCObjectFileInfo> MOFI,
|
|
std::unique_ptr<const MCAsmInfo> AsmInfo,
|
|
std::unique_ptr<const MCInstrInfo> MII,
|
|
std::unique_ptr<const MCSubtargetInfo> STI,
|
|
std::unique_ptr<MCInstPrinter> InstPrinter,
|
|
std::unique_ptr<const MCInstrAnalysis> MIA,
|
|
std::unique_ptr<MCPlusBuilder> MIB,
|
|
std::unique_ptr<const MCRegisterInfo> MRI,
|
|
std::unique_ptr<MCDisassembler> DisAsm)
|
|
: Ctx(std::move(Ctx)), DwCtx(std::move(DwCtx)),
|
|
TheTriple(std::move(TheTriple)), TheTarget(TheTarget),
|
|
TripleName(TripleName), MCE(std::move(MCE)), MOFI(std::move(MOFI)),
|
|
AsmInfo(std::move(AsmInfo)), MII(std::move(MII)), STI(std::move(STI)),
|
|
InstPrinter(std::move(InstPrinter)), MIA(std::move(MIA)),
|
|
MIB(std::move(MIB)), MRI(std::move(MRI)), DisAsm(std::move(DisAsm)) {
|
|
Relocation::Arch = this->TheTriple->getArch();
|
|
PageAlign = opts::NoHugePages ? RegularPageSize : HugePageSize;
|
|
}
|
|
|
|
BinaryContext::~BinaryContext() {
|
|
for (BinarySection *Section : Sections)
|
|
delete Section;
|
|
for (BinaryFunction *InjectedFunction : InjectedBinaryFunctions)
|
|
delete InjectedFunction;
|
|
for (std::pair<const uint64_t, JumpTable *> JTI : JumpTables)
|
|
delete JTI.second;
|
|
clearBinaryData();
|
|
}
|
|
|
|
/// Create BinaryContext for a given architecture \p ArchName and
|
|
/// triple \p TripleName.
|
|
std::unique_ptr<BinaryContext>
|
|
BinaryContext::createBinaryContext(const ObjectFile *File, bool IsPIC,
|
|
std::unique_ptr<DWARFContext> DwCtx) {
|
|
StringRef ArchName = "";
|
|
StringRef FeaturesStr = "";
|
|
switch (File->getArch()) {
|
|
case llvm::Triple::x86_64:
|
|
ArchName = "x86-64";
|
|
FeaturesStr = "+nopl";
|
|
break;
|
|
case llvm::Triple::aarch64:
|
|
ArchName = "aarch64";
|
|
FeaturesStr = "+fp-armv8,+neon,+crypto,+dotprod,+crc,+lse,+ras,+rdm,"
|
|
"+fullfp16,+spe,+fuse-aes,+rcpc";
|
|
break;
|
|
default:
|
|
errs() << "BOLT-ERROR: Unrecognized machine in ELF file.\n";
|
|
return nullptr;
|
|
}
|
|
|
|
auto TheTriple = std::make_unique<Triple>(File->makeTriple());
|
|
const std::string TripleName = TheTriple->str();
|
|
|
|
std::string Error;
|
|
const Target *TheTarget =
|
|
TargetRegistry::lookupTarget(std::string(ArchName), *TheTriple, Error);
|
|
if (!TheTarget) {
|
|
errs() << "BOLT-ERROR: " << Error;
|
|
return nullptr;
|
|
}
|
|
|
|
std::unique_ptr<const MCRegisterInfo> MRI(
|
|
TheTarget->createMCRegInfo(TripleName));
|
|
if (!MRI) {
|
|
errs() << "BOLT-ERROR: no register info for target " << TripleName << "\n";
|
|
return nullptr;
|
|
}
|
|
|
|
// Set up disassembler.
|
|
std::unique_ptr<const MCAsmInfo> AsmInfo(
|
|
TheTarget->createMCAsmInfo(*MRI, TripleName, MCTargetOptions()));
|
|
if (!AsmInfo) {
|
|
errs() << "BOLT-ERROR: no assembly info for target " << TripleName << "\n";
|
|
return nullptr;
|
|
}
|
|
|
|
std::unique_ptr<const MCSubtargetInfo> STI(
|
|
TheTarget->createMCSubtargetInfo(TripleName, "", FeaturesStr));
|
|
if (!STI) {
|
|
errs() << "BOLT-ERROR: no subtarget info for target " << TripleName << "\n";
|
|
return nullptr;
|
|
}
|
|
|
|
std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
|
|
if (!MII) {
|
|
errs() << "BOLT-ERROR: no instruction info for target " << TripleName
|
|
<< "\n";
|
|
return nullptr;
|
|
}
|
|
|
|
std::unique_ptr<MCContext> Ctx(
|
|
new MCContext(*TheTriple, AsmInfo.get(), MRI.get(), STI.get()));
|
|
std::unique_ptr<MCObjectFileInfo> MOFI(
|
|
TheTarget->createMCObjectFileInfo(*Ctx, IsPIC));
|
|
Ctx->setObjectFileInfo(MOFI.get());
|
|
// We do not support X86 Large code model. Change this in the future.
|
|
bool Large = false;
|
|
if (TheTriple->getArch() == llvm::Triple::aarch64)
|
|
Large = true;
|
|
unsigned LSDAEncoding =
|
|
Large ? dwarf::DW_EH_PE_absptr : dwarf::DW_EH_PE_udata4;
|
|
unsigned TTypeEncoding =
|
|
Large ? dwarf::DW_EH_PE_absptr : dwarf::DW_EH_PE_udata4;
|
|
if (IsPIC) {
|
|
LSDAEncoding = dwarf::DW_EH_PE_pcrel |
|
|
(Large ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4);
|
|
TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
|
|
(Large ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4);
|
|
}
|
|
|
|
std::unique_ptr<MCDisassembler> DisAsm(
|
|
TheTarget->createMCDisassembler(*STI, *Ctx));
|
|
|
|
if (!DisAsm) {
|
|
errs() << "BOLT-ERROR: no disassembler for target " << TripleName << "\n";
|
|
return nullptr;
|
|
}
|
|
|
|
std::unique_ptr<const MCInstrAnalysis> MIA(
|
|
TheTarget->createMCInstrAnalysis(MII.get()));
|
|
if (!MIA) {
|
|
errs() << "BOLT-ERROR: failed to create instruction analysis for target"
|
|
<< TripleName << "\n";
|
|
return nullptr;
|
|
}
|
|
|
|
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
|
|
std::unique_ptr<MCInstPrinter> InstructionPrinter(
|
|
TheTarget->createMCInstPrinter(*TheTriple, AsmPrinterVariant, *AsmInfo,
|
|
*MII, *MRI));
|
|
if (!InstructionPrinter) {
|
|
errs() << "BOLT-ERROR: no instruction printer for target " << TripleName
|
|
<< '\n';
|
|
return nullptr;
|
|
}
|
|
InstructionPrinter->setPrintImmHex(true);
|
|
|
|
std::unique_ptr<MCCodeEmitter> MCE(
|
|
TheTarget->createMCCodeEmitter(*MII, *MRI, *Ctx));
|
|
|
|
// Make sure we don't miss any output on core dumps.
|
|
outs().SetUnbuffered();
|
|
errs().SetUnbuffered();
|
|
dbgs().SetUnbuffered();
|
|
|
|
auto BC = std::make_unique<BinaryContext>(
|
|
std::move(Ctx), std::move(DwCtx), std::move(TheTriple), TheTarget,
|
|
std::string(TripleName), std::move(MCE), std::move(MOFI),
|
|
std::move(AsmInfo), std::move(MII), std::move(STI),
|
|
std::move(InstructionPrinter), std::move(MIA), nullptr, std::move(MRI),
|
|
std::move(DisAsm));
|
|
|
|
BC->TTypeEncoding = TTypeEncoding;
|
|
BC->LSDAEncoding = LSDAEncoding;
|
|
|
|
BC->MAB = std::unique_ptr<MCAsmBackend>(
|
|
BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions()));
|
|
|
|
BC->setFilename(File->getFileName());
|
|
|
|
BC->HasFixedLoadAddress = !IsPIC;
|
|
|
|
return BC;
|
|
}
|
|
|
|
bool BinaryContext::forceSymbolRelocations(StringRef SymbolName) const {
|
|
if (opts::HotText &&
|
|
(SymbolName == "__hot_start" || SymbolName == "__hot_end"))
|
|
return true;
|
|
|
|
if (opts::HotData &&
|
|
(SymbolName == "__hot_data_start" || SymbolName == "__hot_data_end"))
|
|
return true;
|
|
|
|
if (SymbolName == "_end")
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<MCObjectWriter>
|
|
BinaryContext::createObjectWriter(raw_pwrite_stream &OS) {
|
|
return MAB->createObjectWriter(OS);
|
|
}
|
|
|
|
bool BinaryContext::validateObjectNesting() const {
|
|
auto Itr = BinaryDataMap.begin();
|
|
auto End = BinaryDataMap.end();
|
|
bool Valid = true;
|
|
while (Itr != End) {
|
|
auto Next = std::next(Itr);
|
|
while (Next != End &&
|
|
Itr->second->getSection() == Next->second->getSection() &&
|
|
Itr->second->containsRange(Next->second->getAddress(),
|
|
Next->second->getSize())) {
|
|
if (Next->second->Parent != Itr->second) {
|
|
errs() << "BOLT-WARNING: object nesting incorrect for:\n"
|
|
<< "BOLT-WARNING: " << *Itr->second << "\n"
|
|
<< "BOLT-WARNING: " << *Next->second << "\n";
|
|
Valid = false;
|
|
}
|
|
++Next;
|
|
}
|
|
Itr = Next;
|
|
}
|
|
return Valid;
|
|
}
|
|
|
|
bool BinaryContext::validateHoles() const {
|
|
bool Valid = true;
|
|
for (BinarySection &Section : sections()) {
|
|
for (const Relocation &Rel : Section.relocations()) {
|
|
uint64_t RelAddr = Rel.Offset + Section.getAddress();
|
|
const BinaryData *BD = getBinaryDataContainingAddress(RelAddr);
|
|
if (!BD) {
|
|
errs() << "BOLT-WARNING: no BinaryData found for relocation at address"
|
|
<< " 0x" << Twine::utohexstr(RelAddr) << " in "
|
|
<< Section.getName() << "\n";
|
|
Valid = false;
|
|
} else if (!BD->getAtomicRoot()) {
|
|
errs() << "BOLT-WARNING: no atomic BinaryData found for relocation at "
|
|
<< "address 0x" << Twine::utohexstr(RelAddr) << " in "
|
|
<< Section.getName() << "\n";
|
|
Valid = false;
|
|
}
|
|
}
|
|
}
|
|
return Valid;
|
|
}
|
|
|
|
void BinaryContext::updateObjectNesting(BinaryDataMapType::iterator GAI) {
|
|
const uint64_t Address = GAI->second->getAddress();
|
|
const uint64_t Size = GAI->second->getSize();
|
|
|
|
auto fixParents = [&](BinaryDataMapType::iterator Itr,
|
|
BinaryData *NewParent) {
|
|
BinaryData *OldParent = Itr->second->Parent;
|
|
Itr->second->Parent = NewParent;
|
|
++Itr;
|
|
while (Itr != BinaryDataMap.end() && OldParent &&
|
|
Itr->second->Parent == OldParent) {
|
|
Itr->second->Parent = NewParent;
|
|
++Itr;
|
|
}
|
|
};
|
|
|
|
// Check if the previous symbol contains the newly added symbol.
|
|
if (GAI != BinaryDataMap.begin()) {
|
|
BinaryData *Prev = std::prev(GAI)->second;
|
|
while (Prev) {
|
|
if (Prev->getSection() == GAI->second->getSection() &&
|
|
Prev->containsRange(Address, Size)) {
|
|
fixParents(GAI, Prev);
|
|
} else {
|
|
fixParents(GAI, nullptr);
|
|
}
|
|
Prev = Prev->Parent;
|
|
}
|
|
}
|
|
|
|
// Check if the newly added symbol contains any subsequent symbols.
|
|
if (Size != 0) {
|
|
BinaryData *BD = GAI->second->Parent ? GAI->second->Parent : GAI->second;
|
|
auto Itr = std::next(GAI);
|
|
while (
|
|
Itr != BinaryDataMap.end() &&
|
|
BD->containsRange(Itr->second->getAddress(), Itr->second->getSize())) {
|
|
Itr->second->Parent = BD;
|
|
++Itr;
|
|
}
|
|
}
|
|
}
|
|
|
|
iterator_range<BinaryContext::binary_data_iterator>
|
|
BinaryContext::getSubBinaryData(BinaryData *BD) {
|
|
auto Start = std::next(BinaryDataMap.find(BD->getAddress()));
|
|
auto End = Start;
|
|
while (End != BinaryDataMap.end() && BD->isAncestorOf(End->second))
|
|
++End;
|
|
return make_range(Start, End);
|
|
}
|
|
|
|
std::pair<const MCSymbol *, uint64_t>
|
|
BinaryContext::handleAddressRef(uint64_t Address, BinaryFunction &BF,
|
|
bool IsPCRel) {
|
|
uint64_t Addend = 0;
|
|
|
|
if (isAArch64()) {
|
|
// Check if this is an access to a constant island and create bookkeeping
|
|
// to keep track of it and emit it later as part of this function.
|
|
if (MCSymbol *IslandSym = BF.getOrCreateIslandAccess(Address))
|
|
return std::make_pair(IslandSym, Addend);
|
|
|
|
// Detect custom code written in assembly that refers to arbitrary
|
|
// constant islands from other functions. Write this reference so we
|
|
// can pull this constant island and emit it as part of this function
|
|
// too.
|
|
auto IslandIter = AddressToConstantIslandMap.lower_bound(Address);
|
|
if (IslandIter != AddressToConstantIslandMap.end()) {
|
|
if (MCSymbol *IslandSym =
|
|
IslandIter->second->getOrCreateProxyIslandAccess(Address, BF)) {
|
|
BF.createIslandDependency(IslandSym, IslandIter->second);
|
|
return std::make_pair(IslandSym, Addend);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note that the address does not necessarily have to reside inside
|
|
// a section, it could be an absolute address too.
|
|
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
|
|
if (Section && Section->isText()) {
|
|
if (BF.containsAddress(Address, /*UseMaxSize=*/isAArch64())) {
|
|
if (Address != BF.getAddress()) {
|
|
// The address could potentially escape. Mark it as another entry
|
|
// point into the function.
|
|
if (opts::Verbosity >= 1) {
|
|
outs() << "BOLT-INFO: potentially escaped address 0x"
|
|
<< Twine::utohexstr(Address) << " in function " << BF << '\n';
|
|
}
|
|
BF.HasInternalLabelReference = true;
|
|
return std::make_pair(
|
|
BF.addEntryPointAtOffset(Address - BF.getAddress()), Addend);
|
|
}
|
|
} else {
|
|
BF.InterproceduralReferences.insert(Address);
|
|
}
|
|
}
|
|
|
|
// With relocations, catch jump table references outside of the basic block
|
|
// containing the indirect jump.
|
|
if (HasRelocations) {
|
|
const MemoryContentsType MemType = analyzeMemoryAt(Address, BF);
|
|
if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE && IsPCRel) {
|
|
const MCSymbol *Symbol =
|
|
getOrCreateJumpTable(BF, Address, JumpTable::JTT_PIC);
|
|
|
|
return std::make_pair(Symbol, Addend);
|
|
}
|
|
}
|
|
|
|
if (BinaryData *BD = getBinaryDataContainingAddress(Address))
|
|
return std::make_pair(BD->getSymbol(), Address - BD->getAddress());
|
|
|
|
// TODO: use DWARF info to get size/alignment here?
|
|
MCSymbol *TargetSymbol = getOrCreateGlobalSymbol(Address, "DATAat");
|
|
LLVM_DEBUG(dbgs() << "Created symbol " << TargetSymbol->getName() << '\n');
|
|
return std::make_pair(TargetSymbol, Addend);
|
|
}
|
|
|
|
MemoryContentsType BinaryContext::analyzeMemoryAt(uint64_t Address,
|
|
BinaryFunction &BF) {
|
|
if (!isX86())
|
|
return MemoryContentsType::UNKNOWN;
|
|
|
|
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
|
|
if (!Section) {
|
|
// No section - possibly an absolute address. Since we don't allow
|
|
// internal function addresses to escape the function scope - we
|
|
// consider it a tail call.
|
|
if (opts::Verbosity > 1) {
|
|
errs() << "BOLT-WARNING: no section for address 0x"
|
|
<< Twine::utohexstr(Address) << " referenced from function " << BF
|
|
<< '\n';
|
|
}
|
|
return MemoryContentsType::UNKNOWN;
|
|
}
|
|
|
|
if (Section->isVirtual()) {
|
|
// The contents are filled at runtime.
|
|
return MemoryContentsType::UNKNOWN;
|
|
}
|
|
|
|
// No support for jump tables in code yet.
|
|
if (Section->isText())
|
|
return MemoryContentsType::UNKNOWN;
|
|
|
|
// Start with checking for PIC jump table. We expect non-PIC jump tables
|
|
// to have high 32 bits set to 0.
|
|
if (analyzeJumpTable(Address, JumpTable::JTT_PIC, BF))
|
|
return MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE;
|
|
|
|
if (analyzeJumpTable(Address, JumpTable::JTT_NORMAL, BF))
|
|
return MemoryContentsType::POSSIBLE_JUMP_TABLE;
|
|
|
|
return MemoryContentsType::UNKNOWN;
|
|
}
|
|
|
|
/// Check if <fragment restored name> == <parent restored name>.cold(.\d+)?
|
|
bool isPotentialFragmentByName(BinaryFunction &Fragment,
|
|
BinaryFunction &Parent) {
|
|
for (StringRef Name : Parent.getNames()) {
|
|
std::string NamePrefix = Regex::escape(NameResolver::restore(Name));
|
|
std::string NameRegex = Twine(NamePrefix, "\\.cold(\\.[0-9]+)?").str();
|
|
if (Fragment.hasRestoredNameRegex(NameRegex))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool BinaryContext::analyzeJumpTable(const uint64_t Address,
|
|
const JumpTable::JumpTableType Type,
|
|
BinaryFunction &BF,
|
|
const uint64_t NextJTAddress,
|
|
JumpTable::OffsetsType *Offsets) {
|
|
// Is one of the targets __builtin_unreachable?
|
|
bool HasUnreachable = false;
|
|
|
|
// Number of targets other than __builtin_unreachable.
|
|
uint64_t NumRealEntries = 0;
|
|
|
|
constexpr uint64_t INVALID_OFFSET = std::numeric_limits<uint64_t>::max();
|
|
auto addOffset = [&](uint64_t Offset) {
|
|
if (Offsets)
|
|
Offsets->emplace_back(Offset);
|
|
};
|
|
|
|
auto doesBelongToFunction = [&](const uint64_t Addr,
|
|
BinaryFunction *TargetBF) -> bool {
|
|
if (BF.containsAddress(Addr))
|
|
return true;
|
|
// Nothing to do if we failed to identify the containing function.
|
|
if (!TargetBF)
|
|
return false;
|
|
// Case 1: check if BF is a fragment and TargetBF is its parent.
|
|
if (BF.isFragment()) {
|
|
// Parent function may or may not be already registered.
|
|
// Set parent link based on function name matching heuristic.
|
|
return registerFragment(BF, *TargetBF);
|
|
}
|
|
// Case 2: check if TargetBF is a fragment and BF is its parent.
|
|
return TargetBF->isFragment() && registerFragment(*TargetBF, BF);
|
|
};
|
|
|
|
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
|
|
if (!Section)
|
|
return false;
|
|
|
|
// The upper bound is defined by containing object, section limits, and
|
|
// the next jump table in memory.
|
|
uint64_t UpperBound = Section->getEndAddress();
|
|
const BinaryData *JumpTableBD = getBinaryDataAtAddress(Address);
|
|
if (JumpTableBD && JumpTableBD->getSize()) {
|
|
assert(JumpTableBD->getEndAddress() <= UpperBound &&
|
|
"data object cannot cross a section boundary");
|
|
UpperBound = JumpTableBD->getEndAddress();
|
|
}
|
|
if (NextJTAddress)
|
|
UpperBound = std::min(NextJTAddress, UpperBound);
|
|
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: analyzeJumpTable in " << BF.getPrintName()
|
|
<< '\n');
|
|
const uint64_t EntrySize = getJumpTableEntrySize(Type);
|
|
for (uint64_t EntryAddress = Address; EntryAddress <= UpperBound - EntrySize;
|
|
EntryAddress += EntrySize) {
|
|
LLVM_DEBUG(dbgs() << " * Checking 0x" << Twine::utohexstr(EntryAddress)
|
|
<< " -> ");
|
|
// Check if there's a proper relocation against the jump table entry.
|
|
if (HasRelocations) {
|
|
if (Type == JumpTable::JTT_PIC &&
|
|
!DataPCRelocations.count(EntryAddress)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "FAIL: JTT_PIC table, no relocation for this address\n");
|
|
break;
|
|
}
|
|
if (Type == JumpTable::JTT_NORMAL && !getRelocationAt(EntryAddress)) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "FAIL: JTT_NORMAL table, no relocation for this address\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
const uint64_t Value =
|
|
(Type == JumpTable::JTT_PIC)
|
|
? Address + *getSignedValueAtAddress(EntryAddress, EntrySize)
|
|
: *getPointerAtAddress(EntryAddress);
|
|
|
|
// __builtin_unreachable() case.
|
|
if (Value == BF.getAddress() + BF.getSize()) {
|
|
addOffset(Value - BF.getAddress());
|
|
HasUnreachable = true;
|
|
LLVM_DEBUG(dbgs() << "OK: __builtin_unreachable\n");
|
|
continue;
|
|
}
|
|
|
|
// Function or one of its fragments.
|
|
BinaryFunction *TargetBF = getBinaryFunctionContainingAddress(Value);
|
|
|
|
// We assume that a jump table cannot have function start as an entry.
|
|
if (!doesBelongToFunction(Value, TargetBF) || Value == BF.getAddress()) {
|
|
LLVM_DEBUG({
|
|
if (!BF.containsAddress(Value)) {
|
|
dbgs() << "FAIL: function doesn't contain this address\n";
|
|
if (TargetBF) {
|
|
dbgs() << " ! function containing this address: "
|
|
<< TargetBF->getPrintName() << '\n';
|
|
if (TargetBF->isFragment())
|
|
dbgs() << " ! is a fragment\n";
|
|
for (BinaryFunction *TargetParent : TargetBF->ParentFragments)
|
|
dbgs() << " ! its parent is "
|
|
<< (TargetParent ? TargetParent->getPrintName() : "(none)")
|
|
<< '\n';
|
|
}
|
|
}
|
|
if (Value == BF.getAddress())
|
|
dbgs() << "FAIL: jump table cannot have function start as an entry\n";
|
|
});
|
|
break;
|
|
}
|
|
|
|
// Check there's an instruction at this offset.
|
|
if (TargetBF->getState() == BinaryFunction::State::Disassembled &&
|
|
!TargetBF->getInstructionAtOffset(Value - TargetBF->getAddress())) {
|
|
LLVM_DEBUG(dbgs() << "FAIL: no instruction at this offset\n");
|
|
break;
|
|
}
|
|
|
|
++NumRealEntries;
|
|
|
|
if (TargetBF == &BF) {
|
|
// Address inside the function.
|
|
addOffset(Value - TargetBF->getAddress());
|
|
LLVM_DEBUG(dbgs() << "OK: real entry\n");
|
|
} else {
|
|
// Address in split fragment.
|
|
BF.setHasSplitJumpTable(true);
|
|
// Add invalid offset for proper identification of jump table size.
|
|
addOffset(INVALID_OFFSET);
|
|
LLVM_DEBUG(dbgs() << "OK: address in split fragment "
|
|
<< TargetBF->getPrintName() << '\n');
|
|
}
|
|
}
|
|
|
|
// It's a jump table if the number of real entries is more than 1, or there's
|
|
// one real entry and "unreachable" targets. If there are only multiple
|
|
// "unreachable" targets, then it's not a jump table.
|
|
return NumRealEntries + HasUnreachable >= 2;
|
|
}
|
|
|
|
void BinaryContext::populateJumpTables() {
|
|
LLVM_DEBUG(dbgs() << "DataPCRelocations: " << DataPCRelocations.size()
|
|
<< '\n');
|
|
for (auto JTI = JumpTables.begin(), JTE = JumpTables.end(); JTI != JTE;
|
|
++JTI) {
|
|
JumpTable *JT = JTI->second;
|
|
BinaryFunction &BF = *JT->Parent;
|
|
|
|
if (!BF.isSimple())
|
|
continue;
|
|
|
|
uint64_t NextJTAddress = 0;
|
|
auto NextJTI = std::next(JTI);
|
|
if (NextJTI != JTE)
|
|
NextJTAddress = NextJTI->second->getAddress();
|
|
|
|
const bool Success = analyzeJumpTable(JT->getAddress(), JT->Type, BF,
|
|
NextJTAddress, &JT->OffsetEntries);
|
|
if (!Success) {
|
|
dbgs() << "failed to analyze jump table in function " << BF << '\n';
|
|
JT->print(dbgs());
|
|
if (NextJTI != JTE) {
|
|
dbgs() << "next jump table at 0x"
|
|
<< Twine::utohexstr(NextJTI->second->getAddress())
|
|
<< " belongs to function " << *NextJTI->second->Parent << '\n';
|
|
NextJTI->second->print(dbgs());
|
|
}
|
|
llvm_unreachable("jump table heuristic failure");
|
|
}
|
|
|
|
for (uint64_t EntryOffset : JT->OffsetEntries) {
|
|
if (EntryOffset == BF.getSize())
|
|
BF.IgnoredBranches.emplace_back(EntryOffset, BF.getSize());
|
|
else
|
|
BF.registerReferencedOffset(EntryOffset);
|
|
}
|
|
|
|
// In strict mode, erase PC-relative relocation record. Later we check that
|
|
// all such records are erased and thus have been accounted for.
|
|
if (opts::StrictMode && JT->Type == JumpTable::JTT_PIC) {
|
|
for (uint64_t Address = JT->getAddress();
|
|
Address < JT->getAddress() + JT->getSize();
|
|
Address += JT->EntrySize) {
|
|
DataPCRelocations.erase(DataPCRelocations.find(Address));
|
|
}
|
|
}
|
|
|
|
// Mark to skip the function and all its fragments.
|
|
if (BF.hasSplitJumpTable())
|
|
FragmentsToSkip.push_back(&BF);
|
|
}
|
|
|
|
if (opts::StrictMode && DataPCRelocations.size()) {
|
|
LLVM_DEBUG({
|
|
dbgs() << DataPCRelocations.size()
|
|
<< " unclaimed PC-relative relocations left in data:\n";
|
|
for (uint64_t Reloc : DataPCRelocations)
|
|
dbgs() << Twine::utohexstr(Reloc) << '\n';
|
|
});
|
|
assert(0 && "unclaimed PC-relative relocations left in data\n");
|
|
}
|
|
clearList(DataPCRelocations);
|
|
}
|
|
|
|
void BinaryContext::skipMarkedFragments() {
|
|
// Unique functions in the vector.
|
|
std::unordered_set<BinaryFunction *> UniqueFunctions(FragmentsToSkip.begin(),
|
|
FragmentsToSkip.end());
|
|
// Copy the functions back to FragmentsToSkip.
|
|
FragmentsToSkip.assign(UniqueFunctions.begin(), UniqueFunctions.end());
|
|
auto addToWorklist = [&](BinaryFunction *Function) -> void {
|
|
if (UniqueFunctions.count(Function))
|
|
return;
|
|
FragmentsToSkip.push_back(Function);
|
|
UniqueFunctions.insert(Function);
|
|
};
|
|
// Functions containing split jump tables need to be skipped with all
|
|
// fragments (transitively).
|
|
for (size_t I = 0; I != FragmentsToSkip.size(); I++) {
|
|
BinaryFunction *BF = FragmentsToSkip[I];
|
|
assert(UniqueFunctions.count(BF) &&
|
|
"internal error in traversing function fragments");
|
|
if (opts::Verbosity >= 1)
|
|
errs() << "BOLT-WARNING: Ignoring " << BF->getPrintName() << '\n';
|
|
BF->setIgnored();
|
|
std::for_each(BF->Fragments.begin(), BF->Fragments.end(), addToWorklist);
|
|
std::for_each(BF->ParentFragments.begin(), BF->ParentFragments.end(),
|
|
addToWorklist);
|
|
}
|
|
errs() << "BOLT-WARNING: Ignored " << FragmentsToSkip.size() << " functions "
|
|
<< "due to cold fragments.\n";
|
|
FragmentsToSkip.clear();
|
|
}
|
|
|
|
MCSymbol *BinaryContext::getOrCreateGlobalSymbol(uint64_t Address, Twine Prefix,
|
|
uint64_t Size,
|
|
uint16_t Alignment,
|
|
unsigned Flags) {
|
|
auto Itr = BinaryDataMap.find(Address);
|
|
if (Itr != BinaryDataMap.end()) {
|
|
assert(Itr->second->getSize() == Size || !Size);
|
|
return Itr->second->getSymbol();
|
|
}
|
|
|
|
std::string Name = (Prefix + "0x" + Twine::utohexstr(Address)).str();
|
|
assert(!GlobalSymbols.count(Name) && "created name is not unique");
|
|
return registerNameAtAddress(Name, Address, Size, Alignment, Flags);
|
|
}
|
|
|
|
MCSymbol *BinaryContext::getOrCreateUndefinedGlobalSymbol(StringRef Name) {
|
|
return Ctx->getOrCreateSymbol(Name);
|
|
}
|
|
|
|
BinaryFunction *BinaryContext::createBinaryFunction(
|
|
const std::string &Name, BinarySection &Section, uint64_t Address,
|
|
uint64_t Size, uint64_t SymbolSize, uint16_t Alignment) {
|
|
auto Result = BinaryFunctions.emplace(
|
|
Address, BinaryFunction(Name, Section, Address, Size, *this));
|
|
assert(Result.second == true && "unexpected duplicate function");
|
|
BinaryFunction *BF = &Result.first->second;
|
|
registerNameAtAddress(Name, Address, SymbolSize ? SymbolSize : Size,
|
|
Alignment);
|
|
setSymbolToFunctionMap(BF->getSymbol(), BF);
|
|
return BF;
|
|
}
|
|
|
|
const MCSymbol *
|
|
BinaryContext::getOrCreateJumpTable(BinaryFunction &Function, uint64_t Address,
|
|
JumpTable::JumpTableType Type) {
|
|
if (JumpTable *JT = getJumpTableContainingAddress(Address)) {
|
|
assert(JT->Type == Type && "jump table types have to match");
|
|
assert(JT->Parent == &Function &&
|
|
"cannot re-use jump table of a different function");
|
|
assert(Address == JT->getAddress() && "unexpected non-empty jump table");
|
|
|
|
return JT->getFirstLabel();
|
|
}
|
|
|
|
// Re-use the existing symbol if possible.
|
|
MCSymbol *JTLabel = nullptr;
|
|
if (BinaryData *Object = getBinaryDataAtAddress(Address)) {
|
|
if (!isInternalSymbolName(Object->getSymbol()->getName()))
|
|
JTLabel = Object->getSymbol();
|
|
}
|
|
|
|
const uint64_t EntrySize = getJumpTableEntrySize(Type);
|
|
if (!JTLabel) {
|
|
const std::string JumpTableName = generateJumpTableName(Function, Address);
|
|
JTLabel = registerNameAtAddress(JumpTableName, Address, 0, EntrySize);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: creating jump table " << JTLabel->getName()
|
|
<< " in function " << Function << '\n');
|
|
|
|
JumpTable *JT = new JumpTable(*JTLabel, Address, EntrySize, Type,
|
|
JumpTable::LabelMapType{{0, JTLabel}}, Function,
|
|
*getSectionForAddress(Address));
|
|
JumpTables.emplace(Address, JT);
|
|
|
|
// Duplicate the entry for the parent function for easy access.
|
|
Function.JumpTables.emplace(Address, JT);
|
|
|
|
return JTLabel;
|
|
}
|
|
|
|
std::pair<uint64_t, const MCSymbol *>
|
|
BinaryContext::duplicateJumpTable(BinaryFunction &Function, JumpTable *JT,
|
|
const MCSymbol *OldLabel) {
|
|
auto L = scopeLock();
|
|
unsigned Offset = 0;
|
|
bool Found = false;
|
|
for (std::pair<const unsigned, MCSymbol *> Elmt : JT->Labels) {
|
|
if (Elmt.second != OldLabel)
|
|
continue;
|
|
Offset = Elmt.first;
|
|
Found = true;
|
|
break;
|
|
}
|
|
assert(Found && "Label not found");
|
|
MCSymbol *NewLabel = Ctx->createNamedTempSymbol("duplicatedJT");
|
|
JumpTable *NewJT =
|
|
new JumpTable(*NewLabel, JT->getAddress(), JT->EntrySize, JT->Type,
|
|
JumpTable::LabelMapType{{Offset, NewLabel}}, Function,
|
|
*getSectionForAddress(JT->getAddress()));
|
|
NewJT->Entries = JT->Entries;
|
|
NewJT->Counts = JT->Counts;
|
|
uint64_t JumpTableID = ++DuplicatedJumpTables;
|
|
// Invert it to differentiate from regular jump tables whose IDs are their
|
|
// addresses in the input binary memory space
|
|
JumpTableID = ~JumpTableID;
|
|
JumpTables.emplace(JumpTableID, NewJT);
|
|
Function.JumpTables.emplace(JumpTableID, NewJT);
|
|
return std::make_pair(JumpTableID, NewLabel);
|
|
}
|
|
|
|
std::string BinaryContext::generateJumpTableName(const BinaryFunction &BF,
|
|
uint64_t Address) {
|
|
size_t Id;
|
|
uint64_t Offset = 0;
|
|
if (const JumpTable *JT = BF.getJumpTableContainingAddress(Address)) {
|
|
Offset = Address - JT->getAddress();
|
|
auto Itr = JT->Labels.find(Offset);
|
|
if (Itr != JT->Labels.end())
|
|
return std::string(Itr->second->getName());
|
|
Id = JumpTableIds.at(JT->getAddress());
|
|
} else {
|
|
Id = JumpTableIds[Address] = BF.JumpTables.size();
|
|
}
|
|
return ("JUMP_TABLE/" + BF.getOneName().str() + "." + std::to_string(Id) +
|
|
(Offset ? ("." + std::to_string(Offset)) : ""));
|
|
}
|
|
|
|
bool BinaryContext::hasValidCodePadding(const BinaryFunction &BF) {
|
|
// FIXME: aarch64 support is missing.
|
|
if (!isX86())
|
|
return true;
|
|
|
|
if (BF.getSize() == BF.getMaxSize())
|
|
return true;
|
|
|
|
ErrorOr<ArrayRef<unsigned char>> FunctionData = BF.getData();
|
|
assert(FunctionData && "cannot get function as data");
|
|
|
|
uint64_t Offset = BF.getSize();
|
|
MCInst Instr;
|
|
uint64_t InstrSize = 0;
|
|
uint64_t InstrAddress = BF.getAddress() + Offset;
|
|
using std::placeholders::_1;
|
|
|
|
// Skip instructions that satisfy the predicate condition.
|
|
auto skipInstructions = [&](std::function<bool(const MCInst &)> Predicate) {
|
|
const uint64_t StartOffset = Offset;
|
|
for (; Offset < BF.getMaxSize();
|
|
Offset += InstrSize, InstrAddress += InstrSize) {
|
|
if (!DisAsm->getInstruction(Instr, InstrSize, FunctionData->slice(Offset),
|
|
InstrAddress, nulls()))
|
|
break;
|
|
if (!Predicate(Instr))
|
|
break;
|
|
}
|
|
|
|
return Offset - StartOffset;
|
|
};
|
|
|
|
// Skip a sequence of zero bytes.
|
|
auto skipZeros = [&]() {
|
|
const uint64_t StartOffset = Offset;
|
|
for (; Offset < BF.getMaxSize(); ++Offset)
|
|
if ((*FunctionData)[Offset] != 0)
|
|
break;
|
|
|
|
return Offset - StartOffset;
|
|
};
|
|
|
|
// Accept the whole padding area filled with breakpoints.
|
|
auto isBreakpoint = std::bind(&MCPlusBuilder::isBreakpoint, MIB.get(), _1);
|
|
if (skipInstructions(isBreakpoint) && Offset == BF.getMaxSize())
|
|
return true;
|
|
|
|
auto isNoop = std::bind(&MCPlusBuilder::isNoop, MIB.get(), _1);
|
|
|
|
// Some functions have a jump to the next function or to the padding area
|
|
// inserted after the body.
|
|
auto isSkipJump = [&](const MCInst &Instr) {
|
|
uint64_t TargetAddress = 0;
|
|
if (MIB->isUnconditionalBranch(Instr) &&
|
|
MIB->evaluateBranch(Instr, InstrAddress, InstrSize, TargetAddress)) {
|
|
if (TargetAddress >= InstrAddress + InstrSize &&
|
|
TargetAddress <= BF.getAddress() + BF.getMaxSize()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// Skip over nops, jumps, and zero padding. Allow interleaving (this happens).
|
|
while (skipInstructions(isNoop) || skipInstructions(isSkipJump) ||
|
|
skipZeros())
|
|
;
|
|
|
|
if (Offset == BF.getMaxSize())
|
|
return true;
|
|
|
|
if (opts::Verbosity >= 1) {
|
|
errs() << "BOLT-WARNING: bad padding at address 0x"
|
|
<< Twine::utohexstr(BF.getAddress() + BF.getSize())
|
|
<< " starting at offset " << (Offset - BF.getSize())
|
|
<< " in function " << BF << '\n'
|
|
<< FunctionData->slice(BF.getSize(), BF.getMaxSize() - BF.getSize())
|
|
<< '\n';
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void BinaryContext::adjustCodePadding() {
|
|
for (auto &BFI : BinaryFunctions) {
|
|
BinaryFunction &BF = BFI.second;
|
|
if (!shouldEmit(BF))
|
|
continue;
|
|
|
|
if (!hasValidCodePadding(BF)) {
|
|
if (HasRelocations) {
|
|
if (opts::Verbosity >= 1) {
|
|
outs() << "BOLT-INFO: function " << BF
|
|
<< " has invalid padding. Ignoring the function.\n";
|
|
}
|
|
BF.setIgnored();
|
|
} else {
|
|
BF.setMaxSize(BF.getSize());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MCSymbol *BinaryContext::registerNameAtAddress(StringRef Name, uint64_t Address,
|
|
uint64_t Size,
|
|
uint16_t Alignment,
|
|
unsigned Flags) {
|
|
// Register the name with MCContext.
|
|
MCSymbol *Symbol = Ctx->getOrCreateSymbol(Name);
|
|
|
|
auto GAI = BinaryDataMap.find(Address);
|
|
BinaryData *BD;
|
|
if (GAI == BinaryDataMap.end()) {
|
|
ErrorOr<BinarySection &> SectionOrErr = getSectionForAddress(Address);
|
|
BinarySection &Section =
|
|
SectionOrErr ? SectionOrErr.get() : absoluteSection();
|
|
BD = new BinaryData(*Symbol, Address, Size, Alignment ? Alignment : 1,
|
|
Section, Flags);
|
|
GAI = BinaryDataMap.emplace(Address, BD).first;
|
|
GlobalSymbols[Name] = BD;
|
|
updateObjectNesting(GAI);
|
|
} else {
|
|
BD = GAI->second;
|
|
if (!BD->hasName(Name)) {
|
|
GlobalSymbols[Name] = BD;
|
|
BD->Symbols.push_back(Symbol);
|
|
}
|
|
}
|
|
|
|
return Symbol;
|
|
}
|
|
|
|
const BinaryData *
|
|
BinaryContext::getBinaryDataContainingAddressImpl(uint64_t Address) const {
|
|
auto NI = BinaryDataMap.lower_bound(Address);
|
|
auto End = BinaryDataMap.end();
|
|
if ((NI != End && Address == NI->first) ||
|
|
((NI != BinaryDataMap.begin()) && (NI-- != BinaryDataMap.begin()))) {
|
|
if (NI->second->containsAddress(Address))
|
|
return NI->second;
|
|
|
|
// If this is a sub-symbol, see if a parent data contains the address.
|
|
const BinaryData *BD = NI->second->getParent();
|
|
while (BD) {
|
|
if (BD->containsAddress(Address))
|
|
return BD;
|
|
BD = BD->getParent();
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool BinaryContext::setBinaryDataSize(uint64_t Address, uint64_t Size) {
|
|
auto NI = BinaryDataMap.find(Address);
|
|
assert(NI != BinaryDataMap.end());
|
|
if (NI == BinaryDataMap.end())
|
|
return false;
|
|
// TODO: it's possible that a jump table starts at the same address
|
|
// as a larger blob of private data. When we set the size of the
|
|
// jump table, it might be smaller than the total blob size. In this
|
|
// case we just leave the original size since (currently) it won't really
|
|
// affect anything.
|
|
assert((!NI->second->Size || NI->second->Size == Size ||
|
|
(NI->second->isJumpTable() && NI->second->Size > Size)) &&
|
|
"can't change the size of a symbol that has already had its "
|
|
"size set");
|
|
if (!NI->second->Size) {
|
|
NI->second->Size = Size;
|
|
updateObjectNesting(NI);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void BinaryContext::generateSymbolHashes() {
|
|
auto isPadding = [](const BinaryData &BD) {
|
|
StringRef Contents = BD.getSection().getContents();
|
|
StringRef SymData = Contents.substr(BD.getOffset(), BD.getSize());
|
|
return (BD.getName().startswith("HOLEat") ||
|
|
SymData.find_first_not_of(0) == StringRef::npos);
|
|
};
|
|
|
|
uint64_t NumCollisions = 0;
|
|
for (auto &Entry : BinaryDataMap) {
|
|
BinaryData &BD = *Entry.second;
|
|
StringRef Name = BD.getName();
|
|
|
|
if (!isInternalSymbolName(Name))
|
|
continue;
|
|
|
|
// First check if a non-anonymous alias exists and move it to the front.
|
|
if (BD.getSymbols().size() > 1) {
|
|
auto Itr = std::find_if(BD.getSymbols().begin(), BD.getSymbols().end(),
|
|
[&](const MCSymbol *Symbol) {
|
|
return !isInternalSymbolName(Symbol->getName());
|
|
});
|
|
if (Itr != BD.getSymbols().end()) {
|
|
size_t Idx = std::distance(BD.getSymbols().begin(), Itr);
|
|
std::swap(BD.getSymbols()[0], BD.getSymbols()[Idx]);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// We have to skip 0 size symbols since they will all collide.
|
|
if (BD.getSize() == 0) {
|
|
continue;
|
|
}
|
|
|
|
const uint64_t Hash = BD.getSection().hash(BD);
|
|
const size_t Idx = Name.find("0x");
|
|
std::string NewName =
|
|
(Twine(Name.substr(0, Idx)) + "_" + Twine::utohexstr(Hash)).str();
|
|
if (getBinaryDataByName(NewName)) {
|
|
// Ignore collisions for symbols that appear to be padding
|
|
// (i.e. all zeros or a "hole")
|
|
if (!isPadding(BD)) {
|
|
if (opts::Verbosity) {
|
|
errs() << "BOLT-WARNING: collision detected when hashing " << BD
|
|
<< " with new name (" << NewName << "), skipping.\n";
|
|
}
|
|
++NumCollisions;
|
|
}
|
|
continue;
|
|
}
|
|
BD.Symbols.insert(BD.Symbols.begin(), Ctx->getOrCreateSymbol(NewName));
|
|
GlobalSymbols[NewName] = &BD;
|
|
}
|
|
if (NumCollisions) {
|
|
errs() << "BOLT-WARNING: " << NumCollisions
|
|
<< " collisions detected while hashing binary objects";
|
|
if (!opts::Verbosity)
|
|
errs() << ". Use -v=1 to see the list.";
|
|
errs() << '\n';
|
|
}
|
|
}
|
|
|
|
bool BinaryContext::registerFragment(BinaryFunction &TargetFunction,
|
|
BinaryFunction &Function) const {
|
|
if (!isPotentialFragmentByName(TargetFunction, Function))
|
|
return false;
|
|
assert(TargetFunction.isFragment() && "TargetFunction must be a fragment");
|
|
if (TargetFunction.isParentFragment(&Function))
|
|
return true;
|
|
TargetFunction.addParentFragment(Function);
|
|
Function.addFragment(TargetFunction);
|
|
if (!HasRelocations) {
|
|
TargetFunction.setSimple(false);
|
|
Function.setSimple(false);
|
|
}
|
|
if (opts::Verbosity >= 1) {
|
|
outs() << "BOLT-INFO: marking " << TargetFunction << " as a fragment of "
|
|
<< Function << '\n';
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void BinaryContext::processInterproceduralReferences(BinaryFunction &Function) {
|
|
for (uint64_t Address : Function.InterproceduralReferences) {
|
|
if (!Address)
|
|
continue;
|
|
|
|
BinaryFunction *TargetFunction =
|
|
getBinaryFunctionContainingAddress(Address);
|
|
if (&Function == TargetFunction)
|
|
continue;
|
|
|
|
if (TargetFunction) {
|
|
if (TargetFunction->IsFragment &&
|
|
!registerFragment(*TargetFunction, Function)) {
|
|
errs() << "BOLT-WARNING: interprocedural reference between unrelated "
|
|
"fragments: "
|
|
<< Function.getPrintName() << " and "
|
|
<< TargetFunction->getPrintName() << '\n';
|
|
}
|
|
if (uint64_t Offset = Address - TargetFunction->getAddress())
|
|
TargetFunction->addEntryPointAtOffset(Offset);
|
|
|
|
continue;
|
|
}
|
|
|
|
// Check if address falls in function padding space - this could be
|
|
// unmarked data in code. In this case adjust the padding space size.
|
|
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
|
|
assert(Section && "cannot get section for referenced address");
|
|
|
|
if (!Section->isText())
|
|
continue;
|
|
|
|
// PLT requires special handling and could be ignored in this context.
|
|
StringRef SectionName = Section->getName();
|
|
if (SectionName == ".plt" || SectionName == ".plt.got")
|
|
continue;
|
|
|
|
if (opts::processAllFunctions()) {
|
|
errs() << "BOLT-ERROR: cannot process binaries with unmarked "
|
|
<< "object in code at address 0x" << Twine::utohexstr(Address)
|
|
<< " belonging to section " << SectionName << " in current mode\n";
|
|
exit(1);
|
|
}
|
|
|
|
TargetFunction = getBinaryFunctionContainingAddress(Address,
|
|
/*CheckPastEnd=*/false,
|
|
/*UseMaxSize=*/true);
|
|
// We are not going to overwrite non-simple functions, but for simple
|
|
// ones - adjust the padding size.
|
|
if (TargetFunction && TargetFunction->isSimple()) {
|
|
errs() << "BOLT-WARNING: function " << *TargetFunction
|
|
<< " has an object detected in a padding region at address 0x"
|
|
<< Twine::utohexstr(Address) << '\n';
|
|
TargetFunction->setMaxSize(TargetFunction->getSize());
|
|
}
|
|
}
|
|
|
|
clearList(Function.InterproceduralReferences);
|
|
}
|
|
|
|
void BinaryContext::postProcessSymbolTable() {
|
|
fixBinaryDataHoles();
|
|
bool Valid = true;
|
|
for (auto &Entry : BinaryDataMap) {
|
|
BinaryData *BD = Entry.second;
|
|
if ((BD->getName().startswith("SYMBOLat") ||
|
|
BD->getName().startswith("DATAat")) &&
|
|
!BD->getParent() && !BD->getSize() && !BD->isAbsolute() &&
|
|
BD->getSection()) {
|
|
errs() << "BOLT-WARNING: zero-sized top level symbol: " << *BD << "\n";
|
|
Valid = false;
|
|
}
|
|
}
|
|
assert(Valid);
|
|
generateSymbolHashes();
|
|
}
|
|
|
|
void BinaryContext::foldFunction(BinaryFunction &ChildBF,
|
|
BinaryFunction &ParentBF) {
|
|
assert(!ChildBF.isMultiEntry() && !ParentBF.isMultiEntry() &&
|
|
"cannot merge functions with multiple entry points");
|
|
|
|
std::unique_lock<std::shared_timed_mutex> WriteCtxLock(CtxMutex,
|
|
std::defer_lock);
|
|
std::unique_lock<std::shared_timed_mutex> WriteSymbolMapLock(
|
|
SymbolToFunctionMapMutex, std::defer_lock);
|
|
|
|
const StringRef ChildName = ChildBF.getOneName();
|
|
|
|
// Move symbols over and update bookkeeping info.
|
|
for (MCSymbol *Symbol : ChildBF.getSymbols()) {
|
|
ParentBF.getSymbols().push_back(Symbol);
|
|
WriteSymbolMapLock.lock();
|
|
SymbolToFunctionMap[Symbol] = &ParentBF;
|
|
WriteSymbolMapLock.unlock();
|
|
// NB: there's no need to update BinaryDataMap and GlobalSymbols.
|
|
}
|
|
ChildBF.getSymbols().clear();
|
|
|
|
// Move other names the child function is known under.
|
|
std::move(ChildBF.Aliases.begin(), ChildBF.Aliases.end(),
|
|
std::back_inserter(ParentBF.Aliases));
|
|
ChildBF.Aliases.clear();
|
|
|
|
if (HasRelocations) {
|
|
// Merge execution counts of ChildBF into those of ParentBF.
|
|
// Without relocations, we cannot reliably merge profiles as both functions
|
|
// continue to exist and either one can be executed.
|
|
ChildBF.mergeProfileDataInto(ParentBF);
|
|
|
|
std::shared_lock<std::shared_timed_mutex> ReadBfsLock(BinaryFunctionsMutex,
|
|
std::defer_lock);
|
|
std::unique_lock<std::shared_timed_mutex> WriteBfsLock(BinaryFunctionsMutex,
|
|
std::defer_lock);
|
|
// Remove ChildBF from the global set of functions in relocs mode.
|
|
ReadBfsLock.lock();
|
|
auto FI = BinaryFunctions.find(ChildBF.getAddress());
|
|
ReadBfsLock.unlock();
|
|
|
|
assert(FI != BinaryFunctions.end() && "function not found");
|
|
assert(&ChildBF == &FI->second && "function mismatch");
|
|
|
|
WriteBfsLock.lock();
|
|
ChildBF.clearDisasmState();
|
|
FI = BinaryFunctions.erase(FI);
|
|
WriteBfsLock.unlock();
|
|
|
|
} else {
|
|
// In non-relocation mode we keep the function, but rename it.
|
|
std::string NewName = "__ICF_" + ChildName.str();
|
|
|
|
WriteCtxLock.lock();
|
|
ChildBF.getSymbols().push_back(Ctx->getOrCreateSymbol(NewName));
|
|
WriteCtxLock.unlock();
|
|
|
|
ChildBF.setFolded(&ParentBF);
|
|
}
|
|
}
|
|
|
|
void BinaryContext::fixBinaryDataHoles() {
|
|
assert(validateObjectNesting() && "object nesting inconsitency detected");
|
|
|
|
for (BinarySection &Section : allocatableSections()) {
|
|
std::vector<std::pair<uint64_t, uint64_t>> Holes;
|
|
|
|
auto isNotHole = [&Section](const binary_data_iterator &Itr) {
|
|
BinaryData *BD = Itr->second;
|
|
bool isHole = (!BD->getParent() && !BD->getSize() && BD->isObject() &&
|
|
(BD->getName().startswith("SYMBOLat0x") ||
|
|
BD->getName().startswith("DATAat0x") ||
|
|
BD->getName().startswith("ANONYMOUS")));
|
|
return !isHole && BD->getSection() == Section && !BD->getParent();
|
|
};
|
|
|
|
auto BDStart = BinaryDataMap.begin();
|
|
auto BDEnd = BinaryDataMap.end();
|
|
auto Itr = FilteredBinaryDataIterator(isNotHole, BDStart, BDEnd);
|
|
auto End = FilteredBinaryDataIterator(isNotHole, BDEnd, BDEnd);
|
|
|
|
uint64_t EndAddress = Section.getAddress();
|
|
|
|
while (Itr != End) {
|
|
if (Itr->second->getAddress() > EndAddress) {
|
|
uint64_t Gap = Itr->second->getAddress() - EndAddress;
|
|
Holes.emplace_back(EndAddress, Gap);
|
|
}
|
|
EndAddress = Itr->second->getEndAddress();
|
|
++Itr;
|
|
}
|
|
|
|
if (EndAddress < Section.getEndAddress())
|
|
Holes.emplace_back(EndAddress, Section.getEndAddress() - EndAddress);
|
|
|
|
// If there is already a symbol at the start of the hole, grow that symbol
|
|
// to cover the rest. Otherwise, create a new symbol to cover the hole.
|
|
for (std::pair<uint64_t, uint64_t> &Hole : Holes) {
|
|
BinaryData *BD = getBinaryDataAtAddress(Hole.first);
|
|
if (BD) {
|
|
// BD->getSection() can be != Section if there are sections that
|
|
// overlap. In this case it is probably safe to just skip the holes
|
|
// since the overlapping section will not(?) have any symbols in it.
|
|
if (BD->getSection() == Section)
|
|
setBinaryDataSize(Hole.first, Hole.second);
|
|
} else {
|
|
getOrCreateGlobalSymbol(Hole.first, "HOLEat", Hole.second, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(validateObjectNesting() && "object nesting inconsitency detected");
|
|
assert(validateHoles() && "top level hole detected in object map");
|
|
}
|
|
|
|
void BinaryContext::printGlobalSymbols(raw_ostream &OS) const {
|
|
const BinarySection *CurrentSection = nullptr;
|
|
bool FirstSection = true;
|
|
|
|
for (auto &Entry : BinaryDataMap) {
|
|
const BinaryData *BD = Entry.second;
|
|
const BinarySection &Section = BD->getSection();
|
|
if (FirstSection || Section != *CurrentSection) {
|
|
uint64_t Address, Size;
|
|
StringRef Name = Section.getName();
|
|
if (Section) {
|
|
Address = Section.getAddress();
|
|
Size = Section.getSize();
|
|
} else {
|
|
Address = BD->getAddress();
|
|
Size = BD->getSize();
|
|
}
|
|
OS << "BOLT-INFO: Section " << Name << ", "
|
|
<< "0x" + Twine::utohexstr(Address) << ":"
|
|
<< "0x" + Twine::utohexstr(Address + Size) << "/" << Size << "\n";
|
|
CurrentSection = &Section;
|
|
FirstSection = false;
|
|
}
|
|
|
|
OS << "BOLT-INFO: ";
|
|
const BinaryData *P = BD->getParent();
|
|
while (P) {
|
|
OS << " ";
|
|
P = P->getParent();
|
|
}
|
|
OS << *BD << "\n";
|
|
}
|
|
}
|
|
|
|
Expected<unsigned>
|
|
BinaryContext::getDwarfFile(StringRef Directory, StringRef FileName,
|
|
unsigned FileNumber,
|
|
Optional<MD5::MD5Result> Checksum,
|
|
Optional<StringRef> Source, unsigned CUID) {
|
|
DwarfLineTable &Table = DwarfLineTablesCUMap[CUID];
|
|
return Table.tryGetFile(Directory, FileName, Checksum, Source,
|
|
Ctx->getDwarfVersion(), FileNumber);
|
|
}
|
|
|
|
unsigned BinaryContext::addDebugFilenameToUnit(const uint32_t DestCUID,
|
|
const uint32_t SrcCUID,
|
|
unsigned FileIndex) {
|
|
DWARFCompileUnit *SrcUnit = DwCtx->getCompileUnitForOffset(SrcCUID);
|
|
const DWARFDebugLine::LineTable *LineTable =
|
|
DwCtx->getLineTableForUnit(SrcUnit);
|
|
const std::vector<DWARFDebugLine::FileNameEntry> &FileNames =
|
|
LineTable->Prologue.FileNames;
|
|
// Dir indexes start at 1, as DWARF file numbers, and a dir index 0
|
|
// means empty dir.
|
|
assert(FileIndex > 0 && FileIndex <= FileNames.size() &&
|
|
"FileIndex out of range for the compilation unit.");
|
|
StringRef Dir = "";
|
|
if (FileNames[FileIndex - 1].DirIdx != 0) {
|
|
if (Optional<const char *> DirName = dwarf::toString(
|
|
LineTable->Prologue
|
|
.IncludeDirectories[FileNames[FileIndex - 1].DirIdx - 1])) {
|
|
Dir = *DirName;
|
|
}
|
|
}
|
|
StringRef FileName = "";
|
|
if (Optional<const char *> FName =
|
|
dwarf::toString(FileNames[FileIndex - 1].Name))
|
|
FileName = *FName;
|
|
assert(FileName != "");
|
|
return cantFail(getDwarfFile(Dir, FileName, 0, None, None, DestCUID));
|
|
}
|
|
|
|
std::vector<BinaryFunction *> BinaryContext::getSortedFunctions() {
|
|
std::vector<BinaryFunction *> SortedFunctions(BinaryFunctions.size());
|
|
std::transform(BinaryFunctions.begin(), BinaryFunctions.end(),
|
|
SortedFunctions.begin(),
|
|
[](std::pair<const uint64_t, BinaryFunction> &BFI) {
|
|
return &BFI.second;
|
|
});
|
|
|
|
std::stable_sort(SortedFunctions.begin(), SortedFunctions.end(),
|
|
[](const BinaryFunction *A, const BinaryFunction *B) {
|
|
if (A->hasValidIndex() && B->hasValidIndex()) {
|
|
return A->getIndex() < B->getIndex();
|
|
}
|
|
return A->hasValidIndex();
|
|
});
|
|
return SortedFunctions;
|
|
}
|
|
|
|
std::vector<BinaryFunction *> BinaryContext::getAllBinaryFunctions() {
|
|
std::vector<BinaryFunction *> AllFunctions;
|
|
AllFunctions.reserve(BinaryFunctions.size() + InjectedBinaryFunctions.size());
|
|
std::transform(BinaryFunctions.begin(), BinaryFunctions.end(),
|
|
std::back_inserter(AllFunctions),
|
|
[](std::pair<const uint64_t, BinaryFunction> &BFI) {
|
|
return &BFI.second;
|
|
});
|
|
std::copy(InjectedBinaryFunctions.begin(), InjectedBinaryFunctions.end(),
|
|
std::back_inserter(AllFunctions));
|
|
|
|
return AllFunctions;
|
|
}
|
|
|
|
Optional<DWARFUnit *> BinaryContext::getDWOCU(uint64_t DWOId) {
|
|
auto Iter = DWOCUs.find(DWOId);
|
|
if (Iter == DWOCUs.end())
|
|
return None;
|
|
|
|
return Iter->second;
|
|
}
|
|
|
|
DWARFContext *BinaryContext::getDWOContext() {
|
|
if (DWOCUs.empty())
|
|
return nullptr;
|
|
return &DWOCUs.begin()->second->getContext();
|
|
}
|
|
|
|
/// Handles DWO sections that can either be in .o, .dwo or .dwp files.
|
|
void BinaryContext::preprocessDWODebugInfo() {
|
|
for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) {
|
|
DWARFUnit *const DwarfUnit = CU.get();
|
|
if (llvm::Optional<uint64_t> DWOId = DwarfUnit->getDWOId()) {
|
|
DWARFUnit *DWOCU = DwarfUnit->getNonSkeletonUnitDIE(false).getDwarfUnit();
|
|
if (!DWOCU->isDWOUnit()) {
|
|
std::string DWOName = dwarf::toString(
|
|
DwarfUnit->getUnitDIE().find(
|
|
{dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}),
|
|
"");
|
|
outs() << "BOLT-WARNING: Debug Fission: DWO debug information for "
|
|
<< DWOName
|
|
<< " was not retrieved and won't be updated. Please check "
|
|
"relative path.\n";
|
|
continue;
|
|
}
|
|
DWOCUs[*DWOId] = DWOCU;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BinaryContext::preprocessDebugInfo() {
|
|
struct CURange {
|
|
uint64_t LowPC;
|
|
uint64_t HighPC;
|
|
DWARFUnit *Unit;
|
|
|
|
bool operator<(const CURange &Other) const { return LowPC < Other.LowPC; }
|
|
};
|
|
|
|
// Building a map of address ranges to CUs similar to .debug_aranges and use
|
|
// it to assign CU to functions.
|
|
std::vector<CURange> AllRanges;
|
|
AllRanges.reserve(DwCtx->getNumCompileUnits());
|
|
for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) {
|
|
Expected<DWARFAddressRangesVector> RangesOrError =
|
|
CU->getUnitDIE().getAddressRanges();
|
|
if (!RangesOrError) {
|
|
consumeError(RangesOrError.takeError());
|
|
continue;
|
|
}
|
|
for (DWARFAddressRange &Range : *RangesOrError) {
|
|
// Parts of the debug info could be invalidated due to corresponding code
|
|
// being removed from the binary by the linker. Hence we check if the
|
|
// address is a valid one.
|
|
if (containsAddress(Range.LowPC))
|
|
AllRanges.emplace_back(CURange{Range.LowPC, Range.HighPC, CU.get()});
|
|
}
|
|
}
|
|
|
|
std::sort(AllRanges.begin(), AllRanges.end());
|
|
for (auto &KV : BinaryFunctions) {
|
|
const uint64_t FunctionAddress = KV.first;
|
|
BinaryFunction &Function = KV.second;
|
|
|
|
auto It = std::partition_point(
|
|
AllRanges.begin(), AllRanges.end(),
|
|
[=](CURange R) { return R.HighPC <= FunctionAddress; });
|
|
if (It != AllRanges.end() && It->LowPC <= FunctionAddress) {
|
|
Function.setDWARFUnit(It->Unit);
|
|
}
|
|
}
|
|
|
|
// Discover units with debug info that needs to be updated.
|
|
for (const auto &KV : BinaryFunctions) {
|
|
const BinaryFunction &BF = KV.second;
|
|
if (shouldEmit(BF) && BF.getDWARFUnit())
|
|
ProcessedCUs.insert(BF.getDWARFUnit());
|
|
}
|
|
|
|
// Clear debug info for functions from units that we are not going to process.
|
|
for (auto &KV : BinaryFunctions) {
|
|
BinaryFunction &BF = KV.second;
|
|
if (BF.getDWARFUnit() && !ProcessedCUs.count(BF.getDWARFUnit()))
|
|
BF.setDWARFUnit(nullptr);
|
|
}
|
|
|
|
if (opts::Verbosity >= 1) {
|
|
outs() << "BOLT-INFO: " << ProcessedCUs.size() << " out of "
|
|
<< DwCtx->getNumCompileUnits() << " CUs will be updated\n";
|
|
}
|
|
|
|
// Populate MCContext with DWARF files from all units.
|
|
StringRef GlobalPrefix = AsmInfo->getPrivateGlobalPrefix();
|
|
for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) {
|
|
const uint64_t CUID = CU->getOffset();
|
|
getDwarfLineTable(CUID).setLabel(Ctx->getOrCreateSymbol(
|
|
GlobalPrefix + "line_table_start" + Twine(CUID)));
|
|
|
|
if (!ProcessedCUs.count(CU.get()))
|
|
continue;
|
|
|
|
const DWARFDebugLine::LineTable *LineTable =
|
|
DwCtx->getLineTableForUnit(CU.get());
|
|
const std::vector<DWARFDebugLine::FileNameEntry> &FileNames =
|
|
LineTable->Prologue.FileNames;
|
|
|
|
// Assign a unique label to every line table, one per CU.
|
|
// Make sure empty debug line tables are registered too.
|
|
if (FileNames.empty()) {
|
|
cantFail(getDwarfFile("", "<unknown>", 0, None, None, CUID));
|
|
continue;
|
|
}
|
|
for (size_t I = 0, Size = FileNames.size(); I != Size; ++I) {
|
|
// Dir indexes start at 1, as DWARF file numbers, and a dir index 0
|
|
// means empty dir.
|
|
StringRef Dir = "";
|
|
if (FileNames[I].DirIdx != 0)
|
|
if (Optional<const char *> DirName = dwarf::toString(
|
|
LineTable->Prologue
|
|
.IncludeDirectories[FileNames[I].DirIdx - 1]))
|
|
Dir = *DirName;
|
|
StringRef FileName = "";
|
|
if (Optional<const char *> FName = dwarf::toString(FileNames[I].Name))
|
|
FileName = *FName;
|
|
assert(FileName != "");
|
|
cantFail(getDwarfFile(Dir, FileName, 0, None, None, CUID));
|
|
}
|
|
}
|
|
|
|
preprocessDWODebugInfo();
|
|
}
|
|
|
|
bool BinaryContext::shouldEmit(const BinaryFunction &Function) const {
|
|
if (opts::processAllFunctions())
|
|
return true;
|
|
|
|
if (Function.isIgnored())
|
|
return false;
|
|
|
|
// In relocation mode we will emit non-simple functions with CFG.
|
|
// If the function does not have a CFG it should be marked as ignored.
|
|
return HasRelocations || Function.isSimple();
|
|
}
|
|
|
|
void BinaryContext::printCFI(raw_ostream &OS, const MCCFIInstruction &Inst) {
|
|
uint32_t Operation = Inst.getOperation();
|
|
switch (Operation) {
|
|
case MCCFIInstruction::OpSameValue:
|
|
OS << "OpSameValue Reg" << Inst.getRegister();
|
|
break;
|
|
case MCCFIInstruction::OpRememberState:
|
|
OS << "OpRememberState";
|
|
break;
|
|
case MCCFIInstruction::OpRestoreState:
|
|
OS << "OpRestoreState";
|
|
break;
|
|
case MCCFIInstruction::OpOffset:
|
|
OS << "OpOffset Reg" << Inst.getRegister() << " " << Inst.getOffset();
|
|
break;
|
|
case MCCFIInstruction::OpDefCfaRegister:
|
|
OS << "OpDefCfaRegister Reg" << Inst.getRegister();
|
|
break;
|
|
case MCCFIInstruction::OpDefCfaOffset:
|
|
OS << "OpDefCfaOffset " << Inst.getOffset();
|
|
break;
|
|
case MCCFIInstruction::OpDefCfa:
|
|
OS << "OpDefCfa Reg" << Inst.getRegister() << " " << Inst.getOffset();
|
|
break;
|
|
case MCCFIInstruction::OpRelOffset:
|
|
OS << "OpRelOffset Reg" << Inst.getRegister() << " " << Inst.getOffset();
|
|
break;
|
|
case MCCFIInstruction::OpAdjustCfaOffset:
|
|
OS << "OfAdjustCfaOffset " << Inst.getOffset();
|
|
break;
|
|
case MCCFIInstruction::OpEscape:
|
|
OS << "OpEscape";
|
|
break;
|
|
case MCCFIInstruction::OpRestore:
|
|
OS << "OpRestore Reg" << Inst.getRegister();
|
|
break;
|
|
case MCCFIInstruction::OpUndefined:
|
|
OS << "OpUndefined Reg" << Inst.getRegister();
|
|
break;
|
|
case MCCFIInstruction::OpRegister:
|
|
OS << "OpRegister Reg" << Inst.getRegister() << " Reg"
|
|
<< Inst.getRegister2();
|
|
break;
|
|
case MCCFIInstruction::OpWindowSave:
|
|
OS << "OpWindowSave";
|
|
break;
|
|
case MCCFIInstruction::OpGnuArgsSize:
|
|
OS << "OpGnuArgsSize";
|
|
break;
|
|
default:
|
|
OS << "Op#" << Operation;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void BinaryContext::printInstruction(raw_ostream &OS, const MCInst &Instruction,
|
|
uint64_t Offset,
|
|
const BinaryFunction *Function,
|
|
bool PrintMCInst, bool PrintMemData,
|
|
bool PrintRelocations) const {
|
|
if (MIB->isEHLabel(Instruction)) {
|
|
OS << " EH_LABEL: " << *MIB->getTargetSymbol(Instruction) << '\n';
|
|
return;
|
|
}
|
|
OS << format(" %08" PRIx64 ": ", Offset);
|
|
if (MIB->isCFI(Instruction)) {
|
|
uint32_t Offset = Instruction.getOperand(0).getImm();
|
|
OS << "\t!CFI\t$" << Offset << "\t; ";
|
|
if (Function)
|
|
printCFI(OS, *Function->getCFIFor(Instruction));
|
|
OS << "\n";
|
|
return;
|
|
}
|
|
InstPrinter->printInst(&Instruction, 0, "", *STI, OS);
|
|
if (MIB->isCall(Instruction)) {
|
|
if (MIB->isTailCall(Instruction))
|
|
OS << " # TAILCALL ";
|
|
if (MIB->isInvoke(Instruction)) {
|
|
const Optional<MCPlus::MCLandingPad> EHInfo = MIB->getEHInfo(Instruction);
|
|
OS << " # handler: ";
|
|
if (EHInfo->first)
|
|
OS << *EHInfo->first;
|
|
else
|
|
OS << '0';
|
|
OS << "; action: " << EHInfo->second;
|
|
const int64_t GnuArgsSize = MIB->getGnuArgsSize(Instruction);
|
|
if (GnuArgsSize >= 0)
|
|
OS << "; GNU_args_size = " << GnuArgsSize;
|
|
}
|
|
} else if (MIB->isIndirectBranch(Instruction)) {
|
|
if (uint64_t JTAddress = MIB->getJumpTable(Instruction)) {
|
|
OS << " # JUMPTABLE @0x" << Twine::utohexstr(JTAddress);
|
|
} else {
|
|
OS << " # UNKNOWN CONTROL FLOW";
|
|
}
|
|
}
|
|
|
|
MIB->printAnnotations(Instruction, OS);
|
|
|
|
if (opts::PrintDebugInfo) {
|
|
DebugLineTableRowRef RowRef =
|
|
DebugLineTableRowRef::fromSMLoc(Instruction.getLoc());
|
|
if (RowRef != DebugLineTableRowRef::NULL_ROW) {
|
|
const DWARFDebugLine::LineTable *LineTable;
|
|
if (Function && Function->getDWARFUnit() &&
|
|
Function->getDWARFUnit()->getOffset() == RowRef.DwCompileUnitIndex) {
|
|
LineTable = Function->getDWARFLineTable();
|
|
} else {
|
|
LineTable = DwCtx->getLineTableForUnit(
|
|
DwCtx->getCompileUnitForOffset(RowRef.DwCompileUnitIndex));
|
|
}
|
|
assert(LineTable &&
|
|
"line table expected for instruction with debug info");
|
|
|
|
const DWARFDebugLine::Row &Row = LineTable->Rows[RowRef.RowIndex - 1];
|
|
StringRef FileName = "";
|
|
if (Optional<const char *> FName =
|
|
dwarf::toString(LineTable->Prologue.FileNames[Row.File - 1].Name))
|
|
FileName = *FName;
|
|
OS << " # debug line " << FileName << ":" << Row.Line;
|
|
if (Row.Column)
|
|
OS << ":" << Row.Column;
|
|
if (Row.Discriminator)
|
|
OS << " discriminator:" << Row.Discriminator;
|
|
}
|
|
}
|
|
|
|
if ((opts::PrintRelocations || PrintRelocations) && Function) {
|
|
const uint64_t Size = computeCodeSize(&Instruction, &Instruction + 1);
|
|
Function->printRelocations(OS, Offset, Size);
|
|
}
|
|
|
|
OS << "\n";
|
|
|
|
if (PrintMCInst) {
|
|
Instruction.dump_pretty(OS, InstPrinter.get());
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|
|
ErrorOr<BinarySection &> BinaryContext::getSectionForAddress(uint64_t Address) {
|
|
auto SI = AddressToSection.upper_bound(Address);
|
|
if (SI != AddressToSection.begin()) {
|
|
--SI;
|
|
uint64_t UpperBound = SI->first + SI->second->getSize();
|
|
if (!SI->second->getSize())
|
|
UpperBound += 1;
|
|
if (UpperBound > Address)
|
|
return *SI->second;
|
|
}
|
|
return std::make_error_code(std::errc::bad_address);
|
|
}
|
|
|
|
ErrorOr<StringRef>
|
|
BinaryContext::getSectionNameForAddress(uint64_t Address) const {
|
|
if (ErrorOr<const BinarySection &> Section = getSectionForAddress(Address))
|
|
return Section->getName();
|
|
return std::make_error_code(std::errc::bad_address);
|
|
}
|
|
|
|
BinarySection &BinaryContext::registerSection(BinarySection *Section) {
|
|
auto Res = Sections.insert(Section);
|
|
(void)Res;
|
|
assert(Res.second && "can't register the same section twice.");
|
|
|
|
// Only register allocatable sections in the AddressToSection map.
|
|
if (Section->isAllocatable() && Section->getAddress())
|
|
AddressToSection.insert(std::make_pair(Section->getAddress(), Section));
|
|
NameToSection.insert(
|
|
std::make_pair(std::string(Section->getName()), Section));
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: registering " << *Section << "\n");
|
|
return *Section;
|
|
}
|
|
|
|
BinarySection &BinaryContext::registerSection(SectionRef Section) {
|
|
return registerSection(new BinarySection(*this, Section));
|
|
}
|
|
|
|
BinarySection &
|
|
BinaryContext::registerSection(StringRef SectionName,
|
|
const BinarySection &OriginalSection) {
|
|
return registerSection(
|
|
new BinarySection(*this, SectionName, OriginalSection));
|
|
}
|
|
|
|
BinarySection &
|
|
BinaryContext::registerOrUpdateSection(StringRef Name, unsigned ELFType,
|
|
unsigned ELFFlags, uint8_t *Data,
|
|
uint64_t Size, unsigned Alignment) {
|
|
auto NamedSections = getSectionByName(Name);
|
|
if (NamedSections.begin() != NamedSections.end()) {
|
|
assert(std::next(NamedSections.begin()) == NamedSections.end() &&
|
|
"can only update unique sections");
|
|
BinarySection *Section = NamedSections.begin()->second;
|
|
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: updating " << *Section << " -> ");
|
|
const bool Flag = Section->isAllocatable();
|
|
(void)Flag;
|
|
Section->update(Data, Size, Alignment, ELFType, ELFFlags);
|
|
LLVM_DEBUG(dbgs() << *Section << "\n");
|
|
// FIXME: Fix section flags/attributes for MachO.
|
|
if (isELF())
|
|
assert(Flag == Section->isAllocatable() &&
|
|
"can't change section allocation status");
|
|
return *Section;
|
|
}
|
|
|
|
return registerSection(
|
|
new BinarySection(*this, Name, Data, Size, Alignment, ELFType, ELFFlags));
|
|
}
|
|
|
|
bool BinaryContext::deregisterSection(BinarySection &Section) {
|
|
BinarySection *SectionPtr = &Section;
|
|
auto Itr = Sections.find(SectionPtr);
|
|
if (Itr != Sections.end()) {
|
|
auto Range = AddressToSection.equal_range(SectionPtr->getAddress());
|
|
while (Range.first != Range.second) {
|
|
if (Range.first->second == SectionPtr) {
|
|
AddressToSection.erase(Range.first);
|
|
break;
|
|
}
|
|
++Range.first;
|
|
}
|
|
|
|
auto NameRange =
|
|
NameToSection.equal_range(std::string(SectionPtr->getName()));
|
|
while (NameRange.first != NameRange.second) {
|
|
if (NameRange.first->second == SectionPtr) {
|
|
NameToSection.erase(NameRange.first);
|
|
break;
|
|
}
|
|
++NameRange.first;
|
|
}
|
|
|
|
Sections.erase(Itr);
|
|
delete SectionPtr;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void BinaryContext::printSections(raw_ostream &OS) const {
|
|
for (BinarySection *const &Section : Sections)
|
|
OS << "BOLT-INFO: " << *Section << "\n";
|
|
}
|
|
|
|
BinarySection &BinaryContext::absoluteSection() {
|
|
if (ErrorOr<BinarySection &> Section = getUniqueSectionByName("<absolute>"))
|
|
return *Section;
|
|
return registerOrUpdateSection("<absolute>", ELF::SHT_NULL, 0u);
|
|
}
|
|
|
|
ErrorOr<uint64_t> BinaryContext::getUnsignedValueAtAddress(uint64_t Address,
|
|
size_t Size) const {
|
|
const ErrorOr<const BinarySection &> Section = getSectionForAddress(Address);
|
|
if (!Section)
|
|
return std::make_error_code(std::errc::bad_address);
|
|
|
|
if (Section->isVirtual())
|
|
return 0;
|
|
|
|
DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(),
|
|
AsmInfo->getCodePointerSize());
|
|
auto ValueOffset = static_cast<uint64_t>(Address - Section->getAddress());
|
|
return DE.getUnsigned(&ValueOffset, Size);
|
|
}
|
|
|
|
ErrorOr<uint64_t> BinaryContext::getSignedValueAtAddress(uint64_t Address,
|
|
size_t Size) const {
|
|
const ErrorOr<const BinarySection &> Section = getSectionForAddress(Address);
|
|
if (!Section)
|
|
return std::make_error_code(std::errc::bad_address);
|
|
|
|
if (Section->isVirtual())
|
|
return 0;
|
|
|
|
DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(),
|
|
AsmInfo->getCodePointerSize());
|
|
auto ValueOffset = static_cast<uint64_t>(Address - Section->getAddress());
|
|
return DE.getSigned(&ValueOffset, Size);
|
|
}
|
|
|
|
void BinaryContext::addRelocation(uint64_t Address, MCSymbol *Symbol,
|
|
uint64_t Type, uint64_t Addend,
|
|
uint64_t Value) {
|
|
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
|
|
assert(Section && "cannot find section for address");
|
|
Section->addRelocation(Address - Section->getAddress(), Symbol, Type, Addend,
|
|
Value);
|
|
}
|
|
|
|
void BinaryContext::addDynamicRelocation(uint64_t Address, MCSymbol *Symbol,
|
|
uint64_t Type, uint64_t Addend,
|
|
uint64_t Value) {
|
|
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
|
|
assert(Section && "cannot find section for address");
|
|
Section->addDynamicRelocation(Address - Section->getAddress(), Symbol, Type,
|
|
Addend, Value);
|
|
}
|
|
|
|
bool BinaryContext::removeRelocationAt(uint64_t Address) {
|
|
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
|
|
assert(Section && "cannot find section for address");
|
|
return Section->removeRelocationAt(Address - Section->getAddress());
|
|
}
|
|
|
|
const Relocation *BinaryContext::getRelocationAt(uint64_t Address) {
|
|
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
|
|
if (!Section)
|
|
return nullptr;
|
|
|
|
return Section->getRelocationAt(Address - Section->getAddress());
|
|
}
|
|
|
|
const Relocation *BinaryContext::getDynamicRelocationAt(uint64_t Address) {
|
|
ErrorOr<BinarySection &> Section = getSectionForAddress(Address);
|
|
if (!Section)
|
|
return nullptr;
|
|
|
|
return Section->getDynamicRelocationAt(Address - Section->getAddress());
|
|
}
|
|
|
|
void BinaryContext::markAmbiguousRelocations(BinaryData &BD,
|
|
const uint64_t Address) {
|
|
auto setImmovable = [&](BinaryData &BD) {
|
|
BinaryData *Root = BD.getAtomicRoot();
|
|
LLVM_DEBUG(if (Root->isMoveable()) {
|
|
dbgs() << "BOLT-DEBUG: setting " << *Root << " as immovable "
|
|
<< "due to ambiguous relocation referencing 0x"
|
|
<< Twine::utohexstr(Address) << '\n';
|
|
});
|
|
Root->setIsMoveable(false);
|
|
};
|
|
|
|
if (Address == BD.getAddress()) {
|
|
setImmovable(BD);
|
|
|
|
// Set previous symbol as immovable
|
|
BinaryData *Prev = getBinaryDataContainingAddress(Address - 1);
|
|
if (Prev && Prev->getEndAddress() == BD.getAddress())
|
|
setImmovable(*Prev);
|
|
}
|
|
|
|
if (Address == BD.getEndAddress()) {
|
|
setImmovable(BD);
|
|
|
|
// Set next symbol as immovable
|
|
BinaryData *Next = getBinaryDataContainingAddress(BD.getEndAddress());
|
|
if (Next && Next->getAddress() == BD.getEndAddress())
|
|
setImmovable(*Next);
|
|
}
|
|
}
|
|
|
|
BinaryFunction *BinaryContext::getFunctionForSymbol(const MCSymbol *Symbol,
|
|
uint64_t *EntryDesc) {
|
|
std::shared_lock<std::shared_timed_mutex> Lock(SymbolToFunctionMapMutex);
|
|
auto BFI = SymbolToFunctionMap.find(Symbol);
|
|
if (BFI == SymbolToFunctionMap.end())
|
|
return nullptr;
|
|
|
|
BinaryFunction *BF = BFI->second;
|
|
if (EntryDesc)
|
|
*EntryDesc = BF->getEntryIDForSymbol(Symbol);
|
|
|
|
return BF;
|
|
}
|
|
|
|
void BinaryContext::exitWithBugReport(StringRef Message,
|
|
const BinaryFunction &Function) const {
|
|
errs() << "=======================================\n";
|
|
errs() << "BOLT is unable to proceed because it couldn't properly understand "
|
|
"this function.\n";
|
|
errs() << "If you are running the most recent version of BOLT, you may "
|
|
"want to "
|
|
"report this and paste this dump.\nPlease check that there is no "
|
|
"sensitive contents being shared in this dump.\n";
|
|
errs() << "\nOffending function: " << Function.getPrintName() << "\n\n";
|
|
ScopedPrinter SP(errs());
|
|
SP.printBinaryBlock("Function contents", *Function.getData());
|
|
errs() << "\n";
|
|
Function.dump();
|
|
errs() << "ERROR: " << Message;
|
|
errs() << "\n=======================================\n";
|
|
exit(1);
|
|
}
|
|
|
|
BinaryFunction *
|
|
BinaryContext::createInjectedBinaryFunction(const std::string &Name,
|
|
bool IsSimple) {
|
|
InjectedBinaryFunctions.push_back(new BinaryFunction(Name, *this, IsSimple));
|
|
BinaryFunction *BF = InjectedBinaryFunctions.back();
|
|
setSymbolToFunctionMap(BF->getSymbol(), BF);
|
|
BF->CurrentState = BinaryFunction::State::CFG;
|
|
return BF;
|
|
}
|
|
|
|
std::pair<size_t, size_t>
|
|
BinaryContext::calculateEmittedSize(BinaryFunction &BF, bool FixBranches) {
|
|
// Adjust branch instruction to match the current layout.
|
|
if (FixBranches)
|
|
BF.fixBranches();
|
|
|
|
// Create local MC context to isolate the effect of ephemeral code emission.
|
|
IndependentCodeEmitter MCEInstance = createIndependentMCCodeEmitter();
|
|
MCContext *LocalCtx = MCEInstance.LocalCtx.get();
|
|
MCAsmBackend *MAB =
|
|
TheTarget->createMCAsmBackend(*STI, *MRI, MCTargetOptions());
|
|
|
|
SmallString<256> Code;
|
|
raw_svector_ostream VecOS(Code);
|
|
|
|
std::unique_ptr<MCObjectWriter> OW = MAB->createObjectWriter(VecOS);
|
|
std::unique_ptr<MCStreamer> Streamer(TheTarget->createMCObjectStreamer(
|
|
*TheTriple, *LocalCtx, std::unique_ptr<MCAsmBackend>(MAB), std::move(OW),
|
|
std::unique_ptr<MCCodeEmitter>(MCEInstance.MCE.release()), *STI,
|
|
/*RelaxAll=*/false,
|
|
/*IncrementalLinkerCompatible=*/false,
|
|
/*DWARFMustBeAtTheEnd=*/false));
|
|
|
|
Streamer->initSections(false, *STI);
|
|
|
|
MCSection *Section = MCEInstance.LocalMOFI->getTextSection();
|
|
Section->setHasInstructions(true);
|
|
|
|
// Create symbols in the LocalCtx so that they get destroyed with it.
|
|
MCSymbol *StartLabel = LocalCtx->createTempSymbol();
|
|
MCSymbol *EndLabel = LocalCtx->createTempSymbol();
|
|
MCSymbol *ColdStartLabel = LocalCtx->createTempSymbol();
|
|
MCSymbol *ColdEndLabel = LocalCtx->createTempSymbol();
|
|
|
|
Streamer->SwitchSection(Section);
|
|
Streamer->emitLabel(StartLabel);
|
|
emitFunctionBody(*Streamer, BF, /*EmitColdPart=*/false,
|
|
/*EmitCodeOnly=*/true);
|
|
Streamer->emitLabel(EndLabel);
|
|
|
|
if (BF.isSplit()) {
|
|
MCSectionELF *ColdSection =
|
|
LocalCtx->getELFSection(BF.getColdCodeSectionName(), ELF::SHT_PROGBITS,
|
|
ELF::SHF_EXECINSTR | ELF::SHF_ALLOC);
|
|
ColdSection->setHasInstructions(true);
|
|
|
|
Streamer->SwitchSection(ColdSection);
|
|
Streamer->emitLabel(ColdStartLabel);
|
|
emitFunctionBody(*Streamer, BF, /*EmitColdPart=*/true,
|
|
/*EmitCodeOnly=*/true);
|
|
Streamer->emitLabel(ColdEndLabel);
|
|
// To avoid calling MCObjectStreamer::flushPendingLabels() which is private
|
|
Streamer->emitBytes(StringRef(""));
|
|
Streamer->SwitchSection(Section);
|
|
}
|
|
|
|
// To avoid calling MCObjectStreamer::flushPendingLabels() which is private or
|
|
// MCStreamer::Finish(), which does more than we want
|
|
Streamer->emitBytes(StringRef(""));
|
|
|
|
MCAssembler &Assembler =
|
|
static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler();
|
|
MCAsmLayout Layout(Assembler);
|
|
Assembler.layout(Layout);
|
|
|
|
const uint64_t HotSize =
|
|
Layout.getSymbolOffset(*EndLabel) - Layout.getSymbolOffset(*StartLabel);
|
|
const uint64_t ColdSize = BF.isSplit()
|
|
? Layout.getSymbolOffset(*ColdEndLabel) -
|
|
Layout.getSymbolOffset(*ColdStartLabel)
|
|
: 0ULL;
|
|
|
|
// Clean-up the effect of the code emission.
|
|
for (const MCSymbol &Symbol : Assembler.symbols()) {
|
|
MCSymbol *MutableSymbol = const_cast<MCSymbol *>(&Symbol);
|
|
MutableSymbol->setUndefined();
|
|
MutableSymbol->setIsRegistered(false);
|
|
}
|
|
|
|
return std::make_pair(HotSize, ColdSize);
|
|
}
|
|
|
|
bool BinaryContext::validateEncoding(const MCInst &Inst,
|
|
ArrayRef<uint8_t> InputEncoding) const {
|
|
SmallString<256> Code;
|
|
SmallVector<MCFixup, 4> Fixups;
|
|
raw_svector_ostream VecOS(Code);
|
|
|
|
MCE->encodeInstruction(Inst, VecOS, Fixups, *STI);
|
|
auto EncodedData = ArrayRef<uint8_t>((uint8_t *)Code.data(), Code.size());
|
|
if (InputEncoding != EncodedData) {
|
|
if (opts::Verbosity > 1) {
|
|
errs() << "BOLT-WARNING: mismatched encoding detected\n"
|
|
<< " input: " << InputEncoding << '\n'
|
|
<< " output: " << EncodedData << '\n';
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
uint64_t BinaryContext::getHotThreshold() const {
|
|
static uint64_t Threshold = 0;
|
|
if (Threshold == 0) {
|
|
Threshold = std::max(
|
|
(uint64_t)opts::ExecutionCountThreshold,
|
|
NumProfiledFuncs ? SumExecutionCount / (2 * NumProfiledFuncs) : 1);
|
|
}
|
|
return Threshold;
|
|
}
|
|
|
|
BinaryFunction *BinaryContext::getBinaryFunctionContainingAddress(
|
|
uint64_t Address, bool CheckPastEnd, bool UseMaxSize) {
|
|
auto FI = BinaryFunctions.upper_bound(Address);
|
|
if (FI == BinaryFunctions.begin())
|
|
return nullptr;
|
|
--FI;
|
|
|
|
const uint64_t UsedSize =
|
|
UseMaxSize ? FI->second.getMaxSize() : FI->second.getSize();
|
|
|
|
if (Address >= FI->first + UsedSize + (CheckPastEnd ? 1 : 0))
|
|
return nullptr;
|
|
|
|
return &FI->second;
|
|
}
|
|
|
|
BinaryFunction *BinaryContext::getBinaryFunctionAtAddress(uint64_t Address) {
|
|
// First, try to find a function starting at the given address. If the
|
|
// function was folded, this will get us the original folded function if it
|
|
// wasn't removed from the list, e.g. in non-relocation mode.
|
|
auto BFI = BinaryFunctions.find(Address);
|
|
if (BFI != BinaryFunctions.end())
|
|
return &BFI->second;
|
|
|
|
// We might have folded the function matching the object at the given
|
|
// address. In such case, we look for a function matching the symbol
|
|
// registered at the original address. The new function (the one that the
|
|
// original was folded into) will hold the symbol.
|
|
if (const BinaryData *BD = getBinaryDataAtAddress(Address)) {
|
|
uint64_t EntryID = 0;
|
|
BinaryFunction *BF = getFunctionForSymbol(BD->getSymbol(), &EntryID);
|
|
if (BF && EntryID == 0)
|
|
return BF;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
DebugAddressRangesVector BinaryContext::translateModuleAddressRanges(
|
|
const DWARFAddressRangesVector &InputRanges) const {
|
|
DebugAddressRangesVector OutputRanges;
|
|
|
|
for (const DWARFAddressRange Range : InputRanges) {
|
|
auto BFI = BinaryFunctions.lower_bound(Range.LowPC);
|
|
while (BFI != BinaryFunctions.end()) {
|
|
const BinaryFunction &Function = BFI->second;
|
|
if (Function.getAddress() >= Range.HighPC)
|
|
break;
|
|
const DebugAddressRangesVector FunctionRanges =
|
|
Function.getOutputAddressRanges();
|
|
std::move(std::begin(FunctionRanges), std::end(FunctionRanges),
|
|
std::back_inserter(OutputRanges));
|
|
std::advance(BFI, 1);
|
|
}
|
|
}
|
|
|
|
return OutputRanges;
|
|
}
|
|
|
|
} // namespace bolt
|
|
} // namespace llvm
|