forked from OSchip/llvm-project
2597 lines
78 KiB
C++
2597 lines
78 KiB
C++
//===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend is responsible for emitting arm_neon.h, which includes
|
|
// a declaration and definition of each function specified by the ARM NEON
|
|
// compiler interface. See ARM document DUI0348B.
|
|
//
|
|
// Each NEON instruction is implemented in terms of 1 or more functions which
|
|
// are suffixed with the element type of the input vectors. Functions may be
|
|
// implemented in terms of generic vector operations such as +, *, -, etc. or
|
|
// by calling a __builtin_-prefixed function which will be handled by clang's
|
|
// CodeGen library.
|
|
//
|
|
// Additional validation code can be generated by this file when runHeader() is
|
|
// called, rather than the normal run() entry point. A complete set of tests
|
|
// for Neon intrinsics can be generated by calling the runTests() entry point.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include "llvm/TableGen/TableGenBackend.h"
|
|
#include <string>
|
|
using namespace llvm;
|
|
|
|
enum OpKind {
|
|
OpNone,
|
|
OpUnavailable,
|
|
OpAdd,
|
|
OpAddl,
|
|
OpAddw,
|
|
OpSub,
|
|
OpSubl,
|
|
OpSubw,
|
|
OpMul,
|
|
OpMla,
|
|
OpMlal,
|
|
OpMls,
|
|
OpMlsl,
|
|
OpMulN,
|
|
OpMlaN,
|
|
OpMlsN,
|
|
OpMlalN,
|
|
OpMlslN,
|
|
OpMulLane,
|
|
OpMullLane,
|
|
OpMlaLane,
|
|
OpMlsLane,
|
|
OpMlalLane,
|
|
OpMlslLane,
|
|
OpQDMullLane,
|
|
OpQDMlalLane,
|
|
OpQDMlslLane,
|
|
OpQDMulhLane,
|
|
OpQRDMulhLane,
|
|
OpEq,
|
|
OpGe,
|
|
OpLe,
|
|
OpGt,
|
|
OpLt,
|
|
OpNeg,
|
|
OpNot,
|
|
OpAnd,
|
|
OpOr,
|
|
OpXor,
|
|
OpAndNot,
|
|
OpOrNot,
|
|
OpCast,
|
|
OpConcat,
|
|
OpDup,
|
|
OpDupLane,
|
|
OpHi,
|
|
OpLo,
|
|
OpSelect,
|
|
OpRev16,
|
|
OpRev32,
|
|
OpRev64,
|
|
OpReinterpret,
|
|
OpAbdl,
|
|
OpAba,
|
|
OpAbal,
|
|
OpDiv
|
|
};
|
|
|
|
enum ClassKind {
|
|
ClassNone,
|
|
ClassI, // generic integer instruction, e.g., "i8" suffix
|
|
ClassS, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
|
|
ClassW, // width-specific instruction, e.g., "8" suffix
|
|
ClassB, // bitcast arguments with enum argument to specify type
|
|
ClassL, // Logical instructions which are op instructions
|
|
// but we need to not emit any suffix for in our
|
|
// tests.
|
|
ClassNoTest // Instructions which we do not test since they are
|
|
// not TRUE instructions.
|
|
};
|
|
|
|
/// NeonTypeFlags - Flags to identify the types for overloaded Neon
|
|
/// builtins. These must be kept in sync with the flags in
|
|
/// include/clang/Basic/TargetBuiltins.h.
|
|
namespace {
|
|
class NeonTypeFlags {
|
|
enum {
|
|
EltTypeMask = 0xf,
|
|
UnsignedFlag = 0x10,
|
|
QuadFlag = 0x20
|
|
};
|
|
uint32_t Flags;
|
|
|
|
public:
|
|
enum EltType {
|
|
Int8,
|
|
Int16,
|
|
Int32,
|
|
Int64,
|
|
Poly8,
|
|
Poly16,
|
|
Float16,
|
|
Float32,
|
|
Float64
|
|
};
|
|
|
|
NeonTypeFlags(unsigned F) : Flags(F) {}
|
|
NeonTypeFlags(EltType ET, bool IsUnsigned, bool IsQuad) : Flags(ET) {
|
|
if (IsUnsigned)
|
|
Flags |= UnsignedFlag;
|
|
if (IsQuad)
|
|
Flags |= QuadFlag;
|
|
}
|
|
|
|
uint32_t getFlags() const { return Flags; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
class NeonEmitter {
|
|
RecordKeeper &Records;
|
|
StringMap<OpKind> OpMap;
|
|
DenseMap<Record*, ClassKind> ClassMap;
|
|
|
|
public:
|
|
NeonEmitter(RecordKeeper &R) : Records(R) {
|
|
OpMap["OP_NONE"] = OpNone;
|
|
OpMap["OP_UNAVAILABLE"] = OpUnavailable;
|
|
OpMap["OP_ADD"] = OpAdd;
|
|
OpMap["OP_ADDL"] = OpAddl;
|
|
OpMap["OP_ADDW"] = OpAddw;
|
|
OpMap["OP_SUB"] = OpSub;
|
|
OpMap["OP_SUBL"] = OpSubl;
|
|
OpMap["OP_SUBW"] = OpSubw;
|
|
OpMap["OP_MUL"] = OpMul;
|
|
OpMap["OP_MLA"] = OpMla;
|
|
OpMap["OP_MLAL"] = OpMlal;
|
|
OpMap["OP_MLS"] = OpMls;
|
|
OpMap["OP_MLSL"] = OpMlsl;
|
|
OpMap["OP_MUL_N"] = OpMulN;
|
|
OpMap["OP_MLA_N"] = OpMlaN;
|
|
OpMap["OP_MLS_N"] = OpMlsN;
|
|
OpMap["OP_MLAL_N"] = OpMlalN;
|
|
OpMap["OP_MLSL_N"] = OpMlslN;
|
|
OpMap["OP_MUL_LN"]= OpMulLane;
|
|
OpMap["OP_MULL_LN"] = OpMullLane;
|
|
OpMap["OP_MLA_LN"]= OpMlaLane;
|
|
OpMap["OP_MLS_LN"]= OpMlsLane;
|
|
OpMap["OP_MLAL_LN"] = OpMlalLane;
|
|
OpMap["OP_MLSL_LN"] = OpMlslLane;
|
|
OpMap["OP_QDMULL_LN"] = OpQDMullLane;
|
|
OpMap["OP_QDMLAL_LN"] = OpQDMlalLane;
|
|
OpMap["OP_QDMLSL_LN"] = OpQDMlslLane;
|
|
OpMap["OP_QDMULH_LN"] = OpQDMulhLane;
|
|
OpMap["OP_QRDMULH_LN"] = OpQRDMulhLane;
|
|
OpMap["OP_EQ"] = OpEq;
|
|
OpMap["OP_GE"] = OpGe;
|
|
OpMap["OP_LE"] = OpLe;
|
|
OpMap["OP_GT"] = OpGt;
|
|
OpMap["OP_LT"] = OpLt;
|
|
OpMap["OP_NEG"] = OpNeg;
|
|
OpMap["OP_NOT"] = OpNot;
|
|
OpMap["OP_AND"] = OpAnd;
|
|
OpMap["OP_OR"] = OpOr;
|
|
OpMap["OP_XOR"] = OpXor;
|
|
OpMap["OP_ANDN"] = OpAndNot;
|
|
OpMap["OP_ORN"] = OpOrNot;
|
|
OpMap["OP_CAST"] = OpCast;
|
|
OpMap["OP_CONC"] = OpConcat;
|
|
OpMap["OP_HI"] = OpHi;
|
|
OpMap["OP_LO"] = OpLo;
|
|
OpMap["OP_DUP"] = OpDup;
|
|
OpMap["OP_DUP_LN"] = OpDupLane;
|
|
OpMap["OP_SEL"] = OpSelect;
|
|
OpMap["OP_REV16"] = OpRev16;
|
|
OpMap["OP_REV32"] = OpRev32;
|
|
OpMap["OP_REV64"] = OpRev64;
|
|
OpMap["OP_REINT"] = OpReinterpret;
|
|
OpMap["OP_ABDL"] = OpAbdl;
|
|
OpMap["OP_ABA"] = OpAba;
|
|
OpMap["OP_ABAL"] = OpAbal;
|
|
OpMap["OP_DIV"] = OpDiv;
|
|
|
|
Record *SI = R.getClass("SInst");
|
|
Record *II = R.getClass("IInst");
|
|
Record *WI = R.getClass("WInst");
|
|
Record *SOpI = R.getClass("SOpInst");
|
|
Record *IOpI = R.getClass("IOpInst");
|
|
Record *WOpI = R.getClass("WOpInst");
|
|
Record *LOpI = R.getClass("LOpInst");
|
|
Record *NoTestOpI = R.getClass("NoTestOpInst");
|
|
|
|
ClassMap[SI] = ClassS;
|
|
ClassMap[II] = ClassI;
|
|
ClassMap[WI] = ClassW;
|
|
ClassMap[SOpI] = ClassS;
|
|
ClassMap[IOpI] = ClassI;
|
|
ClassMap[WOpI] = ClassW;
|
|
ClassMap[LOpI] = ClassL;
|
|
ClassMap[NoTestOpI] = ClassNoTest;
|
|
}
|
|
|
|
// run - Emit arm_neon.h.inc
|
|
void run(raw_ostream &o);
|
|
|
|
// runHeader - Emit all the __builtin prototypes used in arm_neon.h
|
|
void runHeader(raw_ostream &o);
|
|
|
|
// runTests - Emit tests for all the Neon intrinsics.
|
|
void runTests(raw_ostream &o);
|
|
|
|
private:
|
|
void emitIntrinsic(raw_ostream &OS, Record *R,
|
|
StringMap<ClassKind> &EmittedMap);
|
|
void genBuiltinsDef(raw_ostream &OS, StringMap<ClassKind> &A64IntrinsicMap,
|
|
bool isA64GenBuiltinDef);
|
|
void genOverloadTypeCheckCode(raw_ostream &OS,
|
|
StringMap<ClassKind> &A64IntrinsicMap,
|
|
bool isA64TypeCheck);
|
|
void genIntrinsicRangeCheckCode(raw_ostream &OS,
|
|
StringMap<ClassKind> &A64IntrinsicMap,
|
|
bool isA64RangeCheck);
|
|
void genTargetTest(raw_ostream &OS, StringMap<OpKind> &EmittedMap,
|
|
bool isA64TestGen);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// ParseTypes - break down a string such as "fQf" into a vector of StringRefs,
|
|
/// which each StringRef representing a single type declared in the string.
|
|
/// for "fQf" we would end up with 2 StringRefs, "f", and "Qf", representing
|
|
/// 2xfloat and 4xfloat respectively.
|
|
static void ParseTypes(Record *r, std::string &s,
|
|
SmallVectorImpl<StringRef> &TV) {
|
|
const char *data = s.data();
|
|
int len = 0;
|
|
|
|
for (unsigned i = 0, e = s.size(); i != e; ++i, ++len) {
|
|
if (data[len] == 'P' || data[len] == 'Q' || data[len] == 'U')
|
|
continue;
|
|
|
|
switch (data[len]) {
|
|
case 'c':
|
|
case 's':
|
|
case 'i':
|
|
case 'l':
|
|
case 'h':
|
|
case 'f':
|
|
case 'd':
|
|
break;
|
|
default:
|
|
PrintFatalError(r->getLoc(),
|
|
"Unexpected letter: " + std::string(data + len, 1));
|
|
}
|
|
TV.push_back(StringRef(data, len + 1));
|
|
data += len + 1;
|
|
len = -1;
|
|
}
|
|
}
|
|
|
|
/// Widen - Convert a type code into the next wider type. char -> short,
|
|
/// short -> int, etc.
|
|
static char Widen(const char t) {
|
|
switch (t) {
|
|
case 'c':
|
|
return 's';
|
|
case 's':
|
|
return 'i';
|
|
case 'i':
|
|
return 'l';
|
|
case 'h':
|
|
return 'f';
|
|
default:
|
|
PrintFatalError("unhandled type in widen!");
|
|
}
|
|
}
|
|
|
|
/// Narrow - Convert a type code into the next smaller type. short -> char,
|
|
/// float -> half float, etc.
|
|
static char Narrow(const char t) {
|
|
switch (t) {
|
|
case 's':
|
|
return 'c';
|
|
case 'i':
|
|
return 's';
|
|
case 'l':
|
|
return 'i';
|
|
case 'f':
|
|
return 'h';
|
|
default:
|
|
PrintFatalError("unhandled type in narrow!");
|
|
}
|
|
}
|
|
|
|
/// For a particular StringRef, return the base type code, and whether it has
|
|
/// the quad-vector, polynomial, or unsigned modifiers set.
|
|
static char ClassifyType(StringRef ty, bool &quad, bool &poly, bool &usgn) {
|
|
unsigned off = 0;
|
|
|
|
// remember quad.
|
|
if (ty[off] == 'Q') {
|
|
quad = true;
|
|
++off;
|
|
}
|
|
|
|
// remember poly.
|
|
if (ty[off] == 'P') {
|
|
poly = true;
|
|
++off;
|
|
}
|
|
|
|
// remember unsigned.
|
|
if (ty[off] == 'U') {
|
|
usgn = true;
|
|
++off;
|
|
}
|
|
|
|
// base type to get the type string for.
|
|
return ty[off];
|
|
}
|
|
|
|
/// ModType - Transform a type code and its modifiers based on a mod code. The
|
|
/// mod code definitions may be found at the top of arm_neon.td.
|
|
static char ModType(const char mod, char type, bool &quad, bool &poly,
|
|
bool &usgn, bool &scal, bool &cnst, bool &pntr) {
|
|
switch (mod) {
|
|
case 't':
|
|
if (poly) {
|
|
poly = false;
|
|
usgn = true;
|
|
}
|
|
break;
|
|
case 'u':
|
|
usgn = true;
|
|
poly = false;
|
|
if (type == 'f')
|
|
type = 'i';
|
|
if (type == 'd')
|
|
type = 'l';
|
|
break;
|
|
case 'x':
|
|
usgn = false;
|
|
poly = false;
|
|
if (type == 'f')
|
|
type = 'i';
|
|
break;
|
|
case 'f':
|
|
if (type == 'h')
|
|
quad = true;
|
|
type = 'f';
|
|
usgn = false;
|
|
break;
|
|
case 'g':
|
|
quad = false;
|
|
break;
|
|
case 'w':
|
|
type = Widen(type);
|
|
quad = true;
|
|
break;
|
|
case 'n':
|
|
type = Widen(type);
|
|
break;
|
|
case 'i':
|
|
type = 'i';
|
|
scal = true;
|
|
break;
|
|
case 'l':
|
|
type = 'l';
|
|
scal = true;
|
|
usgn = true;
|
|
break;
|
|
case 's':
|
|
case 'a':
|
|
scal = true;
|
|
break;
|
|
case 'k':
|
|
quad = true;
|
|
break;
|
|
case 'c':
|
|
cnst = true;
|
|
case 'p':
|
|
pntr = true;
|
|
scal = true;
|
|
break;
|
|
case 'h':
|
|
type = Narrow(type);
|
|
if (type == 'h')
|
|
quad = false;
|
|
break;
|
|
case 'e':
|
|
type = Narrow(type);
|
|
usgn = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
/// TypeString - for a modifier and type, generate the name of the typedef for
|
|
/// that type. QUc -> uint8x8_t.
|
|
static std::string TypeString(const char mod, StringRef typestr) {
|
|
bool quad = false;
|
|
bool poly = false;
|
|
bool usgn = false;
|
|
bool scal = false;
|
|
bool cnst = false;
|
|
bool pntr = false;
|
|
|
|
if (mod == 'v')
|
|
return "void";
|
|
if (mod == 'i')
|
|
return "int";
|
|
|
|
// base type to get the type string for.
|
|
char type = ClassifyType(typestr, quad, poly, usgn);
|
|
|
|
// Based on the modifying character, change the type and width if necessary.
|
|
type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr);
|
|
|
|
SmallString<128> s;
|
|
|
|
if (usgn)
|
|
s.push_back('u');
|
|
|
|
switch (type) {
|
|
case 'c':
|
|
s += poly ? "poly8" : "int8";
|
|
if (scal)
|
|
break;
|
|
s += quad ? "x16" : "x8";
|
|
break;
|
|
case 's':
|
|
s += poly ? "poly16" : "int16";
|
|
if (scal)
|
|
break;
|
|
s += quad ? "x8" : "x4";
|
|
break;
|
|
case 'i':
|
|
s += "int32";
|
|
if (scal)
|
|
break;
|
|
s += quad ? "x4" : "x2";
|
|
break;
|
|
case 'l':
|
|
s += "int64";
|
|
if (scal)
|
|
break;
|
|
s += quad ? "x2" : "x1";
|
|
break;
|
|
case 'h':
|
|
s += "float16";
|
|
if (scal)
|
|
break;
|
|
s += quad ? "x8" : "x4";
|
|
break;
|
|
case 'f':
|
|
s += "float32";
|
|
if (scal)
|
|
break;
|
|
s += quad ? "x4" : "x2";
|
|
break;
|
|
case 'd':
|
|
s += "float64";
|
|
if (scal)
|
|
break;
|
|
s += quad ? "x2" : "x1";
|
|
break;
|
|
|
|
default:
|
|
PrintFatalError("unhandled type!");
|
|
}
|
|
|
|
if (mod == '2')
|
|
s += "x2";
|
|
if (mod == '3')
|
|
s += "x3";
|
|
if (mod == '4')
|
|
s += "x4";
|
|
|
|
// Append _t, finishing the type string typedef type.
|
|
s += "_t";
|
|
|
|
if (cnst)
|
|
s += " const";
|
|
|
|
if (pntr)
|
|
s += " *";
|
|
|
|
return s.str();
|
|
}
|
|
|
|
/// BuiltinTypeString - for a modifier and type, generate the clang
|
|
/// BuiltinsARM.def prototype code for the function. See the top of clang's
|
|
/// Builtins.def for a description of the type strings.
|
|
static std::string BuiltinTypeString(const char mod, StringRef typestr,
|
|
ClassKind ck, bool ret) {
|
|
bool quad = false;
|
|
bool poly = false;
|
|
bool usgn = false;
|
|
bool scal = false;
|
|
bool cnst = false;
|
|
bool pntr = false;
|
|
|
|
if (mod == 'v')
|
|
return "v"; // void
|
|
if (mod == 'i')
|
|
return "i"; // int
|
|
|
|
// base type to get the type string for.
|
|
char type = ClassifyType(typestr, quad, poly, usgn);
|
|
|
|
// Based on the modifying character, change the type and width if necessary.
|
|
type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr);
|
|
|
|
// All pointers are void* pointers. Change type to 'v' now.
|
|
if (pntr) {
|
|
usgn = false;
|
|
poly = false;
|
|
type = 'v';
|
|
}
|
|
// Treat half-float ('h') types as unsigned short ('s') types.
|
|
if (type == 'h') {
|
|
type = 's';
|
|
usgn = true;
|
|
}
|
|
usgn = usgn | poly | ((ck == ClassI || ck == ClassW) && scal && type != 'f');
|
|
|
|
if (scal) {
|
|
SmallString<128> s;
|
|
|
|
if (usgn)
|
|
s.push_back('U');
|
|
else if (type == 'c')
|
|
s.push_back('S'); // make chars explicitly signed
|
|
|
|
if (type == 'l') // 64-bit long
|
|
s += "LLi";
|
|
else
|
|
s.push_back(type);
|
|
|
|
if (cnst)
|
|
s.push_back('C');
|
|
if (pntr)
|
|
s.push_back('*');
|
|
return s.str();
|
|
}
|
|
|
|
// Since the return value must be one type, return a vector type of the
|
|
// appropriate width which we will bitcast. An exception is made for
|
|
// returning structs of 2, 3, or 4 vectors which are returned in a sret-like
|
|
// fashion, storing them to a pointer arg.
|
|
if (ret) {
|
|
if (mod >= '2' && mod <= '4')
|
|
return "vv*"; // void result with void* first argument
|
|
if (mod == 'f' || (ck != ClassB && type == 'f'))
|
|
return quad ? "V4f" : "V2f";
|
|
if (ck != ClassB && type == 's')
|
|
return quad ? "V8s" : "V4s";
|
|
if (ck != ClassB && type == 'i')
|
|
return quad ? "V4i" : "V2i";
|
|
if (ck != ClassB && type == 'l')
|
|
return quad ? "V2LLi" : "V1LLi";
|
|
|
|
return quad ? "V16Sc" : "V8Sc";
|
|
}
|
|
|
|
// Non-return array types are passed as individual vectors.
|
|
if (mod == '2')
|
|
return quad ? "V16ScV16Sc" : "V8ScV8Sc";
|
|
if (mod == '3')
|
|
return quad ? "V16ScV16ScV16Sc" : "V8ScV8ScV8Sc";
|
|
if (mod == '4')
|
|
return quad ? "V16ScV16ScV16ScV16Sc" : "V8ScV8ScV8ScV8Sc";
|
|
|
|
if (mod == 'f' || (ck != ClassB && type == 'f'))
|
|
return quad ? "V4f" : "V2f";
|
|
if (ck != ClassB && type == 's')
|
|
return quad ? "V8s" : "V4s";
|
|
if (ck != ClassB && type == 'i')
|
|
return quad ? "V4i" : "V2i";
|
|
if (ck != ClassB && type == 'l')
|
|
return quad ? "V2LLi" : "V1LLi";
|
|
|
|
return quad ? "V16Sc" : "V8Sc";
|
|
}
|
|
|
|
/// InstructionTypeCode - Computes the ARM argument character code and
|
|
/// quad status for a specific type string and ClassKind.
|
|
static void InstructionTypeCode(const StringRef &typeStr,
|
|
const ClassKind ck,
|
|
bool &quad,
|
|
std::string &typeCode) {
|
|
bool poly = false;
|
|
bool usgn = false;
|
|
char type = ClassifyType(typeStr, quad, poly, usgn);
|
|
|
|
switch (type) {
|
|
case 'c':
|
|
switch (ck) {
|
|
case ClassS: typeCode = poly ? "p8" : usgn ? "u8" : "s8"; break;
|
|
case ClassI: typeCode = "i8"; break;
|
|
case ClassW: typeCode = "8"; break;
|
|
default: break;
|
|
}
|
|
break;
|
|
case 's':
|
|
switch (ck) {
|
|
case ClassS: typeCode = poly ? "p16" : usgn ? "u16" : "s16"; break;
|
|
case ClassI: typeCode = "i16"; break;
|
|
case ClassW: typeCode = "16"; break;
|
|
default: break;
|
|
}
|
|
break;
|
|
case 'i':
|
|
switch (ck) {
|
|
case ClassS: typeCode = usgn ? "u32" : "s32"; break;
|
|
case ClassI: typeCode = "i32"; break;
|
|
case ClassW: typeCode = "32"; break;
|
|
default: break;
|
|
}
|
|
break;
|
|
case 'l':
|
|
switch (ck) {
|
|
case ClassS: typeCode = usgn ? "u64" : "s64"; break;
|
|
case ClassI: typeCode = "i64"; break;
|
|
case ClassW: typeCode = "64"; break;
|
|
default: break;
|
|
}
|
|
break;
|
|
case 'h':
|
|
switch (ck) {
|
|
case ClassS:
|
|
case ClassI: typeCode = "f16"; break;
|
|
case ClassW: typeCode = "16"; break;
|
|
default: break;
|
|
}
|
|
break;
|
|
case 'f':
|
|
switch (ck) {
|
|
case ClassS:
|
|
case ClassI: typeCode = "f32"; break;
|
|
case ClassW: typeCode = "32"; break;
|
|
default: break;
|
|
}
|
|
break;
|
|
case 'd':
|
|
switch (ck) {
|
|
case ClassS:
|
|
case ClassI:
|
|
typeCode += "f64";
|
|
break;
|
|
case ClassW:
|
|
PrintFatalError("unhandled type!");
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
PrintFatalError("unhandled type!");
|
|
}
|
|
}
|
|
|
|
/// MangleName - Append a type or width suffix to a base neon function name,
|
|
/// and insert a 'q' in the appropriate location if the operation works on
|
|
/// 128b rather than 64b. E.g. turn "vst2_lane" into "vst2q_lane_f32", etc.
|
|
static std::string MangleName(const std::string &name, StringRef typestr,
|
|
ClassKind ck) {
|
|
if (name == "vcvt_f32_f16")
|
|
return name;
|
|
|
|
bool quad = false;
|
|
std::string typeCode = "";
|
|
|
|
InstructionTypeCode(typestr, ck, quad, typeCode);
|
|
|
|
std::string s = name;
|
|
|
|
if (typeCode.size() > 0) {
|
|
s += "_" + typeCode;
|
|
}
|
|
|
|
if (ck == ClassB)
|
|
s += "_v";
|
|
|
|
// Insert a 'q' before the first '_' character so that it ends up before
|
|
// _lane or _n on vector-scalar operations.
|
|
if (quad) {
|
|
size_t pos = s.find('_');
|
|
s = s.insert(pos, "q");
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
static void PreprocessInstruction(const StringRef &Name,
|
|
const std::string &InstName,
|
|
std::string &Prefix,
|
|
bool &HasNPostfix,
|
|
bool &HasLanePostfix,
|
|
bool &HasDupPostfix,
|
|
bool &IsSpecialVCvt,
|
|
size_t &TBNumber) {
|
|
// All of our instruction name fields from arm_neon.td are of the form
|
|
// <instructionname>_...
|
|
// Thus we grab our instruction name via computation of said Prefix.
|
|
const size_t PrefixEnd = Name.find_first_of('_');
|
|
// If InstName is passed in, we use that instead of our name Prefix.
|
|
Prefix = InstName.size() == 0? Name.slice(0, PrefixEnd).str() : InstName;
|
|
|
|
const StringRef Postfix = Name.slice(PrefixEnd, Name.size());
|
|
|
|
HasNPostfix = Postfix.count("_n");
|
|
HasLanePostfix = Postfix.count("_lane");
|
|
HasDupPostfix = Postfix.count("_dup");
|
|
IsSpecialVCvt = Postfix.size() != 0 && Name.count("vcvt");
|
|
|
|
if (InstName.compare("vtbl") == 0 ||
|
|
InstName.compare("vtbx") == 0) {
|
|
// If we have a vtblN/vtbxN instruction, use the instruction's ASCII
|
|
// encoding to get its true value.
|
|
TBNumber = Name[Name.size()-1] - 48;
|
|
}
|
|
}
|
|
|
|
/// GenerateRegisterCheckPatternsForLoadStores - Given a bunch of data we have
|
|
/// extracted, generate a FileCheck pattern for a Load Or Store
|
|
static void
|
|
GenerateRegisterCheckPatternForLoadStores(const StringRef &NameRef,
|
|
const std::string& OutTypeCode,
|
|
const bool &IsQuad,
|
|
const bool &HasDupPostfix,
|
|
const bool &HasLanePostfix,
|
|
const size_t Count,
|
|
std::string &RegisterSuffix) {
|
|
const bool IsLDSTOne = NameRef.count("vld1") || NameRef.count("vst1");
|
|
// If N == 3 || N == 4 and we are dealing with a quad instruction, Clang
|
|
// will output a series of v{ld,st}1s, so we have to handle it specially.
|
|
if ((Count == 3 || Count == 4) && IsQuad) {
|
|
RegisterSuffix += "{";
|
|
for (size_t i = 0; i < Count; i++) {
|
|
RegisterSuffix += "d{{[0-9]+}}";
|
|
if (HasDupPostfix) {
|
|
RegisterSuffix += "[]";
|
|
}
|
|
if (HasLanePostfix) {
|
|
RegisterSuffix += "[{{[0-9]+}}]";
|
|
}
|
|
if (i < Count-1) {
|
|
RegisterSuffix += ", ";
|
|
}
|
|
}
|
|
RegisterSuffix += "}";
|
|
} else {
|
|
|
|
// Handle normal loads and stores.
|
|
RegisterSuffix += "{";
|
|
for (size_t i = 0; i < Count; i++) {
|
|
RegisterSuffix += "d{{[0-9]+}}";
|
|
if (HasDupPostfix) {
|
|
RegisterSuffix += "[]";
|
|
}
|
|
if (HasLanePostfix) {
|
|
RegisterSuffix += "[{{[0-9]+}}]";
|
|
}
|
|
if (IsQuad && !HasLanePostfix) {
|
|
RegisterSuffix += ", d{{[0-9]+}}";
|
|
if (HasDupPostfix) {
|
|
RegisterSuffix += "[]";
|
|
}
|
|
}
|
|
if (i < Count-1) {
|
|
RegisterSuffix += ", ";
|
|
}
|
|
}
|
|
RegisterSuffix += "}, [r{{[0-9]+}}";
|
|
|
|
// We only include the alignment hint if we have a vld1.*64 or
|
|
// a dup/lane instruction.
|
|
if (IsLDSTOne) {
|
|
if ((HasLanePostfix || HasDupPostfix) && OutTypeCode != "8") {
|
|
RegisterSuffix += ":" + OutTypeCode;
|
|
}
|
|
}
|
|
|
|
RegisterSuffix += "]";
|
|
}
|
|
}
|
|
|
|
static bool HasNPostfixAndScalarArgs(const StringRef &NameRef,
|
|
const bool &HasNPostfix) {
|
|
return (NameRef.count("vmla") ||
|
|
NameRef.count("vmlal") ||
|
|
NameRef.count("vmlsl") ||
|
|
NameRef.count("vmull") ||
|
|
NameRef.count("vqdmlal") ||
|
|
NameRef.count("vqdmlsl") ||
|
|
NameRef.count("vqdmulh") ||
|
|
NameRef.count("vqdmull") ||
|
|
NameRef.count("vqrdmulh")) && HasNPostfix;
|
|
}
|
|
|
|
static bool IsFiveOperandLaneAccumulator(const StringRef &NameRef,
|
|
const bool &HasLanePostfix) {
|
|
return (NameRef.count("vmla") ||
|
|
NameRef.count("vmls") ||
|
|
NameRef.count("vmlal") ||
|
|
NameRef.count("vmlsl") ||
|
|
(NameRef.count("vmul") && NameRef.size() == 3)||
|
|
NameRef.count("vqdmlal") ||
|
|
NameRef.count("vqdmlsl") ||
|
|
NameRef.count("vqdmulh") ||
|
|
NameRef.count("vqrdmulh")) && HasLanePostfix;
|
|
}
|
|
|
|
static bool IsSpecialLaneMultiply(const StringRef &NameRef,
|
|
const bool &HasLanePostfix,
|
|
const bool &IsQuad) {
|
|
const bool IsVMulOrMulh = (NameRef.count("vmul") || NameRef.count("mulh"))
|
|
&& IsQuad;
|
|
const bool IsVMull = NameRef.count("mull") && !IsQuad;
|
|
return (IsVMulOrMulh || IsVMull) && HasLanePostfix;
|
|
}
|
|
|
|
static void NormalizeProtoForRegisterPatternCreation(const std::string &Name,
|
|
const std::string &Proto,
|
|
const bool &HasNPostfix,
|
|
const bool &IsQuad,
|
|
const bool &HasLanePostfix,
|
|
const bool &HasDupPostfix,
|
|
std::string &NormedProto) {
|
|
// Handle generic case.
|
|
const StringRef NameRef(Name);
|
|
for (size_t i = 0, end = Proto.size(); i < end; i++) {
|
|
switch (Proto[i]) {
|
|
case 'u':
|
|
case 'f':
|
|
case 'd':
|
|
case 's':
|
|
case 'x':
|
|
case 't':
|
|
case 'n':
|
|
NormedProto += IsQuad? 'q' : 'd';
|
|
break;
|
|
case 'w':
|
|
case 'k':
|
|
NormedProto += 'q';
|
|
break;
|
|
case 'g':
|
|
case 'h':
|
|
case 'e':
|
|
NormedProto += 'd';
|
|
break;
|
|
case 'i':
|
|
NormedProto += HasLanePostfix? 'a' : 'i';
|
|
break;
|
|
case 'a':
|
|
if (HasLanePostfix) {
|
|
NormedProto += 'a';
|
|
} else if (HasNPostfixAndScalarArgs(NameRef, HasNPostfix)) {
|
|
NormedProto += IsQuad? 'q' : 'd';
|
|
} else {
|
|
NormedProto += 'i';
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Handle Special Cases.
|
|
const bool IsNotVExt = !NameRef.count("vext");
|
|
const bool IsVPADAL = NameRef.count("vpadal");
|
|
const bool Is5OpLaneAccum = IsFiveOperandLaneAccumulator(NameRef,
|
|
HasLanePostfix);
|
|
const bool IsSpecialLaneMul = IsSpecialLaneMultiply(NameRef, HasLanePostfix,
|
|
IsQuad);
|
|
|
|
if (IsSpecialLaneMul) {
|
|
// If
|
|
NormedProto[2] = NormedProto[3];
|
|
NormedProto.erase(3);
|
|
} else if (NormedProto.size() == 4 &&
|
|
NormedProto[0] == NormedProto[1] &&
|
|
IsNotVExt) {
|
|
// If NormedProto.size() == 4 and the first two proto characters are the
|
|
// same, ignore the first.
|
|
NormedProto = NormedProto.substr(1, 3);
|
|
} else if (Is5OpLaneAccum) {
|
|
// If we have a 5 op lane accumulator operation, we take characters 1,2,4
|
|
std::string tmp = NormedProto.substr(1,2);
|
|
tmp += NormedProto[4];
|
|
NormedProto = tmp;
|
|
} else if (IsVPADAL) {
|
|
// If we have VPADAL, ignore the first character.
|
|
NormedProto = NormedProto.substr(0, 2);
|
|
} else if (NameRef.count("vdup") && NormedProto.size() > 2) {
|
|
// If our instruction is a dup instruction, keep only the first and
|
|
// last characters.
|
|
std::string tmp = "";
|
|
tmp += NormedProto[0];
|
|
tmp += NormedProto[NormedProto.size()-1];
|
|
NormedProto = tmp;
|
|
}
|
|
}
|
|
|
|
/// GenerateRegisterCheckPatterns - Given a bunch of data we have
|
|
/// extracted, generate a FileCheck pattern to check that an
|
|
/// instruction's arguments are correct.
|
|
static void GenerateRegisterCheckPattern(const std::string &Name,
|
|
const std::string &Proto,
|
|
const std::string &OutTypeCode,
|
|
const bool &HasNPostfix,
|
|
const bool &IsQuad,
|
|
const bool &HasLanePostfix,
|
|
const bool &HasDupPostfix,
|
|
const size_t &TBNumber,
|
|
std::string &RegisterSuffix) {
|
|
|
|
RegisterSuffix = "";
|
|
|
|
const StringRef NameRef(Name);
|
|
const StringRef ProtoRef(Proto);
|
|
|
|
if ((NameRef.count("vdup") || NameRef.count("vmov")) && HasNPostfix) {
|
|
return;
|
|
}
|
|
|
|
const bool IsLoadStore = NameRef.count("vld") || NameRef.count("vst");
|
|
const bool IsTBXOrTBL = NameRef.count("vtbl") || NameRef.count("vtbx");
|
|
|
|
if (IsLoadStore) {
|
|
// Grab N value from v{ld,st}N using its ascii representation.
|
|
const size_t Count = NameRef[3] - 48;
|
|
|
|
GenerateRegisterCheckPatternForLoadStores(NameRef, OutTypeCode, IsQuad,
|
|
HasDupPostfix, HasLanePostfix,
|
|
Count, RegisterSuffix);
|
|
} else if (IsTBXOrTBL) {
|
|
RegisterSuffix += "d{{[0-9]+}}, {";
|
|
for (size_t i = 0; i < TBNumber-1; i++) {
|
|
RegisterSuffix += "d{{[0-9]+}}, ";
|
|
}
|
|
RegisterSuffix += "d{{[0-9]+}}}, d{{[0-9]+}}";
|
|
} else {
|
|
// Handle a normal instruction.
|
|
if (NameRef.count("vget") || NameRef.count("vset"))
|
|
return;
|
|
|
|
// We first normalize our proto, since we only need to emit 4
|
|
// different types of checks, yet have more than 4 proto types
|
|
// that map onto those 4 patterns.
|
|
std::string NormalizedProto("");
|
|
NormalizeProtoForRegisterPatternCreation(Name, Proto, HasNPostfix, IsQuad,
|
|
HasLanePostfix, HasDupPostfix,
|
|
NormalizedProto);
|
|
|
|
for (size_t i = 0, end = NormalizedProto.size(); i < end; i++) {
|
|
const char &c = NormalizedProto[i];
|
|
switch (c) {
|
|
case 'q':
|
|
RegisterSuffix += "q{{[0-9]+}}, ";
|
|
break;
|
|
|
|
case 'd':
|
|
RegisterSuffix += "d{{[0-9]+}}, ";
|
|
break;
|
|
|
|
case 'i':
|
|
RegisterSuffix += "#{{[0-9]+}}, ";
|
|
break;
|
|
|
|
case 'a':
|
|
RegisterSuffix += "d{{[0-9]+}}[{{[0-9]}}], ";
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Remove extra ", ".
|
|
RegisterSuffix = RegisterSuffix.substr(0, RegisterSuffix.size()-2);
|
|
}
|
|
}
|
|
|
|
/// GenerateChecksForIntrinsic - Given a specific instruction name +
|
|
/// typestr + class kind, generate the proper set of FileCheck
|
|
/// Patterns to check for. We could just return a string, but instead
|
|
/// use a vector since it provides us with the extra flexibility of
|
|
/// emitting multiple checks, which comes in handy for certain cases
|
|
/// like mla where we want to check for 2 different instructions.
|
|
static void GenerateChecksForIntrinsic(const std::string &Name,
|
|
const std::string &Proto,
|
|
StringRef &OutTypeStr,
|
|
StringRef &InTypeStr,
|
|
ClassKind Ck,
|
|
const std::string &InstName,
|
|
bool IsHiddenLOp,
|
|
std::vector<std::string>& Result) {
|
|
|
|
// If Ck is a ClassNoTest instruction, just return so no test is
|
|
// emitted.
|
|
if(Ck == ClassNoTest)
|
|
return;
|
|
|
|
if (Name == "vcvt_f32_f16") {
|
|
Result.push_back("vcvt.f32.f16");
|
|
return;
|
|
}
|
|
|
|
|
|
// Now we preprocess our instruction given the data we have to get the
|
|
// data that we need.
|
|
// Create a StringRef for String Manipulation of our Name.
|
|
const StringRef NameRef(Name);
|
|
// Instruction Prefix.
|
|
std::string Prefix;
|
|
// The type code for our out type string.
|
|
std::string OutTypeCode;
|
|
// To handle our different cases, we need to check for different postfixes.
|
|
// Is our instruction a quad instruction.
|
|
bool IsQuad = false;
|
|
// Our instruction is of the form <instructionname>_n.
|
|
bool HasNPostfix = false;
|
|
// Our instruction is of the form <instructionname>_lane.
|
|
bool HasLanePostfix = false;
|
|
// Our instruction is of the form <instructionname>_dup.
|
|
bool HasDupPostfix = false;
|
|
// Our instruction is a vcvt instruction which requires special handling.
|
|
bool IsSpecialVCvt = false;
|
|
// If we have a vtbxN or vtblN instruction, this is set to N.
|
|
size_t TBNumber = -1;
|
|
// Register Suffix
|
|
std::string RegisterSuffix;
|
|
|
|
PreprocessInstruction(NameRef, InstName, Prefix,
|
|
HasNPostfix, HasLanePostfix, HasDupPostfix,
|
|
IsSpecialVCvt, TBNumber);
|
|
|
|
InstructionTypeCode(OutTypeStr, Ck, IsQuad, OutTypeCode);
|
|
GenerateRegisterCheckPattern(Name, Proto, OutTypeCode, HasNPostfix, IsQuad,
|
|
HasLanePostfix, HasDupPostfix, TBNumber,
|
|
RegisterSuffix);
|
|
|
|
// In the following section, we handle a bunch of special cases. You can tell
|
|
// a special case by the fact we are returning early.
|
|
|
|
// If our instruction is a logical instruction without postfix or a
|
|
// hidden LOp just return the current Prefix.
|
|
if (Ck == ClassL || IsHiddenLOp) {
|
|
Result.push_back(Prefix + " " + RegisterSuffix);
|
|
return;
|
|
}
|
|
|
|
// If we have a vmov, due to the many different cases, some of which
|
|
// vary within the different intrinsics generated for a single
|
|
// instruction type, just output a vmov. (e.g. given an instruction
|
|
// A, A.u32 might be vmov and A.u8 might be vmov.8).
|
|
//
|
|
// FIXME: Maybe something can be done about this. The two cases that we care
|
|
// about are vmov as an LType and vmov as a WType.
|
|
if (Prefix == "vmov") {
|
|
Result.push_back(Prefix + " " + RegisterSuffix);
|
|
return;
|
|
}
|
|
|
|
// In the following section, we handle special cases.
|
|
|
|
if (OutTypeCode == "64") {
|
|
// If we have a 64 bit vdup/vext and are handling an uint64x1_t
|
|
// type, the intrinsic will be optimized away, so just return
|
|
// nothing. On the other hand if we are handling an uint64x2_t
|
|
// (i.e. quad instruction), vdup/vmov instructions should be
|
|
// emitted.
|
|
if (Prefix == "vdup" || Prefix == "vext") {
|
|
if (IsQuad) {
|
|
Result.push_back("{{vmov|vdup}}");
|
|
}
|
|
return;
|
|
}
|
|
|
|
// v{st,ld}{2,3,4}_{u,s}64 emit v{st,ld}1.64 instructions with
|
|
// multiple register operands.
|
|
bool MultiLoadPrefix = Prefix == "vld2" || Prefix == "vld3"
|
|
|| Prefix == "vld4";
|
|
bool MultiStorePrefix = Prefix == "vst2" || Prefix == "vst3"
|
|
|| Prefix == "vst4";
|
|
if (MultiLoadPrefix || MultiStorePrefix) {
|
|
Result.push_back(NameRef.slice(0, 3).str() + "1.64");
|
|
return;
|
|
}
|
|
|
|
// v{st,ld}1_{lane,dup}_{u64,s64} use vldr/vstr/vmov/str instead of
|
|
// emitting said instructions. So return a check for
|
|
// vldr/vstr/vmov/str instead.
|
|
if (HasLanePostfix || HasDupPostfix) {
|
|
if (Prefix == "vst1") {
|
|
Result.push_back("{{str|vstr|vmov}}");
|
|
return;
|
|
} else if (Prefix == "vld1") {
|
|
Result.push_back("{{ldr|vldr|vmov}}");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// vzip.32/vuzp.32 are the same instruction as vtrn.32 and are
|
|
// sometimes disassembled as vtrn.32. We use a regex to handle both
|
|
// cases.
|
|
if ((Prefix == "vzip" || Prefix == "vuzp") && OutTypeCode == "32") {
|
|
Result.push_back("{{vtrn|" + Prefix + "}}.32 " + RegisterSuffix);
|
|
return;
|
|
}
|
|
|
|
// Currently on most ARM processors, we do not use vmla/vmls for
|
|
// quad floating point operations. Instead we output vmul + vadd. So
|
|
// check if we have one of those instructions and just output a
|
|
// check for vmul.
|
|
if (OutTypeCode == "f32") {
|
|
if (Prefix == "vmls") {
|
|
Result.push_back("vmul." + OutTypeCode + " " + RegisterSuffix);
|
|
Result.push_back("vsub." + OutTypeCode);
|
|
return;
|
|
} else if (Prefix == "vmla") {
|
|
Result.push_back("vmul." + OutTypeCode + " " + RegisterSuffix);
|
|
Result.push_back("vadd." + OutTypeCode);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If we have vcvt, get the input type from the instruction name
|
|
// (which should be of the form instname_inputtype) and append it
|
|
// before the output type.
|
|
if (Prefix == "vcvt") {
|
|
const std::string inTypeCode = NameRef.substr(NameRef.find_last_of("_")+1);
|
|
Prefix += "." + inTypeCode;
|
|
}
|
|
|
|
// Append output type code to get our final mangled instruction.
|
|
Prefix += "." + OutTypeCode;
|
|
|
|
Result.push_back(Prefix + " " + RegisterSuffix);
|
|
}
|
|
|
|
/// UseMacro - Examine the prototype string to determine if the intrinsic
|
|
/// should be defined as a preprocessor macro instead of an inline function.
|
|
static bool UseMacro(const std::string &proto) {
|
|
// If this builtin takes an immediate argument, we need to #define it rather
|
|
// than use a standard declaration, so that SemaChecking can range check
|
|
// the immediate passed by the user.
|
|
if (proto.find('i') != std::string::npos)
|
|
return true;
|
|
|
|
// Pointer arguments need to use macros to avoid hiding aligned attributes
|
|
// from the pointer type.
|
|
if (proto.find('p') != std::string::npos ||
|
|
proto.find('c') != std::string::npos)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// MacroArgUsedDirectly - Return true if argument i for an intrinsic that is
|
|
/// defined as a macro should be accessed directly instead of being first
|
|
/// assigned to a local temporary.
|
|
static bool MacroArgUsedDirectly(const std::string &proto, unsigned i) {
|
|
// True for constant ints (i), pointers (p) and const pointers (c).
|
|
return (proto[i] == 'i' || proto[i] == 'p' || proto[i] == 'c');
|
|
}
|
|
|
|
// Generate the string "(argtype a, argtype b, ...)"
|
|
static std::string GenArgs(const std::string &proto, StringRef typestr) {
|
|
bool define = UseMacro(proto);
|
|
char arg = 'a';
|
|
|
|
std::string s;
|
|
s += "(";
|
|
|
|
for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) {
|
|
if (define) {
|
|
// Some macro arguments are used directly instead of being assigned
|
|
// to local temporaries; prepend an underscore prefix to make their
|
|
// names consistent with the local temporaries.
|
|
if (MacroArgUsedDirectly(proto, i))
|
|
s += "__";
|
|
} else {
|
|
s += TypeString(proto[i], typestr) + " __";
|
|
}
|
|
s.push_back(arg);
|
|
if ((i + 1) < e)
|
|
s += ", ";
|
|
}
|
|
|
|
s += ")";
|
|
return s;
|
|
}
|
|
|
|
// Macro arguments are not type-checked like inline function arguments, so
|
|
// assign them to local temporaries to get the right type checking.
|
|
static std::string GenMacroLocals(const std::string &proto, StringRef typestr) {
|
|
char arg = 'a';
|
|
std::string s;
|
|
bool generatedLocal = false;
|
|
|
|
for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) {
|
|
// Do not create a temporary for an immediate argument.
|
|
// That would defeat the whole point of using a macro!
|
|
if (MacroArgUsedDirectly(proto, i))
|
|
continue;
|
|
generatedLocal = true;
|
|
|
|
s += TypeString(proto[i], typestr) + " __";
|
|
s.push_back(arg);
|
|
s += " = (";
|
|
s.push_back(arg);
|
|
s += "); ";
|
|
}
|
|
|
|
if (generatedLocal)
|
|
s += "\\\n ";
|
|
return s;
|
|
}
|
|
|
|
// Use the vmovl builtin to sign-extend or zero-extend a vector.
|
|
static std::string Extend(StringRef typestr, const std::string &a) {
|
|
std::string s;
|
|
s = MangleName("vmovl", typestr, ClassS);
|
|
s += "(" + a + ")";
|
|
return s;
|
|
}
|
|
|
|
static std::string Duplicate(unsigned nElts, StringRef typestr,
|
|
const std::string &a) {
|
|
std::string s;
|
|
|
|
s = "(" + TypeString('d', typestr) + "){ ";
|
|
for (unsigned i = 0; i != nElts; ++i) {
|
|
s += a;
|
|
if ((i + 1) < nElts)
|
|
s += ", ";
|
|
}
|
|
s += " }";
|
|
|
|
return s;
|
|
}
|
|
|
|
static std::string SplatLane(unsigned nElts, const std::string &vec,
|
|
const std::string &lane) {
|
|
std::string s = "__builtin_shufflevector(" + vec + ", " + vec;
|
|
for (unsigned i = 0; i < nElts; ++i)
|
|
s += ", " + lane;
|
|
s += ")";
|
|
return s;
|
|
}
|
|
|
|
static unsigned GetNumElements(StringRef typestr, bool &quad) {
|
|
quad = false;
|
|
bool dummy = false;
|
|
char type = ClassifyType(typestr, quad, dummy, dummy);
|
|
unsigned nElts = 0;
|
|
switch (type) {
|
|
case 'c': nElts = 8; break;
|
|
case 's': nElts = 4; break;
|
|
case 'i': nElts = 2; break;
|
|
case 'l': nElts = 1; break;
|
|
case 'h': nElts = 4; break;
|
|
case 'f': nElts = 2; break;
|
|
case 'd':
|
|
nElts = 1;
|
|
break;
|
|
default:
|
|
PrintFatalError("unhandled type!");
|
|
}
|
|
if (quad) nElts <<= 1;
|
|
return nElts;
|
|
}
|
|
|
|
// Generate the definition for this intrinsic, e.g. "a + b" for OpAdd.
|
|
static std::string GenOpString(OpKind op, const std::string &proto,
|
|
StringRef typestr) {
|
|
bool quad;
|
|
unsigned nElts = GetNumElements(typestr, quad);
|
|
bool define = UseMacro(proto);
|
|
|
|
std::string ts = TypeString(proto[0], typestr);
|
|
std::string s;
|
|
if (!define) {
|
|
s = "return ";
|
|
}
|
|
|
|
switch(op) {
|
|
case OpAdd:
|
|
s += "__a + __b;";
|
|
break;
|
|
case OpAddl:
|
|
s += Extend(typestr, "__a") + " + " + Extend(typestr, "__b") + ";";
|
|
break;
|
|
case OpAddw:
|
|
s += "__a + " + Extend(typestr, "__b") + ";";
|
|
break;
|
|
case OpSub:
|
|
s += "__a - __b;";
|
|
break;
|
|
case OpSubl:
|
|
s += Extend(typestr, "__a") + " - " + Extend(typestr, "__b") + ";";
|
|
break;
|
|
case OpSubw:
|
|
s += "__a - " + Extend(typestr, "__b") + ";";
|
|
break;
|
|
case OpMulN:
|
|
s += "__a * " + Duplicate(nElts, typestr, "__b") + ";";
|
|
break;
|
|
case OpMulLane:
|
|
s += "__a * " + SplatLane(nElts, "__b", "__c") + ";";
|
|
break;
|
|
case OpMul:
|
|
s += "__a * __b;";
|
|
break;
|
|
case OpMullLane:
|
|
s += MangleName("vmull", typestr, ClassS) + "(__a, " +
|
|
SplatLane(nElts, "__b", "__c") + ");";
|
|
break;
|
|
case OpMlaN:
|
|
s += "__a + (__b * " + Duplicate(nElts, typestr, "__c") + ");";
|
|
break;
|
|
case OpMlaLane:
|
|
s += "__a + (__b * " + SplatLane(nElts, "__c", "__d") + ");";
|
|
break;
|
|
case OpMla:
|
|
s += "__a + (__b * __c);";
|
|
break;
|
|
case OpMlalN:
|
|
s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, " +
|
|
Duplicate(nElts, typestr, "__c") + ");";
|
|
break;
|
|
case OpMlalLane:
|
|
s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, " +
|
|
SplatLane(nElts, "__c", "__d") + ");";
|
|
break;
|
|
case OpMlal:
|
|
s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, __c);";
|
|
break;
|
|
case OpMlsN:
|
|
s += "__a - (__b * " + Duplicate(nElts, typestr, "__c") + ");";
|
|
break;
|
|
case OpMlsLane:
|
|
s += "__a - (__b * " + SplatLane(nElts, "__c", "__d") + ");";
|
|
break;
|
|
case OpMls:
|
|
s += "__a - (__b * __c);";
|
|
break;
|
|
case OpMlslN:
|
|
s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, " +
|
|
Duplicate(nElts, typestr, "__c") + ");";
|
|
break;
|
|
case OpMlslLane:
|
|
s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, " +
|
|
SplatLane(nElts, "__c", "__d") + ");";
|
|
break;
|
|
case OpMlsl:
|
|
s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, __c);";
|
|
break;
|
|
case OpQDMullLane:
|
|
s += MangleName("vqdmull", typestr, ClassS) + "(__a, " +
|
|
SplatLane(nElts, "__b", "__c") + ");";
|
|
break;
|
|
case OpQDMlalLane:
|
|
s += MangleName("vqdmlal", typestr, ClassS) + "(__a, __b, " +
|
|
SplatLane(nElts, "__c", "__d") + ");";
|
|
break;
|
|
case OpQDMlslLane:
|
|
s += MangleName("vqdmlsl", typestr, ClassS) + "(__a, __b, " +
|
|
SplatLane(nElts, "__c", "__d") + ");";
|
|
break;
|
|
case OpQDMulhLane:
|
|
s += MangleName("vqdmulh", typestr, ClassS) + "(__a, " +
|
|
SplatLane(nElts, "__b", "__c") + ");";
|
|
break;
|
|
case OpQRDMulhLane:
|
|
s += MangleName("vqrdmulh", typestr, ClassS) + "(__a, " +
|
|
SplatLane(nElts, "__b", "__c") + ");";
|
|
break;
|
|
case OpEq:
|
|
s += "(" + ts + ")(__a == __b);";
|
|
break;
|
|
case OpGe:
|
|
s += "(" + ts + ")(__a >= __b);";
|
|
break;
|
|
case OpLe:
|
|
s += "(" + ts + ")(__a <= __b);";
|
|
break;
|
|
case OpGt:
|
|
s += "(" + ts + ")(__a > __b);";
|
|
break;
|
|
case OpLt:
|
|
s += "(" + ts + ")(__a < __b);";
|
|
break;
|
|
case OpNeg:
|
|
s += " -__a;";
|
|
break;
|
|
case OpNot:
|
|
s += " ~__a;";
|
|
break;
|
|
case OpAnd:
|
|
s += "__a & __b;";
|
|
break;
|
|
case OpOr:
|
|
s += "__a | __b;";
|
|
break;
|
|
case OpXor:
|
|
s += "__a ^ __b;";
|
|
break;
|
|
case OpAndNot:
|
|
s += "__a & ~__b;";
|
|
break;
|
|
case OpOrNot:
|
|
s += "__a | ~__b;";
|
|
break;
|
|
case OpCast:
|
|
s += "(" + ts + ")__a;";
|
|
break;
|
|
case OpConcat:
|
|
s += "(" + ts + ")__builtin_shufflevector((int64x1_t)__a";
|
|
s += ", (int64x1_t)__b, 0, 1);";
|
|
break;
|
|
case OpHi:
|
|
// nElts is for the result vector, so the source is twice that number.
|
|
s += "__builtin_shufflevector(__a, __a";
|
|
for (unsigned i = nElts; i < nElts * 2; ++i)
|
|
s += ", " + utostr(i);
|
|
s+= ");";
|
|
break;
|
|
case OpLo:
|
|
s += "__builtin_shufflevector(__a, __a";
|
|
for (unsigned i = 0; i < nElts; ++i)
|
|
s += ", " + utostr(i);
|
|
s+= ");";
|
|
break;
|
|
case OpDup:
|
|
s += Duplicate(nElts, typestr, "__a") + ";";
|
|
break;
|
|
case OpDupLane:
|
|
s += SplatLane(nElts, "__a", "__b") + ";";
|
|
break;
|
|
case OpSelect:
|
|
// ((0 & 1) | (~0 & 2))
|
|
s += "(" + ts + ")";
|
|
ts = TypeString(proto[1], typestr);
|
|
s += "((__a & (" + ts + ")__b) | ";
|
|
s += "(~__a & (" + ts + ")__c));";
|
|
break;
|
|
case OpRev16:
|
|
s += "__builtin_shufflevector(__a, __a";
|
|
for (unsigned i = 2; i <= nElts; i += 2)
|
|
for (unsigned j = 0; j != 2; ++j)
|
|
s += ", " + utostr(i - j - 1);
|
|
s += ");";
|
|
break;
|
|
case OpRev32: {
|
|
unsigned WordElts = nElts >> (1 + (int)quad);
|
|
s += "__builtin_shufflevector(__a, __a";
|
|
for (unsigned i = WordElts; i <= nElts; i += WordElts)
|
|
for (unsigned j = 0; j != WordElts; ++j)
|
|
s += ", " + utostr(i - j - 1);
|
|
s += ");";
|
|
break;
|
|
}
|
|
case OpRev64: {
|
|
unsigned DblWordElts = nElts >> (int)quad;
|
|
s += "__builtin_shufflevector(__a, __a";
|
|
for (unsigned i = DblWordElts; i <= nElts; i += DblWordElts)
|
|
for (unsigned j = 0; j != DblWordElts; ++j)
|
|
s += ", " + utostr(i - j - 1);
|
|
s += ");";
|
|
break;
|
|
}
|
|
case OpAbdl: {
|
|
std::string abd = MangleName("vabd", typestr, ClassS) + "(__a, __b)";
|
|
if (typestr[0] != 'U') {
|
|
// vabd results are always unsigned and must be zero-extended.
|
|
std::string utype = "U" + typestr.str();
|
|
s += "(" + TypeString(proto[0], typestr) + ")";
|
|
abd = "(" + TypeString('d', utype) + ")" + abd;
|
|
s += Extend(utype, abd) + ";";
|
|
} else {
|
|
s += Extend(typestr, abd) + ";";
|
|
}
|
|
break;
|
|
}
|
|
case OpAba:
|
|
s += "__a + " + MangleName("vabd", typestr, ClassS) + "(__b, __c);";
|
|
break;
|
|
case OpAbal: {
|
|
s += "__a + ";
|
|
std::string abd = MangleName("vabd", typestr, ClassS) + "(__b, __c)";
|
|
if (typestr[0] != 'U') {
|
|
// vabd results are always unsigned and must be zero-extended.
|
|
std::string utype = "U" + typestr.str();
|
|
s += "(" + TypeString(proto[0], typestr) + ")";
|
|
abd = "(" + TypeString('d', utype) + ")" + abd;
|
|
s += Extend(utype, abd) + ";";
|
|
} else {
|
|
s += Extend(typestr, abd) + ";";
|
|
}
|
|
break;
|
|
}
|
|
case OpDiv:
|
|
s += "__a / __b;";
|
|
break;
|
|
default:
|
|
PrintFatalError("unknown OpKind!");
|
|
}
|
|
return s;
|
|
}
|
|
|
|
static unsigned GetNeonEnum(const std::string &proto, StringRef typestr) {
|
|
unsigned mod = proto[0];
|
|
|
|
if (mod == 'v' || mod == 'f')
|
|
mod = proto[1];
|
|
|
|
bool quad = false;
|
|
bool poly = false;
|
|
bool usgn = false;
|
|
bool scal = false;
|
|
bool cnst = false;
|
|
bool pntr = false;
|
|
|
|
// Base type to get the type string for.
|
|
char type = ClassifyType(typestr, quad, poly, usgn);
|
|
|
|
// Based on the modifying character, change the type and width if necessary.
|
|
type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr);
|
|
|
|
NeonTypeFlags::EltType ET;
|
|
switch (type) {
|
|
case 'c':
|
|
ET = poly ? NeonTypeFlags::Poly8 : NeonTypeFlags::Int8;
|
|
break;
|
|
case 's':
|
|
ET = poly ? NeonTypeFlags::Poly16 : NeonTypeFlags::Int16;
|
|
break;
|
|
case 'i':
|
|
ET = NeonTypeFlags::Int32;
|
|
break;
|
|
case 'l':
|
|
ET = NeonTypeFlags::Int64;
|
|
break;
|
|
case 'h':
|
|
ET = NeonTypeFlags::Float16;
|
|
break;
|
|
case 'f':
|
|
ET = NeonTypeFlags::Float32;
|
|
break;
|
|
case 'd':
|
|
ET = NeonTypeFlags::Float64;
|
|
break;
|
|
default:
|
|
PrintFatalError("unhandled type!");
|
|
}
|
|
NeonTypeFlags Flags(ET, usgn, quad && proto[1] != 'g');
|
|
return Flags.getFlags();
|
|
}
|
|
|
|
// Generate the definition for this intrinsic, e.g. __builtin_neon_cls(a)
|
|
static std::string GenBuiltin(const std::string &name, const std::string &proto,
|
|
StringRef typestr, ClassKind ck) {
|
|
std::string s;
|
|
|
|
// If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
|
|
// sret-like argument.
|
|
bool sret = (proto[0] >= '2' && proto[0] <= '4');
|
|
|
|
bool define = UseMacro(proto);
|
|
|
|
// Check if the prototype has a scalar operand with the type of the vector
|
|
// elements. If not, bitcasting the args will take care of arg checking.
|
|
// The actual signedness etc. will be taken care of with special enums.
|
|
if (proto.find('s') == std::string::npos)
|
|
ck = ClassB;
|
|
|
|
if (proto[0] != 'v') {
|
|
std::string ts = TypeString(proto[0], typestr);
|
|
|
|
if (define) {
|
|
if (sret)
|
|
s += ts + " r; ";
|
|
else
|
|
s += "(" + ts + ")";
|
|
} else if (sret) {
|
|
s += ts + " r; ";
|
|
} else {
|
|
s += "return (" + ts + ")";
|
|
}
|
|
}
|
|
|
|
bool splat = proto.find('a') != std::string::npos;
|
|
|
|
s += "__builtin_neon_";
|
|
if (splat) {
|
|
// Call the non-splat builtin: chop off the "_n" suffix from the name.
|
|
std::string vname(name, 0, name.size()-2);
|
|
s += MangleName(vname, typestr, ck);
|
|
} else {
|
|
s += MangleName(name, typestr, ck);
|
|
}
|
|
s += "(";
|
|
|
|
// Pass the address of the return variable as the first argument to sret-like
|
|
// builtins.
|
|
if (sret)
|
|
s += "&r, ";
|
|
|
|
char arg = 'a';
|
|
for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) {
|
|
std::string args = std::string(&arg, 1);
|
|
|
|
// Use the local temporaries instead of the macro arguments.
|
|
args = "__" + args;
|
|
|
|
bool argQuad = false;
|
|
bool argPoly = false;
|
|
bool argUsgn = false;
|
|
bool argScalar = false;
|
|
bool dummy = false;
|
|
char argType = ClassifyType(typestr, argQuad, argPoly, argUsgn);
|
|
argType = ModType(proto[i], argType, argQuad, argPoly, argUsgn, argScalar,
|
|
dummy, dummy);
|
|
|
|
// Handle multiple-vector values specially, emitting each subvector as an
|
|
// argument to the __builtin.
|
|
if (proto[i] >= '2' && proto[i] <= '4') {
|
|
// Check if an explicit cast is needed.
|
|
if (argType != 'c' || argPoly || argUsgn)
|
|
args = (argQuad ? "(int8x16_t)" : "(int8x8_t)") + args;
|
|
|
|
for (unsigned vi = 0, ve = proto[i] - '0'; vi != ve; ++vi) {
|
|
s += args + ".val[" + utostr(vi) + "]";
|
|
if ((vi + 1) < ve)
|
|
s += ", ";
|
|
}
|
|
if ((i + 1) < e)
|
|
s += ", ";
|
|
|
|
continue;
|
|
}
|
|
|
|
if (splat && (i + 1) == e)
|
|
args = Duplicate(GetNumElements(typestr, argQuad), typestr, args);
|
|
|
|
// Check if an explicit cast is needed.
|
|
if ((splat || !argScalar) &&
|
|
((ck == ClassB && argType != 'c') || argPoly || argUsgn)) {
|
|
std::string argTypeStr = "c";
|
|
if (ck != ClassB)
|
|
argTypeStr = argType;
|
|
if (argQuad)
|
|
argTypeStr = "Q" + argTypeStr;
|
|
args = "(" + TypeString('d', argTypeStr) + ")" + args;
|
|
}
|
|
|
|
s += args;
|
|
if ((i + 1) < e)
|
|
s += ", ";
|
|
}
|
|
|
|
// Extra constant integer to hold type class enum for this function, e.g. s8
|
|
if (ck == ClassB)
|
|
s += ", " + utostr(GetNeonEnum(proto, typestr));
|
|
|
|
s += ");";
|
|
|
|
if (proto[0] != 'v' && sret) {
|
|
if (define)
|
|
s += " r;";
|
|
else
|
|
s += " return r;";
|
|
}
|
|
return s;
|
|
}
|
|
|
|
static std::string GenBuiltinDef(const std::string &name,
|
|
const std::string &proto,
|
|
StringRef typestr, ClassKind ck) {
|
|
std::string s("BUILTIN(__builtin_neon_");
|
|
|
|
// If all types are the same size, bitcasting the args will take care
|
|
// of arg checking. The actual signedness etc. will be taken care of with
|
|
// special enums.
|
|
if (proto.find('s') == std::string::npos)
|
|
ck = ClassB;
|
|
|
|
s += MangleName(name, typestr, ck);
|
|
s += ", \"";
|
|
|
|
for (unsigned i = 0, e = proto.size(); i != e; ++i)
|
|
s += BuiltinTypeString(proto[i], typestr, ck, i == 0);
|
|
|
|
// Extra constant integer to hold type class enum for this function, e.g. s8
|
|
if (ck == ClassB)
|
|
s += "i";
|
|
|
|
s += "\", \"n\")";
|
|
return s;
|
|
}
|
|
|
|
static std::string GenIntrinsic(const std::string &name,
|
|
const std::string &proto,
|
|
StringRef outTypeStr, StringRef inTypeStr,
|
|
OpKind kind, ClassKind classKind) {
|
|
assert(!proto.empty() && "");
|
|
bool define = UseMacro(proto) && kind != OpUnavailable;
|
|
std::string s;
|
|
|
|
// static always inline + return type
|
|
if (define)
|
|
s += "#define ";
|
|
else
|
|
s += "__ai " + TypeString(proto[0], outTypeStr) + " ";
|
|
|
|
// Function name with type suffix
|
|
std::string mangledName = MangleName(name, outTypeStr, ClassS);
|
|
if (outTypeStr != inTypeStr) {
|
|
// If the input type is different (e.g., for vreinterpret), append a suffix
|
|
// for the input type. String off a "Q" (quad) prefix so that MangleName
|
|
// does not insert another "q" in the name.
|
|
unsigned typeStrOff = (inTypeStr[0] == 'Q' ? 1 : 0);
|
|
StringRef inTypeNoQuad = inTypeStr.substr(typeStrOff);
|
|
mangledName = MangleName(mangledName, inTypeNoQuad, ClassS);
|
|
}
|
|
s += mangledName;
|
|
|
|
// Function arguments
|
|
s += GenArgs(proto, inTypeStr);
|
|
|
|
// Definition.
|
|
if (define) {
|
|
s += " __extension__ ({ \\\n ";
|
|
s += GenMacroLocals(proto, inTypeStr);
|
|
} else if (kind == OpUnavailable) {
|
|
s += " __attribute__((unavailable));\n";
|
|
return s;
|
|
} else
|
|
s += " {\n ";
|
|
|
|
if (kind != OpNone)
|
|
s += GenOpString(kind, proto, outTypeStr);
|
|
else
|
|
s += GenBuiltin(name, proto, outTypeStr, classKind);
|
|
if (define)
|
|
s += " })";
|
|
else
|
|
s += " }";
|
|
s += "\n";
|
|
return s;
|
|
}
|
|
|
|
/// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h
|
|
/// is comprised of type definitions and function declarations.
|
|
void NeonEmitter::run(raw_ostream &OS) {
|
|
OS <<
|
|
"/*===---- arm_neon.h - ARM Neon intrinsics ------------------------------"
|
|
"---===\n"
|
|
" *\n"
|
|
" * Permission is hereby granted, free of charge, to any person obtaining "
|
|
"a copy\n"
|
|
" * of this software and associated documentation files (the \"Software\"),"
|
|
" to deal\n"
|
|
" * in the Software without restriction, including without limitation the "
|
|
"rights\n"
|
|
" * to use, copy, modify, merge, publish, distribute, sublicense, "
|
|
"and/or sell\n"
|
|
" * copies of the Software, and to permit persons to whom the Software is\n"
|
|
" * furnished to do so, subject to the following conditions:\n"
|
|
" *\n"
|
|
" * The above copyright notice and this permission notice shall be "
|
|
"included in\n"
|
|
" * all copies or substantial portions of the Software.\n"
|
|
" *\n"
|
|
" * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
|
|
"EXPRESS OR\n"
|
|
" * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
|
|
"MERCHANTABILITY,\n"
|
|
" * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
|
|
"SHALL THE\n"
|
|
" * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
|
|
"OTHER\n"
|
|
" * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
|
|
"ARISING FROM,\n"
|
|
" * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
|
|
"DEALINGS IN\n"
|
|
" * THE SOFTWARE.\n"
|
|
" *\n"
|
|
" *===--------------------------------------------------------------------"
|
|
"---===\n"
|
|
" */\n\n";
|
|
|
|
OS << "#ifndef __ARM_NEON_H\n";
|
|
OS << "#define __ARM_NEON_H\n\n";
|
|
|
|
OS << "#if !defined(__ARM_NEON__) && !defined(__AARCH_FEATURE_ADVSIMD)\n";
|
|
OS << "#error \"NEON support not enabled\"\n";
|
|
OS << "#endif\n\n";
|
|
|
|
OS << "#include <stdint.h>\n\n";
|
|
|
|
// Emit NEON-specific scalar typedefs.
|
|
OS << "typedef float float32_t;\n";
|
|
OS << "typedef __fp16 float16_t;\n";
|
|
|
|
OS << "#ifdef __aarch64__\n";
|
|
OS << "typedef double float64_t;\n";
|
|
OS << "#endif\n\n";
|
|
|
|
// For now, signedness of polynomial types depends on target
|
|
OS << "#ifdef __aarch64__\n";
|
|
OS << "typedef uint8_t poly8_t;\n";
|
|
OS << "typedef uint16_t poly16_t;\n";
|
|
OS << "#else\n";
|
|
OS << "typedef int8_t poly8_t;\n";
|
|
OS << "typedef int16_t poly16_t;\n";
|
|
OS << "#endif\n";
|
|
|
|
// Emit Neon vector typedefs.
|
|
std::string TypedefTypes(
|
|
"cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfQdPcQPcPsQPs");
|
|
SmallVector<StringRef, 24> TDTypeVec;
|
|
ParseTypes(0, TypedefTypes, TDTypeVec);
|
|
|
|
// Emit vector typedefs.
|
|
for (unsigned i = 0, e = TDTypeVec.size(); i != e; ++i) {
|
|
bool dummy, quad = false, poly = false;
|
|
char type = ClassifyType(TDTypeVec[i], quad, poly, dummy);
|
|
bool isA64 = false;
|
|
|
|
if (type == 'd' && quad)
|
|
isA64 = true;
|
|
|
|
if (isA64)
|
|
OS << "#ifdef __aarch64__\n";
|
|
|
|
if (poly)
|
|
OS << "typedef __attribute__((neon_polyvector_type(";
|
|
else
|
|
OS << "typedef __attribute__((neon_vector_type(";
|
|
|
|
unsigned nElts = GetNumElements(TDTypeVec[i], quad);
|
|
OS << utostr(nElts) << "))) ";
|
|
if (nElts < 10)
|
|
OS << " ";
|
|
|
|
OS << TypeString('s', TDTypeVec[i]);
|
|
OS << " " << TypeString('d', TDTypeVec[i]) << ";\n";
|
|
|
|
if (isA64)
|
|
OS << "#endif\n";
|
|
}
|
|
OS << "\n";
|
|
|
|
// Emit struct typedefs.
|
|
for (unsigned vi = 2; vi != 5; ++vi) {
|
|
for (unsigned i = 0, e = TDTypeVec.size(); i != e; ++i) {
|
|
bool dummy, quad = false, poly = false;
|
|
char type = ClassifyType(TDTypeVec[i], quad, poly, dummy);
|
|
bool isA64 = false;
|
|
|
|
if (type == 'd' && quad)
|
|
isA64 = true;
|
|
|
|
if (isA64)
|
|
OS << "#ifdef __aarch64__\n";
|
|
|
|
std::string ts = TypeString('d', TDTypeVec[i]);
|
|
std::string vs = TypeString('0' + vi, TDTypeVec[i]);
|
|
OS << "typedef struct " << vs << " {\n";
|
|
OS << " " << ts << " val";
|
|
OS << "[" << utostr(vi) << "]";
|
|
OS << ";\n} ";
|
|
OS << vs << ";\n";
|
|
|
|
if (isA64)
|
|
OS << "#endif\n";
|
|
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|
|
OS<<"#define __ai static inline __attribute__((__always_inline__, __nodebug__))\n\n";
|
|
|
|
std::vector<Record*> RV = Records.getAllDerivedDefinitions("Inst");
|
|
|
|
StringMap<ClassKind> EmittedMap;
|
|
|
|
// Emit vmovl, vmull and vabd intrinsics first so they can be used by other
|
|
// intrinsics. (Some of the saturating multiply instructions are also
|
|
// used to implement the corresponding "_lane" variants, but tablegen
|
|
// sorts the records into alphabetical order so that the "_lane" variants
|
|
// come after the intrinsics they use.)
|
|
emitIntrinsic(OS, Records.getDef("VMOVL"), EmittedMap);
|
|
emitIntrinsic(OS, Records.getDef("VMULL"), EmittedMap);
|
|
emitIntrinsic(OS, Records.getDef("VABD"), EmittedMap);
|
|
|
|
// ARM intrinsics must be emitted before AArch64 intrinsics to ensure
|
|
// common intrinsics appear only once in the output stream.
|
|
// The check for uniquiness is done in emitIntrinsic.
|
|
// Emit ARM intrinsics.
|
|
for (unsigned i = 0, e = RV.size(); i != e; ++i) {
|
|
Record *R = RV[i];
|
|
|
|
// Skip AArch64 intrinsics; they will be emitted at the end.
|
|
bool isA64 = R->getValueAsBit("isA64");
|
|
if (isA64)
|
|
continue;
|
|
|
|
if (R->getName() != "VMOVL" && R->getName() != "VMULL" &&
|
|
R->getName() != "VABD")
|
|
emitIntrinsic(OS, R, EmittedMap);
|
|
}
|
|
|
|
// Emit AArch64-specific intrinsics.
|
|
OS << "#ifdef __aarch64__\n";
|
|
|
|
for (unsigned i = 0, e = RV.size(); i != e; ++i) {
|
|
Record *R = RV[i];
|
|
|
|
// Skip ARM intrinsics already included above.
|
|
bool isA64 = R->getValueAsBit("isA64");
|
|
if (!isA64)
|
|
continue;
|
|
|
|
emitIntrinsic(OS, R, EmittedMap);
|
|
}
|
|
|
|
OS << "#endif\n\n";
|
|
|
|
OS << "#undef __ai\n\n";
|
|
OS << "#endif /* __ARM_NEON_H */\n";
|
|
}
|
|
|
|
/// emitIntrinsic - Write out the arm_neon.h header file definitions for the
|
|
/// intrinsics specified by record R checking for intrinsic uniqueness.
|
|
void NeonEmitter::emitIntrinsic(raw_ostream &OS, Record *R,
|
|
StringMap<ClassKind> &EmittedMap) {
|
|
std::string name = R->getValueAsString("Name");
|
|
std::string Proto = R->getValueAsString("Prototype");
|
|
std::string Types = R->getValueAsString("Types");
|
|
|
|
SmallVector<StringRef, 16> TypeVec;
|
|
ParseTypes(R, Types, TypeVec);
|
|
|
|
OpKind kind = OpMap[R->getValueAsDef("Operand")->getName()];
|
|
|
|
ClassKind classKind = ClassNone;
|
|
if (R->getSuperClasses().size() >= 2)
|
|
classKind = ClassMap[R->getSuperClasses()[1]];
|
|
if (classKind == ClassNone && kind == OpNone)
|
|
PrintFatalError(R->getLoc(), "Builtin has no class kind");
|
|
|
|
for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) {
|
|
if (kind == OpReinterpret) {
|
|
bool outQuad = false;
|
|
bool dummy = false;
|
|
(void)ClassifyType(TypeVec[ti], outQuad, dummy, dummy);
|
|
for (unsigned srcti = 0, srcte = TypeVec.size();
|
|
srcti != srcte; ++srcti) {
|
|
bool inQuad = false;
|
|
(void)ClassifyType(TypeVec[srcti], inQuad, dummy, dummy);
|
|
if (srcti == ti || inQuad != outQuad)
|
|
continue;
|
|
std::string s = GenIntrinsic(name, Proto, TypeVec[ti], TypeVec[srcti],
|
|
OpCast, ClassS);
|
|
if (EmittedMap.count(s))
|
|
continue;
|
|
EmittedMap[s] = ClassS;
|
|
OS << s;
|
|
}
|
|
} else {
|
|
std::string s =
|
|
GenIntrinsic(name, Proto, TypeVec[ti], TypeVec[ti], kind, classKind);
|
|
if (EmittedMap.count(s))
|
|
continue;
|
|
EmittedMap[s] = classKind;
|
|
OS << s;
|
|
}
|
|
}
|
|
OS << "\n";
|
|
}
|
|
|
|
static unsigned RangeFromType(const char mod, StringRef typestr) {
|
|
// base type to get the type string for.
|
|
bool quad = false, dummy = false;
|
|
char type = ClassifyType(typestr, quad, dummy, dummy);
|
|
type = ModType(mod, type, quad, dummy, dummy, dummy, dummy, dummy);
|
|
|
|
switch (type) {
|
|
case 'c':
|
|
return (8 << (int)quad) - 1;
|
|
case 'h':
|
|
case 's':
|
|
return (4 << (int)quad) - 1;
|
|
case 'f':
|
|
case 'i':
|
|
return (2 << (int)quad) - 1;
|
|
case 'l':
|
|
return (1 << (int)quad) - 1;
|
|
default:
|
|
PrintFatalError("unhandled type!");
|
|
}
|
|
}
|
|
|
|
/// Generate the ARM and AArch64 intrinsic range checking code for
|
|
/// shift/lane immediates, checking for unique declarations.
|
|
void
|
|
NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
|
|
StringMap<ClassKind> &A64IntrinsicMap,
|
|
bool isA64RangeCheck) {
|
|
std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
|
|
StringMap<OpKind> EmittedMap;
|
|
|
|
// Generate the intrinsic range checking code for shift/lane immediates.
|
|
if (isA64RangeCheck)
|
|
OS << "#ifdef GET_NEON_AARCH64_IMMEDIATE_CHECK\n";
|
|
else
|
|
OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
|
|
|
|
for (unsigned i = 0, e = RV.size(); i != e; ++i) {
|
|
Record *R = RV[i];
|
|
|
|
OpKind k = OpMap[R->getValueAsDef("Operand")->getName()];
|
|
if (k != OpNone)
|
|
continue;
|
|
|
|
std::string name = R->getValueAsString("Name");
|
|
std::string Proto = R->getValueAsString("Prototype");
|
|
std::string Types = R->getValueAsString("Types");
|
|
|
|
// Functions with 'a' (the splat code) in the type prototype should not get
|
|
// their own builtin as they use the non-splat variant.
|
|
if (Proto.find('a') != std::string::npos)
|
|
continue;
|
|
|
|
// Functions which do not have an immediate do not need to have range
|
|
// checking code emitted.
|
|
size_t immPos = Proto.find('i');
|
|
if (immPos == std::string::npos)
|
|
continue;
|
|
|
|
SmallVector<StringRef, 16> TypeVec;
|
|
ParseTypes(R, Types, TypeVec);
|
|
|
|
if (R->getSuperClasses().size() < 2)
|
|
PrintFatalError(R->getLoc(), "Builtin has no class kind");
|
|
|
|
ClassKind ck = ClassMap[R->getSuperClasses()[1]];
|
|
|
|
// Do not include AArch64 range checks if not generating code for AArch64.
|
|
bool isA64 = R->getValueAsBit("isA64");
|
|
if (!isA64RangeCheck && isA64)
|
|
continue;
|
|
|
|
// Include ARM range checks in AArch64 but only if ARM intrinsics are not
|
|
// redefined by AArch64 to handle new types.
|
|
if (isA64RangeCheck && !isA64 && A64IntrinsicMap.count(name)) {
|
|
ClassKind &A64CK = A64IntrinsicMap[name];
|
|
if (A64CK == ck && ck != ClassNone)
|
|
continue;
|
|
}
|
|
|
|
for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) {
|
|
std::string namestr, shiftstr, rangestr;
|
|
|
|
if (R->getValueAsBit("isVCVT_N")) {
|
|
// VCVT between floating- and fixed-point values takes an immediate
|
|
// in the range 1 to 32.
|
|
ck = ClassB;
|
|
rangestr = "l = 1; u = 31"; // upper bound = l + u
|
|
} else if (Proto.find('s') == std::string::npos) {
|
|
// Builtins which are overloaded by type will need to have their upper
|
|
// bound computed at Sema time based on the type constant.
|
|
ck = ClassB;
|
|
if (R->getValueAsBit("isShift")) {
|
|
shiftstr = ", true";
|
|
|
|
// Right shifts have an 'r' in the name, left shifts do not.
|
|
if (name.find('r') != std::string::npos)
|
|
rangestr = "l = 1; ";
|
|
}
|
|
rangestr += "u = RFT(TV" + shiftstr + ")";
|
|
} else {
|
|
// The immediate generally refers to a lane in the preceding argument.
|
|
assert(immPos > 0 && "unexpected immediate operand");
|
|
rangestr =
|
|
"u = " + utostr(RangeFromType(Proto[immPos - 1], TypeVec[ti]));
|
|
}
|
|
// Make sure cases appear only once by uniquing them in a string map.
|
|
namestr = MangleName(name, TypeVec[ti], ck);
|
|
if (EmittedMap.count(namestr))
|
|
continue;
|
|
EmittedMap[namestr] = OpNone;
|
|
|
|
// Calculate the index of the immediate that should be range checked.
|
|
unsigned immidx = 0;
|
|
|
|
// Builtins that return a struct of multiple vectors have an extra
|
|
// leading arg for the struct return.
|
|
if (Proto[0] >= '2' && Proto[0] <= '4')
|
|
++immidx;
|
|
|
|
// Add one to the index for each argument until we reach the immediate
|
|
// to be checked. Structs of vectors are passed as multiple arguments.
|
|
for (unsigned ii = 1, ie = Proto.size(); ii != ie; ++ii) {
|
|
switch (Proto[ii]) {
|
|
default:
|
|
immidx += 1;
|
|
break;
|
|
case '2':
|
|
immidx += 2;
|
|
break;
|
|
case '3':
|
|
immidx += 3;
|
|
break;
|
|
case '4':
|
|
immidx += 4;
|
|
break;
|
|
case 'i':
|
|
ie = ii + 1;
|
|
break;
|
|
}
|
|
}
|
|
if (isA64RangeCheck)
|
|
OS << "case AArch64::BI__builtin_neon_";
|
|
else
|
|
OS << "case ARM::BI__builtin_neon_";
|
|
OS << MangleName(name, TypeVec[ti], ck) << ": i = " << immidx << "; "
|
|
<< rangestr << "; break;\n";
|
|
}
|
|
}
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
/// Generate the ARM and AArch64 overloaded type checking code for
|
|
/// SemaChecking.cpp, checking for unique builtin declarations.
|
|
void
|
|
NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
|
|
StringMap<ClassKind> &A64IntrinsicMap,
|
|
bool isA64TypeCheck) {
|
|
std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
|
|
StringMap<OpKind> EmittedMap;
|
|
|
|
// Generate the overloaded type checking code for SemaChecking.cpp
|
|
if (isA64TypeCheck)
|
|
OS << "#ifdef GET_NEON_AARCH64_OVERLOAD_CHECK\n";
|
|
else
|
|
OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
|
|
|
|
for (unsigned i = 0, e = RV.size(); i != e; ++i) {
|
|
Record *R = RV[i];
|
|
OpKind k = OpMap[R->getValueAsDef("Operand")->getName()];
|
|
if (k != OpNone)
|
|
continue;
|
|
|
|
std::string Proto = R->getValueAsString("Prototype");
|
|
std::string Types = R->getValueAsString("Types");
|
|
std::string name = R->getValueAsString("Name");
|
|
|
|
// Functions with 'a' (the splat code) in the type prototype should not get
|
|
// their own builtin as they use the non-splat variant.
|
|
if (Proto.find('a') != std::string::npos)
|
|
continue;
|
|
|
|
// Functions which have a scalar argument cannot be overloaded, no need to
|
|
// check them if we are emitting the type checking code.
|
|
if (Proto.find('s') != std::string::npos)
|
|
continue;
|
|
|
|
SmallVector<StringRef, 16> TypeVec;
|
|
ParseTypes(R, Types, TypeVec);
|
|
|
|
if (R->getSuperClasses().size() < 2)
|
|
PrintFatalError(R->getLoc(), "Builtin has no class kind");
|
|
|
|
// Do not include AArch64 type checks if not generating code for AArch64.
|
|
bool isA64 = R->getValueAsBit("isA64");
|
|
if (!isA64TypeCheck && isA64)
|
|
continue;
|
|
|
|
// Include ARM type check in AArch64 but only if ARM intrinsics
|
|
// are not redefined in AArch64 to handle new types, e.g. "vabd" is a SIntr
|
|
// redefined in AArch64 to handle an additional 2 x f64 type.
|
|
ClassKind ck = ClassMap[R->getSuperClasses()[1]];
|
|
if (isA64TypeCheck && !isA64 && A64IntrinsicMap.count(name)) {
|
|
ClassKind &A64CK = A64IntrinsicMap[name];
|
|
if (A64CK == ck && ck != ClassNone)
|
|
continue;
|
|
}
|
|
|
|
int si = -1, qi = -1;
|
|
uint64_t mask = 0, qmask = 0;
|
|
for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) {
|
|
// Generate the switch case(s) for this builtin for the type validation.
|
|
bool quad = false, poly = false, usgn = false;
|
|
(void) ClassifyType(TypeVec[ti], quad, poly, usgn);
|
|
|
|
if (quad) {
|
|
qi = ti;
|
|
qmask |= 1ULL << GetNeonEnum(Proto, TypeVec[ti]);
|
|
} else {
|
|
si = ti;
|
|
mask |= 1ULL << GetNeonEnum(Proto, TypeVec[ti]);
|
|
}
|
|
}
|
|
|
|
// Check if the builtin function has a pointer or const pointer argument.
|
|
int PtrArgNum = -1;
|
|
bool HasConstPtr = false;
|
|
for (unsigned arg = 1, arge = Proto.size(); arg != arge; ++arg) {
|
|
char ArgType = Proto[arg];
|
|
if (ArgType == 'c') {
|
|
HasConstPtr = true;
|
|
PtrArgNum = arg - 1;
|
|
break;
|
|
}
|
|
if (ArgType == 'p') {
|
|
PtrArgNum = arg - 1;
|
|
break;
|
|
}
|
|
}
|
|
// For sret builtins, adjust the pointer argument index.
|
|
if (PtrArgNum >= 0 && (Proto[0] >= '2' && Proto[0] <= '4'))
|
|
PtrArgNum += 1;
|
|
|
|
// Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
|
|
// and vst1_lane intrinsics. Using a pointer to the vector element
|
|
// type with one of those operations causes codegen to select an aligned
|
|
// load/store instruction. If you want an unaligned operation,
|
|
// the pointer argument needs to have less alignment than element type,
|
|
// so just accept any pointer type.
|
|
if (name == "vld1_lane" || name == "vld1_dup" || name == "vst1_lane") {
|
|
PtrArgNum = -1;
|
|
HasConstPtr = false;
|
|
}
|
|
|
|
if (mask) {
|
|
if (isA64TypeCheck)
|
|
OS << "case AArch64::BI__builtin_neon_";
|
|
else
|
|
OS << "case ARM::BI__builtin_neon_";
|
|
OS << MangleName(name, TypeVec[si], ClassB) << ": mask = "
|
|
<< "0x" << utohexstr(mask) << "ULL";
|
|
if (PtrArgNum >= 0)
|
|
OS << "; PtrArgNum = " << PtrArgNum;
|
|
if (HasConstPtr)
|
|
OS << "; HasConstPtr = true";
|
|
OS << "; break;\n";
|
|
}
|
|
if (qmask) {
|
|
if (isA64TypeCheck)
|
|
OS << "case AArch64::BI__builtin_neon_";
|
|
else
|
|
OS << "case ARM::BI__builtin_neon_";
|
|
OS << MangleName(name, TypeVec[qi], ClassB) << ": mask = "
|
|
<< "0x" << utohexstr(qmask) << "ULL";
|
|
if (PtrArgNum >= 0)
|
|
OS << "; PtrArgNum = " << PtrArgNum;
|
|
if (HasConstPtr)
|
|
OS << "; HasConstPtr = true";
|
|
OS << "; break;\n";
|
|
}
|
|
}
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
/// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def
|
|
/// declaration of builtins, checking for unique builtin declarations.
|
|
void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
|
|
StringMap<ClassKind> &A64IntrinsicMap,
|
|
bool isA64GenBuiltinDef) {
|
|
std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
|
|
StringMap<OpKind> EmittedMap;
|
|
|
|
// Generate BuiltinsARM.def and BuiltinsAArch64.def
|
|
if (isA64GenBuiltinDef)
|
|
OS << "#ifdef GET_NEON_AARCH64_BUILTINS\n";
|
|
else
|
|
OS << "#ifdef GET_NEON_BUILTINS\n";
|
|
|
|
for (unsigned i = 0, e = RV.size(); i != e; ++i) {
|
|
Record *R = RV[i];
|
|
OpKind k = OpMap[R->getValueAsDef("Operand")->getName()];
|
|
if (k != OpNone)
|
|
continue;
|
|
|
|
std::string Proto = R->getValueAsString("Prototype");
|
|
std::string name = R->getValueAsString("Name");
|
|
|
|
// Functions with 'a' (the splat code) in the type prototype should not get
|
|
// their own builtin as they use the non-splat variant.
|
|
if (Proto.find('a') != std::string::npos)
|
|
continue;
|
|
|
|
std::string Types = R->getValueAsString("Types");
|
|
SmallVector<StringRef, 16> TypeVec;
|
|
ParseTypes(R, Types, TypeVec);
|
|
|
|
if (R->getSuperClasses().size() < 2)
|
|
PrintFatalError(R->getLoc(), "Builtin has no class kind");
|
|
|
|
ClassKind ck = ClassMap[R->getSuperClasses()[1]];
|
|
|
|
// Do not include AArch64 BUILTIN() macros if not generating
|
|
// code for AArch64
|
|
bool isA64 = R->getValueAsBit("isA64");
|
|
if (!isA64GenBuiltinDef && isA64)
|
|
continue;
|
|
|
|
// Include ARM BUILTIN() macros in AArch64 but only if ARM intrinsics
|
|
// are not redefined in AArch64 to handle new types, e.g. "vabd" is a SIntr
|
|
// redefined in AArch64 to handle an additional 2 x f64 type.
|
|
if (isA64GenBuiltinDef && !isA64 && A64IntrinsicMap.count(name)) {
|
|
ClassKind &A64CK = A64IntrinsicMap[name];
|
|
if (A64CK == ck && ck != ClassNone)
|
|
continue;
|
|
}
|
|
|
|
for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) {
|
|
// Generate the declaration for this builtin, ensuring
|
|
// that each unique BUILTIN() macro appears only once in the output
|
|
// stream.
|
|
std::string bd = GenBuiltinDef(name, Proto, TypeVec[ti], ck);
|
|
if (EmittedMap.count(bd))
|
|
continue;
|
|
|
|
EmittedMap[bd] = OpNone;
|
|
OS << bd << "\n";
|
|
}
|
|
}
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
/// runHeader - Emit a file with sections defining:
|
|
/// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
|
|
/// 2. the SemaChecking code for the type overload checking.
|
|
/// 3. the SemaChecking code for validation of intrinsic immediate arguments.
|
|
void NeonEmitter::runHeader(raw_ostream &OS) {
|
|
std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
|
|
|
|
// build a map of AArch64 intriniscs to be used in uniqueness checks.
|
|
StringMap<ClassKind> A64IntrinsicMap;
|
|
for (unsigned i = 0, e = RV.size(); i != e; ++i) {
|
|
Record *R = RV[i];
|
|
|
|
bool isA64 = R->getValueAsBit("isA64");
|
|
if (!isA64)
|
|
continue;
|
|
|
|
ClassKind CK = ClassNone;
|
|
if (R->getSuperClasses().size() >= 2)
|
|
CK = ClassMap[R->getSuperClasses()[1]];
|
|
|
|
std::string Name = R->getValueAsString("Name");
|
|
if (A64IntrinsicMap.count(Name))
|
|
continue;
|
|
A64IntrinsicMap[Name] = CK;
|
|
}
|
|
|
|
// Generate BuiltinsARM.def for ARM
|
|
genBuiltinsDef(OS, A64IntrinsicMap, false);
|
|
|
|
// Generate BuiltinsAArch64.def for AArch64
|
|
genBuiltinsDef(OS, A64IntrinsicMap, true);
|
|
|
|
// Generate ARM overloaded type checking code for SemaChecking.cpp
|
|
genOverloadTypeCheckCode(OS, A64IntrinsicMap, false);
|
|
|
|
// Generate AArch64 overloaded type checking code for SemaChecking.cpp
|
|
genOverloadTypeCheckCode(OS, A64IntrinsicMap, true);
|
|
|
|
// Generate ARM range checking code for shift/lane immediates.
|
|
genIntrinsicRangeCheckCode(OS, A64IntrinsicMap, false);
|
|
|
|
// Generate the AArch64 range checking code for shift/lane immediates.
|
|
genIntrinsicRangeCheckCode(OS, A64IntrinsicMap, true);
|
|
}
|
|
|
|
/// GenTest - Write out a test for the intrinsic specified by the name and
|
|
/// type strings, including the embedded patterns for FileCheck to match.
|
|
static std::string GenTest(const std::string &name,
|
|
const std::string &proto,
|
|
StringRef outTypeStr, StringRef inTypeStr,
|
|
bool isShift, bool isHiddenLOp,
|
|
ClassKind ck, const std::string &InstName,
|
|
bool isA64,
|
|
std::string & testFuncProto) {
|
|
assert(!proto.empty() && "");
|
|
std::string s;
|
|
|
|
// Function name with type suffix
|
|
std::string mangledName = MangleName(name, outTypeStr, ClassS);
|
|
if (outTypeStr != inTypeStr) {
|
|
// If the input type is different (e.g., for vreinterpret), append a suffix
|
|
// for the input type. String off a "Q" (quad) prefix so that MangleName
|
|
// does not insert another "q" in the name.
|
|
unsigned typeStrOff = (inTypeStr[0] == 'Q' ? 1 : 0);
|
|
StringRef inTypeNoQuad = inTypeStr.substr(typeStrOff);
|
|
mangledName = MangleName(mangledName, inTypeNoQuad, ClassS);
|
|
}
|
|
|
|
// todo: GenerateChecksForIntrinsic does not generate CHECK
|
|
// for aarch64 instructions yet
|
|
std::vector<std::string> FileCheckPatterns;
|
|
if (!isA64) {
|
|
GenerateChecksForIntrinsic(name, proto, outTypeStr, inTypeStr, ck, InstName,
|
|
isHiddenLOp, FileCheckPatterns);
|
|
s+= "// CHECK_ARM: test_" + mangledName + "\n";
|
|
}
|
|
s += "// CHECK_AARCH64: test_" + mangledName + "\n";
|
|
|
|
// Emit the FileCheck patterns.
|
|
// If for any reason we do not want to emit a check, mangledInst
|
|
// will be the empty string.
|
|
if (FileCheckPatterns.size()) {
|
|
for (std::vector<std::string>::const_iterator i = FileCheckPatterns.begin(),
|
|
e = FileCheckPatterns.end();
|
|
i != e;
|
|
++i) {
|
|
s += "// CHECK_ARM: " + *i + "\n";
|
|
}
|
|
}
|
|
|
|
// Emit the start of the test function.
|
|
|
|
testFuncProto = TypeString(proto[0], outTypeStr) + " test_" + mangledName + "(";
|
|
char arg = 'a';
|
|
std::string comma;
|
|
for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) {
|
|
// Do not create arguments for values that must be immediate constants.
|
|
if (proto[i] == 'i')
|
|
continue;
|
|
testFuncProto += comma + TypeString(proto[i], inTypeStr) + " ";
|
|
testFuncProto.push_back(arg);
|
|
comma = ", ";
|
|
}
|
|
testFuncProto += ")";
|
|
|
|
s+= testFuncProto;
|
|
s+= " {\n ";
|
|
|
|
if (proto[0] != 'v')
|
|
s += "return ";
|
|
s += mangledName + "(";
|
|
arg = 'a';
|
|
for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) {
|
|
if (proto[i] == 'i') {
|
|
// For immediate operands, test the maximum value.
|
|
if (isShift)
|
|
s += "1"; // FIXME
|
|
else
|
|
// The immediate generally refers to a lane in the preceding argument.
|
|
s += utostr(RangeFromType(proto[i-1], inTypeStr));
|
|
} else {
|
|
s.push_back(arg);
|
|
}
|
|
if ((i + 1) < e)
|
|
s += ", ";
|
|
}
|
|
s += ");\n}\n\n";
|
|
return s;
|
|
}
|
|
|
|
/// Write out all intrinsic tests for the specified target, checking
|
|
/// for intrinsic test uniqueness.
|
|
void NeonEmitter::genTargetTest(raw_ostream &OS, StringMap<OpKind> &EmittedMap,
|
|
bool isA64GenTest) {
|
|
if (isA64GenTest)
|
|
OS << "#ifdef __aarch64__\n";
|
|
|
|
std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
|
|
for (unsigned i = 0, e = RV.size(); i != e; ++i) {
|
|
Record *R = RV[i];
|
|
std::string name = R->getValueAsString("Name");
|
|
std::string Proto = R->getValueAsString("Prototype");
|
|
std::string Types = R->getValueAsString("Types");
|
|
bool isShift = R->getValueAsBit("isShift");
|
|
std::string InstName = R->getValueAsString("InstName");
|
|
bool isHiddenLOp = R->getValueAsBit("isHiddenLInst");
|
|
bool isA64 = R->getValueAsBit("isA64");
|
|
|
|
// do not include AArch64 intrinsic test if not generating
|
|
// code for AArch64
|
|
if (!isA64GenTest && isA64)
|
|
continue;
|
|
|
|
SmallVector<StringRef, 16> TypeVec;
|
|
ParseTypes(R, Types, TypeVec);
|
|
|
|
ClassKind ck = ClassMap[R->getSuperClasses()[1]];
|
|
OpKind kind = OpMap[R->getValueAsDef("Operand")->getName()];
|
|
if (kind == OpUnavailable)
|
|
continue;
|
|
for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) {
|
|
if (kind == OpReinterpret) {
|
|
bool outQuad = false;
|
|
bool dummy = false;
|
|
(void)ClassifyType(TypeVec[ti], outQuad, dummy, dummy);
|
|
for (unsigned srcti = 0, srcte = TypeVec.size();
|
|
srcti != srcte; ++srcti) {
|
|
bool inQuad = false;
|
|
(void)ClassifyType(TypeVec[srcti], inQuad, dummy, dummy);
|
|
if (srcti == ti || inQuad != outQuad)
|
|
continue;
|
|
std::string testFuncProto;
|
|
std::string s = GenTest(name, Proto, TypeVec[ti], TypeVec[srcti],
|
|
isShift, isHiddenLOp, ck, InstName, isA64,
|
|
testFuncProto);
|
|
if (EmittedMap.count(testFuncProto))
|
|
continue;
|
|
EmittedMap[testFuncProto] = kind;
|
|
OS << s << "\n";
|
|
}
|
|
} else {
|
|
std::string testFuncProto;
|
|
std::string s = GenTest(name, Proto, TypeVec[ti], TypeVec[ti], isShift,
|
|
isHiddenLOp, ck, InstName, isA64, testFuncProto);
|
|
if (EmittedMap.count(testFuncProto))
|
|
continue;
|
|
EmittedMap[testFuncProto] = kind;
|
|
OS << s << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isA64GenTest)
|
|
OS << "#endif\n";
|
|
}
|
|
/// runTests - Write out a complete set of tests for all of the Neon
|
|
/// intrinsics.
|
|
void NeonEmitter::runTests(raw_ostream &OS) {
|
|
OS << "// RUN: %clang_cc1 -triple thumbv7s-apple-darwin -target-abi "
|
|
"apcs-gnu\\\n"
|
|
"// RUN: -target-cpu swift -ffreestanding -Os -S -o - %s\\\n"
|
|
"// RUN: | FileCheck %s -check-prefix=CHECK_ARM\n"
|
|
"\n"
|
|
"// RUN: %clang_cc1 -triple aarch64-none-linux-gnu \\\n"
|
|
"// RUN -target-feature +neon -ffreestanding -S -o - %s \\\n"
|
|
"// RUN: | FileCheck %s -check-prefix=CHECK_AARCH64\n"
|
|
"\n"
|
|
"// REQUIRES: long_tests\n"
|
|
"\n"
|
|
"#include <arm_neon.h>\n"
|
|
"\n";
|
|
|
|
// ARM tests must be emitted before AArch64 tests to ensure
|
|
// tests for intrinsics that are common to ARM and AArch64
|
|
// appear only once in the output stream.
|
|
// The check for uniqueness is done in genTargetTest.
|
|
StringMap<OpKind> EmittedMap;
|
|
|
|
genTargetTest(OS, EmittedMap, false);
|
|
|
|
genTargetTest(OS, EmittedMap, true);
|
|
}
|
|
|
|
namespace clang {
|
|
void EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
|
|
NeonEmitter(Records).run(OS);
|
|
}
|
|
void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
|
|
NeonEmitter(Records).runHeader(OS);
|
|
}
|
|
void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
|
|
NeonEmitter(Records).runTests(OS);
|
|
}
|
|
} // End namespace clang
|