llvm-project/llgo/irgen/ssa.go

1344 lines
40 KiB
Go

//===- ssa.go - IR generation from go/ssa ---------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the top-level LLVM IR generation from go/ssa form.
//
//===----------------------------------------------------------------------===//
package irgen
import (
"fmt"
"go/ast"
"go/token"
"os"
"sort"
"llvm.org/llgo/ssaopt"
"llvm.org/llgo/third_party/gotools/go/ssa"
"llvm.org/llgo/third_party/gotools/go/ssa/ssautil"
"llvm.org/llgo/third_party/gotools/go/types"
"llvm.org/llvm/bindings/go/llvm"
)
// A globalInit is used to temporarily store a global's initializer until
// we are ready to build it.
type globalInit struct {
val llvm.Value
elems []globalInit
}
func (gi *globalInit) update(typ llvm.Type, indices []uint32, val llvm.Value) {
if len(indices) == 0 {
gi.val = val
return
}
if gi.val.C != nil {
gi.val = llvm.ConstInsertValue(gi.val, val, indices)
}
tk := typ.TypeKind()
if len(gi.elems) == 0 {
switch tk {
case llvm.StructTypeKind:
gi.elems = make([]globalInit, typ.StructElementTypesCount())
case llvm.ArrayTypeKind:
gi.elems = make([]globalInit, typ.ArrayLength())
default:
panic("unexpected type")
}
}
var eltyp llvm.Type
switch tk {
case llvm.StructTypeKind:
eltyp = typ.StructElementTypes()[indices[0]]
case llvm.ArrayTypeKind:
eltyp = typ.ElementType()
default:
panic("unexpected type")
}
gi.elems[indices[0]].update(eltyp, indices[1:], val)
}
func (gi *globalInit) build(typ llvm.Type) llvm.Value {
if gi.val.C != nil {
return gi.val
}
if len(gi.elems) == 0 {
return llvm.ConstNull(typ)
}
switch typ.TypeKind() {
case llvm.StructTypeKind:
eltypes := typ.StructElementTypes()
elems := make([]llvm.Value, len(eltypes))
for i, eltyp := range eltypes {
elems[i] = gi.elems[i].build(eltyp)
}
return llvm.ConstStruct(elems, false)
case llvm.ArrayTypeKind:
eltyp := typ.ElementType()
elems := make([]llvm.Value, len(gi.elems))
for i := range gi.elems {
elems[i] = gi.elems[i].build(eltyp)
}
return llvm.ConstArray(eltyp, elems)
default:
panic("unexpected type")
}
}
type unit struct {
*compiler
pkg *ssa.Package
globals map[ssa.Value]llvm.Value
globalInits map[llvm.Value]*globalInit
// funcDescriptors maps *ssa.Functions to function descriptors,
// the first-class representation of functions.
funcDescriptors map[*ssa.Function]llvm.Value
// undefinedFuncs contains functions that have been resolved
// (declared) but not defined.
undefinedFuncs map[*ssa.Function]bool
gcRoots []llvm.Value
}
func newUnit(c *compiler, pkg *ssa.Package) *unit {
u := &unit{
compiler: c,
pkg: pkg,
globals: make(map[ssa.Value]llvm.Value),
globalInits: make(map[llvm.Value]*globalInit),
funcDescriptors: make(map[*ssa.Function]llvm.Value),
undefinedFuncs: make(map[*ssa.Function]bool),
}
return u
}
type byMemberName []ssa.Member
func (ms byMemberName) Len() int { return len(ms) }
func (ms byMemberName) Swap(i, j int) {
ms[i], ms[j] = ms[j], ms[i]
}
func (ms byMemberName) Less(i, j int) bool {
return ms[i].Name() < ms[j].Name()
}
type byFunctionString []*ssa.Function
func (fns byFunctionString) Len() int { return len(fns) }
func (fns byFunctionString) Swap(i, j int) {
fns[i], fns[j] = fns[j], fns[i]
}
func (fns byFunctionString) Less(i, j int) bool {
return fns[i].String() < fns[j].String()
}
// Emit functions in order of their fully qualified names. This is so that a
// bootstrap build can be verified by comparing the stage2 and stage3 binaries.
func (u *unit) defineFunctionsInOrder(functions map[*ssa.Function]bool) {
fns := []*ssa.Function{}
for f, _ := range functions {
fns = append(fns, f)
}
sort.Sort(byFunctionString(fns))
for _, f := range fns {
u.defineFunction(f)
}
}
// translatePackage translates an *ssa.Package into an LLVM module, and returns
// the translation unit information.
func (u *unit) translatePackage(pkg *ssa.Package) {
ms := make([]ssa.Member, len(pkg.Members))
i := 0
for _, m := range pkg.Members {
ms[i] = m
i++
}
sort.Sort(byMemberName(ms))
// Initialize global storage and type descriptors for this package.
// We must create globals regardless of whether they're referenced,
// hence the duplication in frame.value.
for _, m := range ms {
switch v := m.(type) {
case *ssa.Global:
elemtyp := deref(v.Type())
llelemtyp := u.llvmtypes.ToLLVM(elemtyp)
vname := u.types.mc.mangleGlobalName(v)
global := llvm.AddGlobal(u.module.Module, llelemtyp, vname)
if !v.Object().Exported() {
global.SetLinkage(llvm.InternalLinkage)
}
u.addGlobal(global, elemtyp)
global = llvm.ConstBitCast(global, u.llvmtypes.ToLLVM(v.Type()))
u.globals[v] = global
case *ssa.Type:
u.types.getTypeDescriptorPointer(v.Type())
}
}
// Define functions.
u.defineFunctionsInOrder(ssautil.AllFunctions(pkg.Prog))
// Emit initializers for type descriptors, which may trigger
// the resolution of additional functions.
u.types.emitTypeDescInitializers()
// Define remaining functions that were resolved during
// runtime type mapping, but not defined.
u.defineFunctionsInOrder(u.undefinedFuncs)
// Set initializers for globals.
for global, init := range u.globalInits {
initval := init.build(global.Type().ElementType())
global.SetInitializer(initval)
}
}
func (u *unit) addGlobal(global llvm.Value, ty types.Type) {
u.globalInits[global] = new(globalInit)
if hasPointers(ty) {
global = llvm.ConstBitCast(global, llvm.PointerType(llvm.Int8Type(), 0))
size := llvm.ConstInt(u.types.inttype, uint64(u.types.Sizeof(ty)), false)
root := llvm.ConstStruct([]llvm.Value{global, size}, false)
u.gcRoots = append(u.gcRoots, root)
}
}
// ResolveMethod implements MethodResolver.ResolveMethod.
func (u *unit) ResolveMethod(s *types.Selection) *govalue {
m := u.pkg.Prog.Method(s)
llfn := u.resolveFunctionGlobal(m)
llfn = llvm.ConstBitCast(llfn, llvm.PointerType(llvm.Int8Type(), 0))
return newValue(llfn, m.Signature)
}
// resolveFunctionDescriptorGlobal returns a reference to the LLVM global
// storing the function's descriptor.
func (u *unit) resolveFunctionDescriptorGlobal(f *ssa.Function) llvm.Value {
llfd, ok := u.funcDescriptors[f]
if !ok {
name := u.types.mc.mangleFunctionName(f) + "$descriptor"
llfd = llvm.AddGlobal(u.module.Module, llvm.PointerType(llvm.Int8Type(), 0), name)
llfd.SetGlobalConstant(true)
u.funcDescriptors[f] = llfd
}
return llfd
}
// resolveFunctionDescriptor returns a function's
// first-class value representation.
func (u *unit) resolveFunctionDescriptor(f *ssa.Function) *govalue {
llfd := u.resolveFunctionDescriptorGlobal(f)
llfd = llvm.ConstBitCast(llfd, llvm.PointerType(llvm.Int8Type(), 0))
return newValue(llfd, f.Signature)
}
// resolveFunctionGlobal returns an llvm.Value for a function global.
func (u *unit) resolveFunctionGlobal(f *ssa.Function) llvm.Value {
if v, ok := u.globals[f]; ok {
return v
}
name := u.types.mc.mangleFunctionName(f)
// It's possible that the function already exists in the module;
// for example, if it's a runtime intrinsic that the compiler
// has already referenced.
llvmFunction := u.module.Module.NamedFunction(name)
if llvmFunction.IsNil() {
fti := u.llvmtypes.getSignatureInfo(f.Signature)
llvmFunction = fti.declare(u.module.Module, name)
u.undefinedFuncs[f] = true
}
u.globals[f] = llvmFunction
return llvmFunction
}
func (u *unit) getFunctionLinkage(f *ssa.Function) llvm.Linkage {
switch {
case f.Pkg == nil:
// Synthetic functions outside packages may appear in multiple packages.
return llvm.LinkOnceODRLinkage
case f.Parent() != nil:
// Anonymous.
return llvm.InternalLinkage
case f.Signature.Recv() == nil && !ast.IsExported(f.Name()) &&
!(f.Name() == "main" && f.Pkg.Object.Path() == "main") &&
f.Name() != "init":
// Unexported methods may be referenced as part of an interface method
// table in another package. TODO(pcc): detect when this cannot happen.
return llvm.InternalLinkage
default:
return llvm.ExternalLinkage
}
}
func (u *unit) defineFunction(f *ssa.Function) {
// Only define functions from this package, or synthetic
// wrappers (which do not have a package).
if f.Pkg != nil && f.Pkg != u.pkg {
return
}
llfn := u.resolveFunctionGlobal(f)
linkage := u.getFunctionLinkage(f)
isMethod := f.Signature.Recv() != nil
// Methods cannot be referred to via a descriptor.
if !isMethod {
llfd := u.resolveFunctionDescriptorGlobal(f)
llfd.SetInitializer(llvm.ConstBitCast(llfn, llvm.PointerType(llvm.Int8Type(), 0)))
llfd.SetLinkage(linkage)
}
// We only need to emit a descriptor for functions without bodies.
if len(f.Blocks) == 0 {
return
}
ssaopt.LowerAllocsToStack(f)
if u.DumpSSA {
f.WriteTo(os.Stderr)
}
fr := newFrame(u, llfn)
defer fr.dispose()
fr.addCommonFunctionAttrs(fr.function)
fr.function.SetLinkage(linkage)
fr.logf("Define function: %s @ %s", f.String(), fr.pkg.Prog.Fset.Position(f.Pos()))
fti := u.llvmtypes.getSignatureInfo(f.Signature)
delete(u.undefinedFuncs, f)
fr.retInf = fti.retInf
// Push the compile unit and function onto the debug context.
if u.GenerateDebug {
u.debug.PushFunction(fr.function, f.Signature, f.Pos())
defer u.debug.PopFunction()
u.debug.SetLocation(fr.builder, f.Pos())
}
// If a function calls recover, we create a separate function to
// hold the real function, and this function calls __go_can_recover
// and bridges to it.
if callsRecover(f) {
fr = fr.bridgeRecoverFunc(fr.function, fti)
}
fr.blocks = make([]llvm.BasicBlock, len(f.Blocks))
fr.lastBlocks = make([]llvm.BasicBlock, len(f.Blocks))
for i, block := range f.Blocks {
fr.blocks[i] = llvm.AddBasicBlock(fr.function, fmt.Sprintf(".%d.%s", i, block.Comment))
}
fr.builder.SetInsertPointAtEnd(fr.blocks[0])
fr.transformSwitches(f)
prologueBlock := llvm.InsertBasicBlock(fr.blocks[0], "prologue")
fr.builder.SetInsertPointAtEnd(prologueBlock)
for i, param := range f.Params {
llparam := fti.argInfos[i].decode(llvm.GlobalContext(), fr.builder, fr.builder)
if isMethod && i == 0 {
if _, ok := param.Type().Underlying().(*types.Pointer); !ok {
llparam = fr.builder.CreateBitCast(llparam, llvm.PointerType(fr.types.ToLLVM(param.Type()), 0), "")
llparam = fr.builder.CreateLoad(llparam, "")
}
}
fr.env[param] = newValue(llparam, param.Type())
}
// Load closure, extract free vars.
if len(f.FreeVars) > 0 {
for _, fv := range f.FreeVars {
fr.env[fv] = newValue(llvm.ConstNull(u.llvmtypes.ToLLVM(fv.Type())), fv.Type())
}
elemTypes := make([]llvm.Type, len(f.FreeVars)+1)
elemTypes[0] = llvm.PointerType(llvm.Int8Type(), 0) // function pointer
for i, fv := range f.FreeVars {
elemTypes[i+1] = u.llvmtypes.ToLLVM(fv.Type())
}
structType := llvm.StructType(elemTypes, false)
closure := fr.function.Param(fti.chainIndex)
closure = fr.builder.CreateBitCast(closure, llvm.PointerType(structType, 0), "")
for i, fv := range f.FreeVars {
ptr := fr.builder.CreateStructGEP(closure, i+1, "")
ptr = fr.builder.CreateLoad(ptr, "")
fr.env[fv] = newValue(ptr, fv.Type())
}
}
// Allocate stack space for locals in the prologue block.
for _, local := range f.Locals {
typ := fr.llvmtypes.ToLLVM(deref(local.Type()))
alloca := fr.builder.CreateAlloca(typ, local.Comment)
fr.memsetZero(alloca, llvm.SizeOf(typ))
bcalloca := fr.builder.CreateBitCast(alloca, llvm.PointerType(llvm.Int8Type(), 0), "")
value := newValue(bcalloca, local.Type())
fr.env[local] = value
}
// If the function contains any defers, we must first create
// an unwind block. We can short-circuit the check for defers with
// f.Recover != nil.
if f.Recover != nil || hasDefer(f) {
fr.unwindBlock = llvm.AddBasicBlock(fr.function, "unwind")
fr.frameptr = fr.builder.CreateAlloca(llvm.Int8Type(), "")
}
// Keep track of the block into which we need to insert the call
// to __go_register_gc_roots. This needs to be inserted after the
// init guard check under the llgo ABI.
var registerGcBlock llvm.BasicBlock
// If this is the "init" function, emit the init guard check and
// enable init-specific optimizations.
if !isMethod && f.Name() == "init" {
registerGcBlock = fr.emitInitPrologue()
fr.isInit = true
}
fr.builder.CreateBr(fr.blocks[0])
fr.allocaBuilder.SetInsertPointBefore(prologueBlock.FirstInstruction())
for _, block := range f.DomPreorder() {
llblock := fr.blocks[block.Index]
if llblock.IsNil() {
continue
}
fr.translateBlock(block, llblock)
}
fr.fixupPhis()
if !fr.unwindBlock.IsNil() {
fr.setupUnwindBlock(f.Recover)
}
// The init function needs to register the GC roots first. We do this
// after generating code for it because allocations may have caused
// additional GC roots to be created.
if fr.isInit {
fr.builder.SetInsertPointBefore(registerGcBlock.FirstInstruction())
fr.registerGcRoots()
}
}
type pendingPhi struct {
ssa *ssa.Phi
llvm llvm.Value
}
type frame struct {
*unit
function llvm.Value
builder, allocaBuilder llvm.Builder
retInf retInfo
blocks []llvm.BasicBlock
lastBlocks []llvm.BasicBlock
runtimeErrorBlocks [gccgoRuntimeErrorCount]llvm.BasicBlock
unwindBlock llvm.BasicBlock
frameptr llvm.Value
env map[ssa.Value]*govalue
ptr map[ssa.Value]llvm.Value
tuples map[ssa.Value][]*govalue
phis []pendingPhi
canRecover llvm.Value
isInit bool
}
func newFrame(u *unit, fn llvm.Value) *frame {
return &frame{
unit: u,
function: fn,
builder: llvm.GlobalContext().NewBuilder(),
allocaBuilder: llvm.GlobalContext().NewBuilder(),
env: make(map[ssa.Value]*govalue),
ptr: make(map[ssa.Value]llvm.Value),
tuples: make(map[ssa.Value][]*govalue),
}
}
func (fr *frame) dispose() {
fr.builder.Dispose()
fr.allocaBuilder.Dispose()
}
// emitInitPrologue emits the init-specific function prologue (guard check and
// initialization of dependent packages under the llgo native ABI), and returns
// the basic block into which the GC registration call should be emitted.
func (fr *frame) emitInitPrologue() llvm.BasicBlock {
if fr.GccgoABI {
return fr.builder.GetInsertBlock()
}
initGuard := llvm.AddGlobal(fr.module.Module, llvm.Int1Type(), "init$guard")
initGuard.SetLinkage(llvm.InternalLinkage)
initGuard.SetInitializer(llvm.ConstNull(llvm.Int1Type()))
returnBlock := llvm.AddBasicBlock(fr.function, "")
initBlock := llvm.AddBasicBlock(fr.function, "")
initGuardVal := fr.builder.CreateLoad(initGuard, "")
fr.builder.CreateCondBr(initGuardVal, returnBlock, initBlock)
fr.builder.SetInsertPointAtEnd(returnBlock)
fr.builder.CreateRetVoid()
fr.builder.SetInsertPointAtEnd(initBlock)
fr.builder.CreateStore(llvm.ConstInt(llvm.Int1Type(), 1, false), initGuard)
int8ptr := llvm.PointerType(fr.types.ctx.Int8Type(), 0)
ftyp := llvm.FunctionType(llvm.VoidType(), []llvm.Type{int8ptr}, false)
for _, pkg := range fr.pkg.Object.Imports() {
initname := ManglePackagePath(pkg.Path()) + "..import"
initfn := fr.module.Module.NamedFunction(initname)
if initfn.IsNil() {
initfn = llvm.AddFunction(fr.module.Module, initname, ftyp)
}
args := []llvm.Value{llvm.Undef(int8ptr)}
fr.builder.CreateCall(initfn, args, "")
}
return initBlock
}
// bridgeRecoverFunc creates a function that may call recover(), and creates
// a call to it from the current frame. The created function will be called
// with a boolean parameter that indicates whether it may call recover().
//
// The created function will have the same name as the current frame's function
// with "$recover" appended, having the same return types and parameters with
// an additional boolean parameter appended.
//
// A new frame will be returned for the newly created function.
func (fr *frame) bridgeRecoverFunc(llfn llvm.Value, fti functionTypeInfo) *frame {
// The bridging function must not be inlined, or the return address
// may not correspond to the source function.
attrKind := llvm.AttributeKindID("noinline")
noInlineAttr := fr.module.Context().CreateEnumAttribute(attrKind, 0)
llfn.AddFunctionAttr(noInlineAttr)
// Call __go_can_recover, passing in the function's return address.
entry := llvm.AddBasicBlock(llfn, "entry")
fr.builder.SetInsertPointAtEnd(entry)
canRecover := fr.runtime.canRecover.call(fr, fr.returnAddress(0))[0]
returnType := fti.functionType.ReturnType()
argTypes := fti.functionType.ParamTypes()
argTypes = append(argTypes, canRecover.Type())
// Create and call the $recover function.
ftiRecover := fti
ftiRecover.functionType = llvm.FunctionType(returnType, argTypes, false)
llfnRecover := ftiRecover.declare(fr.module.Module, llfn.Name()+"$recover")
fr.addCommonFunctionAttrs(llfnRecover)
llfnRecover.SetLinkage(llvm.InternalLinkage)
args := make([]llvm.Value, len(argTypes)-1, len(argTypes))
for i := range args {
args[i] = llfn.Param(i)
}
args = append(args, canRecover)
result := fr.builder.CreateCall(llfnRecover, args, "")
if returnType.TypeKind() == llvm.VoidTypeKind {
fr.builder.CreateRetVoid()
} else {
fr.builder.CreateRet(result)
}
// The $recover function must condition calls to __go_recover on
// the result of __go_can_recover passed in as an argument.
fr = newFrame(fr.unit, llfnRecover)
fr.retInf = ftiRecover.retInf
fr.canRecover = fr.function.Param(len(argTypes) - 1)
return fr
}
func (fr *frame) registerGcRoots() {
if len(fr.gcRoots) != 0 {
rootty := fr.gcRoots[0].Type()
roots := append(fr.gcRoots, llvm.ConstNull(rootty))
rootsarr := llvm.ConstArray(rootty, roots)
rootsstruct := llvm.ConstStruct([]llvm.Value{llvm.ConstNull(llvm.PointerType(llvm.Int8Type(), 0)), rootsarr}, false)
rootsglobal := llvm.AddGlobal(fr.module.Module, rootsstruct.Type(), "")
rootsglobal.SetInitializer(rootsstruct)
rootsglobal.SetLinkage(llvm.InternalLinkage)
fr.runtime.registerGcRoots.callOnly(fr, llvm.ConstBitCast(rootsglobal, llvm.PointerType(llvm.Int8Type(), 0)))
}
}
func (fr *frame) fixupPhis() {
for _, phi := range fr.phis {
values := make([]llvm.Value, len(phi.ssa.Edges))
blocks := make([]llvm.BasicBlock, len(phi.ssa.Edges))
block := phi.ssa.Block()
for i, edge := range phi.ssa.Edges {
values[i] = fr.llvmvalue(edge)
blocks[i] = fr.lastBlock(block.Preds[i])
}
phi.llvm.AddIncoming(values, blocks)
}
}
func (fr *frame) createLandingPad(cleanup bool) llvm.Value {
fr.function.SetPersonality(fr.runtime.gccgoPersonality)
lp := fr.builder.CreateLandingPad(fr.runtime.gccgoExceptionType, 0, "")
if cleanup {
lp.SetCleanup(true)
} else {
lp.AddClause(llvm.ConstNull(llvm.PointerType(llvm.Int8Type(), 0)))
}
return lp
}
// Runs defers. If a defer panics, check for recovers in later defers.
func (fr *frame) runDefers() {
loopbb := llvm.AddBasicBlock(fr.function, "")
fr.builder.CreateBr(loopbb)
retrylpad := llvm.AddBasicBlock(fr.function, "")
fr.builder.SetInsertPointAtEnd(retrylpad)
fr.createLandingPad(false)
fr.runtime.checkDefer.callOnly(fr, fr.frameptr)
fr.builder.CreateBr(loopbb)
fr.builder.SetInsertPointAtEnd(loopbb)
fr.runtime.undefer.invoke(fr, retrylpad, fr.frameptr)
}
func (fr *frame) setupUnwindBlock(rec *ssa.BasicBlock) {
var recoverbb llvm.BasicBlock
if rec != nil {
recoverbb = fr.blocks[rec.Index]
} else {
recoverbb = llvm.AddBasicBlock(fr.function, "recover")
fr.builder.SetInsertPointAtEnd(recoverbb)
fr.builder.CreateUnreachable()
}
checkunwindbb := llvm.AddBasicBlock(fr.function, "")
fr.builder.SetInsertPointAtEnd(checkunwindbb)
exc := fr.createLandingPad(true)
fr.runDefers()
frame := fr.builder.CreateLoad(fr.frameptr, "")
shouldresume := fr.builder.CreateIsNull(frame, "")
resumebb := llvm.AddBasicBlock(fr.function, "")
fr.builder.CreateCondBr(shouldresume, resumebb, recoverbb)
fr.builder.SetInsertPointAtEnd(resumebb)
fr.builder.CreateResume(exc)
fr.builder.SetInsertPointAtEnd(fr.unwindBlock)
fr.createLandingPad(false)
fr.runtime.checkDefer.invoke(fr, checkunwindbb, fr.frameptr)
fr.runDefers()
fr.builder.CreateBr(recoverbb)
}
func (fr *frame) translateBlock(b *ssa.BasicBlock, llb llvm.BasicBlock) {
fr.builder.SetInsertPointAtEnd(llb)
for _, instr := range b.Instrs {
fr.instruction(instr)
}
fr.lastBlocks[b.Index] = fr.builder.GetInsertBlock()
}
func (fr *frame) block(b *ssa.BasicBlock) llvm.BasicBlock {
return fr.blocks[b.Index]
}
func (fr *frame) lastBlock(b *ssa.BasicBlock) llvm.BasicBlock {
return fr.lastBlocks[b.Index]
}
func (fr *frame) value(v ssa.Value) (result *govalue) {
switch v := v.(type) {
case nil:
return nil
case *ssa.Function:
return fr.resolveFunctionDescriptor(v)
case *ssa.Const:
return fr.newValueFromConst(v.Value, v.Type())
case *ssa.Global:
if g, ok := fr.globals[v]; ok {
return newValue(g, v.Type())
}
// Create an external global. Globals for this package are defined
// on entry to translatePackage, and have initialisers.
llelemtyp := fr.llvmtypes.ToLLVM(deref(v.Type()))
vname := fr.types.mc.mangleGlobalName(v)
llglobal := llvm.AddGlobal(fr.module.Module, llelemtyp, vname)
llglobal = llvm.ConstBitCast(llglobal, fr.llvmtypes.ToLLVM(v.Type()))
fr.globals[v] = llglobal
return newValue(llglobal, v.Type())
}
if value, ok := fr.env[v]; ok {
return value
}
panic(fmt.Errorf("Instruction %q not visited yet", v.Name()))
}
func (fr *frame) llvmvalue(v ssa.Value) llvm.Value {
if gv := fr.value(v); gv != nil {
return gv.value
} else {
return llvm.Value{nil}
}
}
func (fr *frame) isNonNull(v ssa.Value) bool {
switch v.(type) {
case
// Globals have a fixed (non-nil) address.
*ssa.Global,
// The language does not specify what happens if an allocation fails.
*ssa.Alloc,
// These have already been nil checked.
*ssa.FieldAddr, *ssa.IndexAddr:
return true
default:
return false
}
}
func (fr *frame) nilCheck(v ssa.Value, llptr llvm.Value) {
if !fr.isNonNull(v) {
ptrnull := fr.builder.CreateIsNull(llptr, "")
fr.condBrRuntimeError(ptrnull, gccgoRuntimeErrorNIL_DEREFERENCE)
}
}
func (fr *frame) canAvoidElementLoad(ptr ssa.Value) bool {
for _, ref := range *ptr.Referrers() {
switch ref := ref.(type) {
case *ssa.Field:
case *ssa.Index:
if ref.X != ptr {
return false
}
// ok
default:
return false
}
}
return true
}
// If this value is sufficiently large, look through referrers to see if we can
// avoid a load.
func (fr *frame) canAvoidLoad(instr *ssa.UnOp, op llvm.Value) bool {
if fr.types.Sizeof(instr.Type()) < 2*fr.types.Sizeof(types.Typ[types.Int]) {
// Don't bother with small values.
return false
}
// Keep track of whether our pointer may escape. We conservatively assume
// that MakeInterfaces will escape.
esc := false
// We only know how to avoid loads if they are used to create an interface
// or read an element of the structure. If we see any other referrer, abort.
for _, ref := range *instr.Referrers() {
switch ref := ref.(type) {
case *ssa.MakeInterface:
esc = true
case *ssa.Field:
case *ssa.Index:
if ref.X != instr {
// This should never happen, as indices are always of type int
// and we don't bother with values smaller than 2*sizeof(int).
panic("impossible")
}
// ok
default:
return false
}
}
var opcopy llvm.Value
if esc {
opcopy = fr.createTypeMalloc(instr.Type())
} else {
opcopy = fr.allocaBuilder.CreateAlloca(fr.types.ToLLVM(instr.Type()), "")
}
fr.memcpy(opcopy, op, llvm.ConstInt(fr.types.inttype, uint64(fr.types.Sizeof(instr.Type())), false))
fr.ptr[instr] = opcopy
return true
}
// Return true iff we think it might be beneficial to turn this alloc instruction
// into a statically allocated global.
// Precondition: we are compiling the init function.
func (fr *frame) shouldStaticallyAllocate(alloc *ssa.Alloc) bool {
// First, see if the allocated type is an array or struct, and if so determine
// the number of elements in the type. If the type is anything else, we
// statically allocate unconditionally.
var numElems int64
switch ty := deref(alloc.Type()).Underlying().(type) {
case *types.Array:
numElems = ty.Len()
case *types.Struct:
numElems = int64(ty.NumFields())
default:
return true
}
// We treat the number of referrers to the alloc instruction as a rough
// proxy for the number of elements initialized. If the data structure
// is densely initialized (> 1/4 elements initialized), enable the
// optimization.
return int64(len(*alloc.Referrers()))*4 > numElems
}
// If val is a constant and addr refers to a global variable which is defined in
// this module or an element thereof, simulate the effect of storing val at addr
// in the global variable's initializer and return true, otherwise return false.
// Precondition: we are compiling the init function.
func (fr *frame) maybeStoreInInitializer(val, addr llvm.Value) bool {
if val.IsAConstant().IsNil() {
return false
}
if !addr.IsAConstantExpr().IsNil() && addr.OperandsCount() >= 2 &&
// TODO(pcc): Explicitly check that this is a constant GEP.
// I don't think there are any other kinds of constantexpr which
// satisfy the conditions we test for here, so this is probably safe.
!addr.Operand(0).IsAGlobalVariable().IsNil() &&
addr.Operand(1).IsNull() {
gv := addr.Operand(0)
globalInit, ok := fr.globalInits[gv]
if !ok {
return false
}
indices := make([]uint32, addr.OperandsCount()-2)
for i := range indices {
op := addr.Operand(i + 2)
if op.IsAConstantInt().IsNil() {
return false
}
indices[i] = uint32(op.ZExtValue())
}
globalInit.update(gv.Type().ElementType(), indices, val)
return true
} else if !addr.IsAGlobalVariable().IsNil() {
if globalInit, ok := fr.globalInits[addr]; ok {
globalInit.update(addr.Type().ElementType(), nil, val)
return true
}
return false
} else {
return false
}
}
func (fr *frame) instruction(instr ssa.Instruction) {
fr.logf("[%T] %v @ %s\n", instr, instr, fr.pkg.Prog.Fset.Position(instr.Pos()))
if fr.GenerateDebug {
fr.debug.SetLocation(fr.builder, instr.Pos())
}
switch instr := instr.(type) {
case *ssa.Alloc:
typ := deref(instr.Type())
llvmtyp := fr.llvmtypes.ToLLVM(typ)
var value llvm.Value
if !instr.Heap {
value = fr.env[instr].value
fr.memsetZero(value, llvm.SizeOf(llvmtyp))
} else if fr.isInit && fr.shouldStaticallyAllocate(instr) {
// If this is the init function and we think it may be beneficial,
// allocate memory statically in the object file rather than on the
// heap. This allows us to optimize constant stores into such
// variables as static initializations.
global := llvm.AddGlobal(fr.module.Module, llvmtyp, "")
global.SetLinkage(llvm.InternalLinkage)
fr.addGlobal(global, typ)
ptr := llvm.ConstBitCast(global, llvm.PointerType(llvm.Int8Type(), 0))
fr.env[instr] = newValue(ptr, instr.Type())
} else {
value = fr.createTypeMalloc(typ)
value.SetName(instr.Comment)
value = fr.builder.CreateBitCast(value, llvm.PointerType(llvm.Int8Type(), 0), "")
fr.env[instr] = newValue(value, instr.Type())
}
case *ssa.BinOp:
lhs, rhs := fr.value(instr.X), fr.value(instr.Y)
fr.env[instr] = fr.binaryOp(lhs, instr.Op, rhs)
case *ssa.Call:
tuple := fr.callInstruction(instr)
if len(tuple) == 1 {
fr.env[instr] = tuple[0]
} else {
fr.tuples[instr] = tuple
}
case *ssa.ChangeInterface:
x := fr.value(instr.X)
// The source type must be a non-empty interface,
// as ChangeInterface cannot fail (E2I may fail).
if instr.Type().Underlying().(*types.Interface).NumMethods() > 0 {
x = fr.changeInterface(x, instr.Type(), false)
} else {
x = fr.convertI2E(x)
}
fr.env[instr] = x
case *ssa.ChangeType:
value := fr.llvmvalue(instr.X)
if _, ok := instr.Type().Underlying().(*types.Pointer); ok {
value = fr.builder.CreateBitCast(value, fr.llvmtypes.ToLLVM(instr.Type()), "")
}
fr.env[instr] = newValue(value, instr.Type())
case *ssa.Convert:
v := fr.value(instr.X)
fr.env[instr] = fr.convert(v, instr.Type())
case *ssa.Defer:
fn, arg := fr.createThunk(instr)
fr.runtime.Defer.call(fr, fr.frameptr, fn, arg)
case *ssa.Extract:
var elem llvm.Value
if t, ok := fr.tuples[instr.Tuple]; ok {
elem = t[instr.Index].value
} else {
tuple := fr.llvmvalue(instr.Tuple)
elem = fr.builder.CreateExtractValue(tuple, instr.Index, instr.Name())
}
elemtyp := instr.Type()
fr.env[instr] = newValue(elem, elemtyp)
case *ssa.Field:
fieldtyp := instr.Type()
if p, ok := fr.ptr[instr.X]; ok {
field := fr.builder.CreateStructGEP(p, instr.Field, instr.Name())
if fr.canAvoidElementLoad(instr) {
fr.ptr[instr] = field
} else {
fr.env[instr] = newValue(fr.builder.CreateLoad(field, ""), fieldtyp)
}
} else {
value := fr.llvmvalue(instr.X)
field := fr.builder.CreateExtractValue(value, instr.Field, instr.Name())
fr.env[instr] = newValue(field, fieldtyp)
}
case *ssa.FieldAddr:
ptr := fr.llvmvalue(instr.X)
fr.nilCheck(instr.X, ptr)
xtyp := instr.X.Type().Underlying().(*types.Pointer).Elem()
ptrtyp := llvm.PointerType(fr.llvmtypes.ToLLVM(xtyp), 0)
ptr = fr.builder.CreateBitCast(ptr, ptrtyp, "")
fieldptr := fr.builder.CreateStructGEP(ptr, instr.Field, instr.Name())
fieldptr = fr.builder.CreateBitCast(fieldptr, llvm.PointerType(llvm.Int8Type(), 0), "")
fieldptrtyp := instr.Type()
fr.env[instr] = newValue(fieldptr, fieldptrtyp)
case *ssa.Go:
fn, arg := fr.createThunk(instr)
fr.runtime.Go.call(fr, fn, arg)
case *ssa.If:
cond := fr.llvmvalue(instr.Cond)
block := instr.Block()
trueBlock := fr.block(block.Succs[0])
falseBlock := fr.block(block.Succs[1])
cond = fr.builder.CreateTrunc(cond, llvm.Int1Type(), "")
fr.builder.CreateCondBr(cond, trueBlock, falseBlock)
case *ssa.Index:
var arrayptr llvm.Value
if ptr, ok := fr.ptr[instr.X]; ok {
arrayptr = ptr
} else {
array := fr.llvmvalue(instr.X)
arrayptr = fr.allocaBuilder.CreateAlloca(array.Type(), "")
fr.builder.CreateStore(array, arrayptr)
}
index := fr.llvmvalue(instr.Index)
arraytyp := instr.X.Type().Underlying().(*types.Array)
arraylen := llvm.ConstInt(fr.llvmtypes.inttype, uint64(arraytyp.Len()), false)
// The index may not have been promoted to int (for example, if it
// came from a composite literal).
index = fr.createZExtOrTrunc(index, fr.types.inttype, "")
// Bounds checking: 0 <= index < len
zero := llvm.ConstNull(fr.types.inttype)
i0 := fr.builder.CreateICmp(llvm.IntSLT, index, zero, "")
li := fr.builder.CreateICmp(llvm.IntSLE, arraylen, index, "")
cond := fr.builder.CreateOr(i0, li, "")
fr.condBrRuntimeError(cond, gccgoRuntimeErrorARRAY_INDEX_OUT_OF_BOUNDS)
addr := fr.builder.CreateGEP(arrayptr, []llvm.Value{zero, index}, "")
if fr.canAvoidElementLoad(instr) {
fr.ptr[instr] = addr
} else {
fr.env[instr] = newValue(fr.builder.CreateLoad(addr, ""), instr.Type())
}
case *ssa.IndexAddr:
x := fr.llvmvalue(instr.X)
index := fr.llvmvalue(instr.Index)
var arrayptr, arraylen llvm.Value
var elemtyp types.Type
var errcode uint64
switch typ := instr.X.Type().Underlying().(type) {
case *types.Slice:
elemtyp = typ.Elem()
arrayptr = fr.builder.CreateExtractValue(x, 0, "")
arraylen = fr.builder.CreateExtractValue(x, 1, "")
errcode = gccgoRuntimeErrorSLICE_INDEX_OUT_OF_BOUNDS
case *types.Pointer: // *array
arraytyp := typ.Elem().Underlying().(*types.Array)
elemtyp = arraytyp.Elem()
fr.nilCheck(instr.X, x)
arrayptr = x
arraylen = llvm.ConstInt(fr.llvmtypes.inttype, uint64(arraytyp.Len()), false)
errcode = gccgoRuntimeErrorARRAY_INDEX_OUT_OF_BOUNDS
}
// The index may not have been promoted to int (for example, if it
// came from a composite literal).
index = fr.createZExtOrTrunc(index, fr.types.inttype, "")
// Bounds checking: 0 <= index < len
zero := llvm.ConstNull(fr.types.inttype)
i0 := fr.builder.CreateICmp(llvm.IntSLT, index, zero, "")
li := fr.builder.CreateICmp(llvm.IntSLE, arraylen, index, "")
cond := fr.builder.CreateOr(i0, li, "")
fr.condBrRuntimeError(cond, errcode)
ptrtyp := llvm.PointerType(fr.llvmtypes.ToLLVM(elemtyp), 0)
arrayptr = fr.builder.CreateBitCast(arrayptr, ptrtyp, "")
addr := fr.builder.CreateGEP(arrayptr, []llvm.Value{index}, "")
addr = fr.builder.CreateBitCast(addr, llvm.PointerType(llvm.Int8Type(), 0), "")
fr.env[instr] = newValue(addr, types.NewPointer(elemtyp))
case *ssa.Jump:
succ := instr.Block().Succs[0]
fr.builder.CreateBr(fr.block(succ))
case *ssa.Lookup:
x := fr.value(instr.X)
index := fr.value(instr.Index)
if isString(x.Type().Underlying()) {
fr.env[instr] = fr.stringIndex(x, index)
} else {
v, ok := fr.mapLookup(x, index)
if instr.CommaOk {
fr.tuples[instr] = []*govalue{v, ok}
} else {
fr.env[instr] = v
}
}
case *ssa.MakeChan:
fr.env[instr] = fr.makeChan(instr.Type(), fr.value(instr.Size))
case *ssa.MakeClosure:
llfn := fr.resolveFunctionGlobal(instr.Fn.(*ssa.Function))
llfn = llvm.ConstBitCast(llfn, llvm.PointerType(llvm.Int8Type(), 0))
fn := newValue(llfn, instr.Fn.(*ssa.Function).Signature)
bindings := make([]*govalue, len(instr.Bindings))
for i, binding := range instr.Bindings {
bindings[i] = fr.value(binding)
}
fr.env[instr] = fr.makeClosure(fn, bindings)
case *ssa.MakeInterface:
// fr.ptr[instr.X] will be set if a pointer load was elided by canAvoidLoad
if ptr, ok := fr.ptr[instr.X]; ok {
fr.env[instr] = fr.makeInterfaceFromPointer(ptr, instr.X.Type(), instr.Type())
} else {
receiver := fr.llvmvalue(instr.X)
fr.env[instr] = fr.makeInterface(receiver, instr.X.Type(), instr.Type())
}
case *ssa.MakeMap:
fr.env[instr] = fr.makeMap(instr.Type(), fr.value(instr.Reserve))
case *ssa.MakeSlice:
length := fr.value(instr.Len)
capacity := fr.value(instr.Cap)
fr.env[instr] = fr.makeSlice(instr.Type(), length, capacity)
case *ssa.MapUpdate:
m := fr.value(instr.Map)
k := fr.value(instr.Key)
v := fr.value(instr.Value)
fr.mapUpdate(m, k, v)
case *ssa.Next:
iter := fr.tuples[instr.Iter]
if instr.IsString {
fr.tuples[instr] = fr.stringIterNext(iter)
} else {
fr.tuples[instr] = fr.mapIterNext(iter)
}
case *ssa.Panic:
arg := fr.value(instr.X)
fr.callPanic(arg, true)
case *ssa.Phi:
typ := instr.Type()
phi := fr.builder.CreatePHI(fr.llvmtypes.ToLLVM(typ), instr.Comment)
fr.env[instr] = newValue(phi, typ)
fr.phis = append(fr.phis, pendingPhi{instr, phi})
case *ssa.Range:
x := fr.value(instr.X)
switch x.Type().Underlying().(type) {
case *types.Map:
fr.tuples[instr] = fr.mapIterInit(x)
case *types.Basic: // string
fr.tuples[instr] = fr.stringIterInit(x)
default:
panic(fmt.Sprintf("unhandled range for type %T", x.Type()))
}
case *ssa.Return:
vals := make([]llvm.Value, len(instr.Results))
for i, res := range instr.Results {
vals[i] = fr.llvmvalue(res)
}
fr.retInf.encode(llvm.GlobalContext(), fr.allocaBuilder, fr.builder, vals)
case *ssa.RunDefers:
fr.runDefers()
case *ssa.Select:
index, recvOk, recvElems := fr.chanSelect(instr)
tuple := append([]*govalue{index, recvOk}, recvElems...)
fr.tuples[instr] = tuple
case *ssa.Send:
fr.chanSend(fr.value(instr.Chan), fr.value(instr.X))
case *ssa.Slice:
x := fr.llvmvalue(instr.X)
low := fr.llvmvalue(instr.Low)
high := fr.llvmvalue(instr.High)
max := fr.llvmvalue(instr.Max)
slice := fr.slice(x, instr.X.Type(), low, high, max)
fr.env[instr] = newValue(slice, instr.Type())
case *ssa.Store:
addr := fr.llvmvalue(instr.Addr)
value := fr.llvmvalue(instr.Val)
addr = fr.builder.CreateBitCast(addr, llvm.PointerType(value.Type(), 0), "")
// If this is the init function, see if we can simulate the effect
// of the store in a global's initializer, in which case we can avoid
// generating code for it.
if !fr.isInit || !fr.maybeStoreInInitializer(value, addr) {
fr.nilCheck(instr.Addr, addr)
fr.builder.CreateStore(value, addr)
}
case *switchInstr:
fr.emitSwitch(instr)
case *ssa.TypeAssert:
x := fr.value(instr.X)
if instr.CommaOk {
v, ok := fr.interfaceTypeCheck(x, instr.AssertedType)
fr.tuples[instr] = []*govalue{v, ok}
} else {
fr.env[instr] = fr.interfaceTypeAssert(x, instr.AssertedType)
}
case *ssa.UnOp:
operand := fr.value(instr.X)
switch instr.Op {
case token.ARROW:
x, ok := fr.chanRecv(operand, instr.CommaOk)
if instr.CommaOk {
fr.tuples[instr] = []*govalue{x, ok}
} else {
fr.env[instr] = x
}
case token.MUL:
fr.nilCheck(instr.X, operand.value)
if !fr.canAvoidLoad(instr, operand.value) {
// The bitcast is necessary to handle recursive pointer loads.
llptr := fr.builder.CreateBitCast(operand.value, llvm.PointerType(fr.llvmtypes.ToLLVM(instr.Type()), 0), "")
fr.env[instr] = newValue(fr.builder.CreateLoad(llptr, ""), instr.Type())
}
default:
fr.env[instr] = fr.unaryOp(operand, instr.Op)
}
default:
panic(fmt.Sprintf("unhandled: %v", instr))
}
}
func (fr *frame) callBuiltin(typ types.Type, builtin *ssa.Builtin, args []ssa.Value) []*govalue {
switch builtin.Name() {
case "print", "println":
llargs := make([]*govalue, len(args))
for i, arg := range args {
llargs[i] = fr.value(arg)
}
fr.printValues(builtin.Name() == "println", llargs...)
return nil
case "panic":
fr.callPanic(fr.value(args[0]), false)
return nil
case "recover":
return []*govalue{fr.callRecover(false)}
case "append":
return []*govalue{fr.callAppend(fr.value(args[0]), fr.value(args[1]))}
case "close":
fr.chanClose(fr.value(args[0]))
return nil
case "cap":
return []*govalue{fr.callCap(fr.value(args[0]))}
case "len":
return []*govalue{fr.callLen(fr.value(args[0]))}
case "copy":
return []*govalue{fr.callCopy(fr.value(args[0]), fr.value(args[1]))}
case "delete":
fr.mapDelete(fr.value(args[0]), fr.value(args[1]))
return nil
case "real":
return []*govalue{fr.extractRealValue(fr.value(args[0]))}
case "imag":
return []*govalue{fr.extractImagValue(fr.value(args[0]))}
case "complex":
r := fr.llvmvalue(args[0])
i := fr.llvmvalue(args[1])
cmplx := llvm.Undef(fr.llvmtypes.ToLLVM(typ))
cmplx = fr.builder.CreateInsertValue(cmplx, r, 0, "")
cmplx = fr.builder.CreateInsertValue(cmplx, i, 1, "")
return []*govalue{newValue(cmplx, typ)}
case "ssa:wrapnilchk":
ptr := fr.value(args[0])
fr.nilCheck(args[0], ptr.value)
return []*govalue{ptr}
default:
panic("unimplemented: " + builtin.Name())
}
}
// callInstruction translates function call instructions.
func (fr *frame) callInstruction(instr ssa.CallInstruction) []*govalue {
call := instr.Common()
if builtin, ok := call.Value.(*ssa.Builtin); ok {
var typ types.Type
if v := instr.Value(); v != nil {
typ = v.Type()
}
return fr.callBuiltin(typ, builtin, call.Args)
}
args := make([]*govalue, len(call.Args))
for i, arg := range call.Args {
args[i] = fr.value(arg)
}
var fn *govalue
var chain llvm.Value
if call.IsInvoke() {
var recv *govalue
fn, recv = fr.interfaceMethod(fr.llvmvalue(call.Value), call.Value.Type(), call.Method)
args = append([]*govalue{recv}, args...)
} else {
if ssafn, ok := call.Value.(*ssa.Function); ok {
llfn := fr.resolveFunctionGlobal(ssafn)
llfn = llvm.ConstBitCast(llfn, llvm.PointerType(llvm.Int8Type(), 0))
fn = newValue(llfn, ssafn.Type())
} else {
// First-class function values are stored as *{*fnptr}, so
// we must extract the function pointer. We must also
// set the chain, in case the function is a closure.
fn = fr.value(call.Value)
chain = fn.value
fnptr := fr.builder.CreateBitCast(fn.value, llvm.PointerType(fn.value.Type(), 0), "")
fnptr = fr.builder.CreateLoad(fnptr, "")
fn = newValue(fnptr, fn.Type())
}
if recv := call.Signature().Recv(); recv != nil {
if _, ok := recv.Type().Underlying().(*types.Pointer); !ok {
recvalloca := fr.allocaBuilder.CreateAlloca(args[0].value.Type(), "")
fr.builder.CreateStore(args[0].value, recvalloca)
args[0] = newValue(recvalloca, types.NewPointer(args[0].Type()))
}
}
}
return fr.createCall(fn, chain, args)
}
func hasDefer(f *ssa.Function) bool {
for _, b := range f.Blocks {
for _, instr := range b.Instrs {
if _, ok := instr.(*ssa.Defer); ok {
return true
}
}
}
return false
}
func callsRecover(f *ssa.Function) bool {
for _, b := range f.Blocks {
for _, instr := range b.Instrs {
if instr, ok := instr.(ssa.CallInstruction); ok {
b, ok := instr.Common().Value.(*ssa.Builtin)
if ok && b.Name() == "recover" {
return true
}
}
}
}
return false
}