llvm-project/llvm/lib/Analysis/Loads.cpp

443 lines
17 KiB
C++

//===- Loads.cpp - Local load analysis ------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines simple local analyses for load instructions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Statepoint.h"
using namespace llvm;
static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align,
const DataLayout &DL) {
APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL));
if (!BaseAlign) {
Type *Ty = Base->getType()->getPointerElementType();
if (!Ty->isSized())
return false;
BaseAlign = DL.getABITypeAlignment(Ty);
}
APInt Alignment(Offset.getBitWidth(), Align);
assert(Alignment.isPowerOf2() && "must be a power of 2!");
return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
}
static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
Type *Ty = Base->getType();
assert(Ty->isSized() && "must be sized");
APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
return isAligned(Base, Offset, Align, DL);
}
/// Test if V is always a pointer to allocated and suitably aligned memory for
/// a simple load or store.
static bool isDereferenceableAndAlignedPointer(
const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL,
const Instruction *CtxI, const DominatorTree *DT,
SmallPtrSetImpl<const Value *> &Visited) {
// Already visited? Bail out, we've likely hit unreachable code.
if (!Visited.insert(V).second)
return false;
// Note that it is not safe to speculate into a malloc'd region because
// malloc may return null.
// bitcast instructions are no-ops as far as dereferenceability is concerned.
if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size,
DL, CtxI, DT, Visited);
bool CheckForNonNull = false;
APInt KnownDerefBytes(Size.getBitWidth(),
V->getPointerDereferenceableBytes(DL, CheckForNonNull));
if (KnownDerefBytes.getBoolValue()) {
if (KnownDerefBytes.uge(Size))
if (!CheckForNonNull || isKnownNonNullAt(V, CtxI, DT))
return isAligned(V, Align, DL);
}
// For GEPs, determine if the indexing lands within the allocated object.
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
const Value *Base = GEP->getPointerOperand();
APInt Offset(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
!Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue())
return false;
// If the base pointer is dereferenceable for Offset+Size bytes, then the
// GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
// pointer is aligned to Align bytes, and the Offset is divisible by Align
// then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
// aligned to Align bytes.
// Offset and Size may have different bit widths if we have visited an
// addrspacecast, so we can't do arithmetic directly on the APInt values.
return isDereferenceableAndAlignedPointer(
Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()),
DL, CtxI, DT, Visited);
}
// For gc.relocate, look through relocations
if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
return isDereferenceableAndAlignedPointer(
RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited);
if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size,
DL, CtxI, DT, Visited);
if (auto CS = ImmutableCallSite(V))
if (const Value *RV = CS.getReturnedArgOperand())
return isDereferenceableAndAlignedPointer(RV, Align, Size, DL, CtxI, DT,
Visited);
// If we don't know, assume the worst.
return false;
}
bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
const APInt &Size,
const DataLayout &DL,
const Instruction *CtxI,
const DominatorTree *DT) {
SmallPtrSet<const Value *, 32> Visited;
return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT,
Visited);
}
bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
const DataLayout &DL,
const Instruction *CtxI,
const DominatorTree *DT) {
// When dereferenceability information is provided by a dereferenceable
// attribute, we know exactly how many bytes are dereferenceable. If we can
// determine the exact offset to the attributed variable, we can use that
// information here.
Type *VTy = V->getType();
Type *Ty = VTy->getPointerElementType();
// Require ABI alignment for loads without alignment specification
if (Align == 0)
Align = DL.getABITypeAlignment(Ty);
if (!Ty->isSized())
return false;
SmallPtrSet<const Value *, 32> Visited;
return ::isDereferenceableAndAlignedPointer(
V, Align, APInt(DL.getTypeSizeInBits(VTy), DL.getTypeStoreSize(Ty)), DL,
CtxI, DT, Visited);
}
bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
const Instruction *CtxI,
const DominatorTree *DT) {
return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT);
}
/// \brief Test if A and B will obviously have the same value.
///
/// This includes recognizing that %t0 and %t1 will have the same
/// value in code like this:
/// \code
/// %t0 = getelementptr \@a, 0, 3
/// store i32 0, i32* %t0
/// %t1 = getelementptr \@a, 0, 3
/// %t2 = load i32* %t1
/// \endcode
///
static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
// Test if the values are trivially equivalent.
if (A == B)
return true;
// Test if the values come from identical arithmetic instructions.
// Use isIdenticalToWhenDefined instead of isIdenticalTo because
// this function is only used when one address use dominates the
// other, which means that they'll always either have the same
// value or one of them will have an undefined value.
if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
isa<GetElementPtrInst>(A))
if (const Instruction *BI = dyn_cast<Instruction>(B))
if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
return true;
// Otherwise they may not be equivalent.
return false;
}
/// \brief Check if executing a load of this pointer value cannot trap.
///
/// If DT and ScanFrom are specified this method performs context-sensitive
/// analysis and returns true if it is safe to load immediately before ScanFrom.
///
/// If it is not obviously safe to load from the specified pointer, we do
/// a quick local scan of the basic block containing \c ScanFrom, to determine
/// if the address is already accessed.
///
/// This uses the pointee type to determine how many bytes need to be safe to
/// load from the pointer.
bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align,
const DataLayout &DL,
Instruction *ScanFrom,
const DominatorTree *DT) {
// Zero alignment means that the load has the ABI alignment for the target
if (Align == 0)
Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
assert(isPowerOf2_32(Align));
// If DT is not specified we can't make context-sensitive query
const Instruction* CtxI = DT ? ScanFrom : nullptr;
if (isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT))
return true;
int64_t ByteOffset = 0;
Value *Base = V;
Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
if (ByteOffset < 0) // out of bounds
return false;
Type *BaseType = nullptr;
unsigned BaseAlign = 0;
if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
// An alloca is safe to load from as load as it is suitably aligned.
BaseType = AI->getAllocatedType();
BaseAlign = AI->getAlignment();
} else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
// Global variables are not necessarily safe to load from if they are
// interposed arbitrarily. Their size may change or they may be weak and
// require a test to determine if they were in fact provided.
if (!GV->isInterposable()) {
BaseType = GV->getType()->getElementType();
BaseAlign = GV->getAlignment();
}
}
PointerType *AddrTy = cast<PointerType>(V->getType());
uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType());
// If we found a base allocated type from either an alloca or global variable,
// try to see if we are definitively within the allocated region. We need to
// know the size of the base type and the loaded type to do anything in this
// case.
if (BaseType && BaseType->isSized()) {
if (BaseAlign == 0)
BaseAlign = DL.getPrefTypeAlignment(BaseType);
if (Align <= BaseAlign) {
// Check if the load is within the bounds of the underlying object.
if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) &&
((ByteOffset % Align) == 0))
return true;
}
}
if (!ScanFrom)
return false;
// Otherwise, be a little bit aggressive by scanning the local block where we
// want to check to see if the pointer is already being loaded or stored
// from/to. If so, the previous load or store would have already trapped,
// so there is no harm doing an extra load (also, CSE will later eliminate
// the load entirely).
BasicBlock::iterator BBI = ScanFrom->getIterator(),
E = ScanFrom->getParent()->begin();
// We can at least always strip pointer casts even though we can't use the
// base here.
V = V->stripPointerCasts();
while (BBI != E) {
--BBI;
// If we see a free or a call which may write to memory (i.e. which might do
// a free) the pointer could be marked invalid.
if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
!isa<DbgInfoIntrinsic>(BBI))
return false;
Value *AccessedPtr;
unsigned AccessedAlign;
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
AccessedPtr = LI->getPointerOperand();
AccessedAlign = LI->getAlignment();
} else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
AccessedPtr = SI->getPointerOperand();
AccessedAlign = SI->getAlignment();
} else
continue;
Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
if (AccessedAlign == 0)
AccessedAlign = DL.getABITypeAlignment(AccessedTy);
if (AccessedAlign < Align)
continue;
// Handle trivial cases.
if (AccessedPtr == V)
return true;
if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
LoadSize <= DL.getTypeStoreSize(AccessedTy))
return true;
}
return false;
}
/// DefMaxInstsToScan - the default number of maximum instructions
/// to scan in the block, used by FindAvailableLoadedValue().
/// FindAvailableLoadedValue() was introduced in r60148, to improve jump
/// threading in part by eliminating partially redundant loads.
/// At that point, the value of MaxInstsToScan was already set to '6'
/// without documented explanation.
cl::opt<unsigned>
llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
cl::desc("Use this to specify the default maximum number of instructions "
"to scan backward from a given instruction, when searching for "
"available loaded value"));
Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
BasicBlock *ScanBB,
BasicBlock::iterator &ScanFrom,
unsigned MaxInstsToScan,
AliasAnalysis *AA, bool *IsLoad,
unsigned *NumScanedInst) {
// Don't CSE load that is volatile or anything stronger than unordered.
if (!Load->isUnordered())
return nullptr;
return FindAvailablePtrLoadStore(
Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
}
Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
bool AtLeastAtomic, BasicBlock *ScanBB,
BasicBlock::iterator &ScanFrom,
unsigned MaxInstsToScan,
AliasAnalysis *AA, bool *IsLoadCSE,
unsigned *NumScanedInst) {
if (MaxInstsToScan == 0)
MaxInstsToScan = ~0U;
const DataLayout &DL = ScanBB->getModule()->getDataLayout();
// Try to get the store size for the type.
uint64_t AccessSize = DL.getTypeStoreSize(AccessTy);
Value *StrippedPtr = Ptr->stripPointerCasts();
while (ScanFrom != ScanBB->begin()) {
// We must ignore debug info directives when counting (otherwise they
// would affect codegen).
Instruction *Inst = &*--ScanFrom;
if (isa<DbgInfoIntrinsic>(Inst))
continue;
// Restore ScanFrom to expected value in case next test succeeds
ScanFrom++;
if (NumScanedInst)
++(*NumScanedInst);
// Don't scan huge blocks.
if (MaxInstsToScan-- == 0)
return nullptr;
--ScanFrom;
// If this is a load of Ptr, the loaded value is available.
// (This is true even if the load is volatile or atomic, although
// those cases are unlikely.)
if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
if (AreEquivalentAddressValues(
LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
// We can value forward from an atomic to a non-atomic, but not the
// other way around.
if (LI->isAtomic() < AtLeastAtomic)
return nullptr;
if (IsLoadCSE)
*IsLoadCSE = true;
return LI;
}
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
// If this is a store through Ptr, the value is available!
// (This is true even if the store is volatile or atomic, although
// those cases are unlikely.)
if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
AccessTy, DL)) {
// We can value forward from an atomic to a non-atomic, but not the
// other way around.
if (SI->isAtomic() < AtLeastAtomic)
return nullptr;
if (IsLoadCSE)
*IsLoadCSE = false;
return SI->getOperand(0);
}
// If both StrippedPtr and StorePtr reach all the way to an alloca or
// global and they are different, ignore the store. This is a trivial form
// of alias analysis that is important for reg2mem'd code.
if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
(isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
StrippedPtr != StorePtr)
continue;
// If we have alias analysis and it says the store won't modify the loaded
// value, ignore the store.
if (AA && (AA->getModRefInfo(SI, StrippedPtr, AccessSize) & MRI_Mod) == 0)
continue;
// Otherwise the store that may or may not alias the pointer, bail out.
++ScanFrom;
return nullptr;
}
// If this is some other instruction that may clobber Ptr, bail out.
if (Inst->mayWriteToMemory()) {
// If alias analysis claims that it really won't modify the load,
// ignore it.
if (AA &&
(AA->getModRefInfo(Inst, StrippedPtr, AccessSize) & MRI_Mod) == 0)
continue;
// May modify the pointer, bail out.
++ScanFrom;
return nullptr;
}
}
// Got to the start of the block, we didn't find it, but are done for this
// block.
return nullptr;
}