llvm-project/clang/lib/Driver/ToolChains/Linux.cpp

970 lines
36 KiB
C++

//===--- Linux.h - Linux ToolChain Implementations --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Linux.h"
#include "Arch/ARM.h"
#include "Arch/Mips.h"
#include "Arch/PPC.h"
#include "Arch/RISCV.h"
#include "CommonArgs.h"
#include "clang/Basic/VirtualFileSystem.h"
#include "clang/Config/config.h"
#include "clang/Driver/Distro.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/SanitizerArgs.h"
#include "llvm/Option/ArgList.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/ScopedPrinter.h"
#include <system_error>
using namespace clang::driver;
using namespace clang::driver::toolchains;
using namespace clang;
using namespace llvm::opt;
using tools::addPathIfExists;
/// Get our best guess at the multiarch triple for a target.
///
/// Debian-based systems are starting to use a multiarch setup where they use
/// a target-triple directory in the library and header search paths.
/// Unfortunately, this triple does not align with the vanilla target triple,
/// so we provide a rough mapping here.
static std::string getMultiarchTriple(const Driver &D,
const llvm::Triple &TargetTriple,
StringRef SysRoot) {
llvm::Triple::EnvironmentType TargetEnvironment =
TargetTriple.getEnvironment();
bool IsAndroid = TargetTriple.isAndroid();
// For most architectures, just use whatever we have rather than trying to be
// clever.
switch (TargetTriple.getArch()) {
default:
break;
// We use the existence of '/lib/<triple>' as a directory to detect some
// common linux triples that don't quite match the Clang triple for both
// 32-bit and 64-bit targets. Multiarch fixes its install triples to these
// regardless of what the actual target triple is.
case llvm::Triple::arm:
case llvm::Triple::thumb:
if (IsAndroid) {
return "arm-linux-androideabi";
} else if (TargetEnvironment == llvm::Triple::GNUEABIHF) {
if (D.getVFS().exists(SysRoot + "/lib/arm-linux-gnueabihf"))
return "arm-linux-gnueabihf";
} else {
if (D.getVFS().exists(SysRoot + "/lib/arm-linux-gnueabi"))
return "arm-linux-gnueabi";
}
break;
case llvm::Triple::armeb:
case llvm::Triple::thumbeb:
if (TargetEnvironment == llvm::Triple::GNUEABIHF) {
if (D.getVFS().exists(SysRoot + "/lib/armeb-linux-gnueabihf"))
return "armeb-linux-gnueabihf";
} else {
if (D.getVFS().exists(SysRoot + "/lib/armeb-linux-gnueabi"))
return "armeb-linux-gnueabi";
}
break;
case llvm::Triple::x86:
if (IsAndroid)
return "i686-linux-android";
if (D.getVFS().exists(SysRoot + "/lib/i386-linux-gnu"))
return "i386-linux-gnu";
break;
case llvm::Triple::x86_64:
if (IsAndroid)
return "x86_64-linux-android";
// We don't want this for x32, otherwise it will match x86_64 libs
if (TargetEnvironment != llvm::Triple::GNUX32 &&
D.getVFS().exists(SysRoot + "/lib/x86_64-linux-gnu"))
return "x86_64-linux-gnu";
break;
case llvm::Triple::aarch64:
if (IsAndroid)
return "aarch64-linux-android";
if (D.getVFS().exists(SysRoot + "/lib/aarch64-linux-gnu"))
return "aarch64-linux-gnu";
break;
case llvm::Triple::aarch64_be:
if (D.getVFS().exists(SysRoot + "/lib/aarch64_be-linux-gnu"))
return "aarch64_be-linux-gnu";
break;
case llvm::Triple::mips:
if (D.getVFS().exists(SysRoot + "/lib/mips-linux-gnu"))
return "mips-linux-gnu";
break;
case llvm::Triple::mipsel:
if (IsAndroid)
return "mipsel-linux-android";
if (D.getVFS().exists(SysRoot + "/lib/mipsel-linux-gnu"))
return "mipsel-linux-gnu";
break;
case llvm::Triple::mips64:
if (D.getVFS().exists(SysRoot + "/lib/mips64-linux-gnu"))
return "mips64-linux-gnu";
if (D.getVFS().exists(SysRoot + "/lib/mips64-linux-gnuabi64"))
return "mips64-linux-gnuabi64";
break;
case llvm::Triple::mips64el:
if (IsAndroid)
return "mips64el-linux-android";
if (D.getVFS().exists(SysRoot + "/lib/mips64el-linux-gnu"))
return "mips64el-linux-gnu";
if (D.getVFS().exists(SysRoot + "/lib/mips64el-linux-gnuabi64"))
return "mips64el-linux-gnuabi64";
break;
case llvm::Triple::ppc:
if (D.getVFS().exists(SysRoot + "/lib/powerpc-linux-gnuspe"))
return "powerpc-linux-gnuspe";
if (D.getVFS().exists(SysRoot + "/lib/powerpc-linux-gnu"))
return "powerpc-linux-gnu";
break;
case llvm::Triple::ppc64:
if (D.getVFS().exists(SysRoot + "/lib/powerpc64-linux-gnu"))
return "powerpc64-linux-gnu";
break;
case llvm::Triple::ppc64le:
if (D.getVFS().exists(SysRoot + "/lib/powerpc64le-linux-gnu"))
return "powerpc64le-linux-gnu";
break;
case llvm::Triple::sparc:
if (D.getVFS().exists(SysRoot + "/lib/sparc-linux-gnu"))
return "sparc-linux-gnu";
break;
case llvm::Triple::sparcv9:
if (D.getVFS().exists(SysRoot + "/lib/sparc64-linux-gnu"))
return "sparc64-linux-gnu";
break;
case llvm::Triple::systemz:
if (D.getVFS().exists(SysRoot + "/lib/s390x-linux-gnu"))
return "s390x-linux-gnu";
break;
}
return TargetTriple.str();
}
static StringRef getOSLibDir(const llvm::Triple &Triple, const ArgList &Args) {
if (Triple.isMIPS()) {
if (Triple.isAndroid()) {
StringRef CPUName;
StringRef ABIName;
tools::mips::getMipsCPUAndABI(Args, Triple, CPUName, ABIName);
if (CPUName == "mips32r6")
return "libr6";
if (CPUName == "mips32r2")
return "libr2";
}
// lib32 directory has a special meaning on MIPS targets.
// It contains N32 ABI binaries. Use this folder if produce
// code for N32 ABI only.
if (tools::mips::hasMipsAbiArg(Args, "n32"))
return "lib32";
return Triple.isArch32Bit() ? "lib" : "lib64";
}
// It happens that only x86 and PPC use the 'lib32' variant of oslibdir, and
// using that variant while targeting other architectures causes problems
// because the libraries are laid out in shared system roots that can't cope
// with a 'lib32' library search path being considered. So we only enable
// them when we know we may need it.
//
// FIXME: This is a bit of a hack. We should really unify this code for
// reasoning about oslibdir spellings with the lib dir spellings in the
// GCCInstallationDetector, but that is a more significant refactoring.
if (Triple.getArch() == llvm::Triple::x86 ||
Triple.getArch() == llvm::Triple::ppc)
return "lib32";
if (Triple.getArch() == llvm::Triple::x86_64 &&
Triple.getEnvironment() == llvm::Triple::GNUX32)
return "libx32";
if (Triple.getArch() == llvm::Triple::riscv32)
return "lib32";
return Triple.isArch32Bit() ? "lib" : "lib64";
}
static void addMultilibsFilePaths(const Driver &D, const MultilibSet &Multilibs,
const Multilib &Multilib,
StringRef InstallPath,
ToolChain::path_list &Paths) {
if (const auto &PathsCallback = Multilibs.filePathsCallback())
for (const auto &Path : PathsCallback(Multilib))
addPathIfExists(D, InstallPath + Path, Paths);
}
Linux::Linux(const Driver &D, const llvm::Triple &Triple, const ArgList &Args)
: Generic_ELF(D, Triple, Args) {
GCCInstallation.init(Triple, Args);
Multilibs = GCCInstallation.getMultilibs();
SelectedMultilib = GCCInstallation.getMultilib();
llvm::Triple::ArchType Arch = Triple.getArch();
std::string SysRoot = computeSysRoot();
// Cross-compiling binutils and GCC installations (vanilla and openSUSE at
// least) put various tools in a triple-prefixed directory off of the parent
// of the GCC installation. We use the GCC triple here to ensure that we end
// up with tools that support the same amount of cross compiling as the
// detected GCC installation. For example, if we find a GCC installation
// targeting x86_64, but it is a bi-arch GCC installation, it can also be
// used to target i386.
// FIXME: This seems unlikely to be Linux-specific.
ToolChain::path_list &PPaths = getProgramPaths();
PPaths.push_back(Twine(GCCInstallation.getParentLibPath() + "/../" +
GCCInstallation.getTriple().str() + "/bin")
.str());
Distro Distro(D.getVFS());
if (Distro.IsAlpineLinux()) {
ExtraOpts.push_back("-z");
ExtraOpts.push_back("now");
}
if (Distro.IsOpenSUSE() || Distro.IsUbuntu() || Distro.IsAlpineLinux()) {
ExtraOpts.push_back("-z");
ExtraOpts.push_back("relro");
}
if (GCCInstallation.getParentLibPath().find("opt/rh/devtoolset") !=
StringRef::npos)
// With devtoolset on RHEL, we want to add a bin directory that is relative
// to the detected gcc install, because if we are using devtoolset gcc then
// we want to use other tools from devtoolset (e.g. ld) instead of the
// standard system tools.
PPaths.push_back(Twine(GCCInstallation.getParentLibPath() +
"/../bin").str());
if (Arch == llvm::Triple::arm || Arch == llvm::Triple::thumb)
ExtraOpts.push_back("-X");
const bool IsAndroid = Triple.isAndroid();
const bool IsMips = Triple.isMIPS();
const bool IsHexagon = Arch == llvm::Triple::hexagon;
const bool IsRISCV =
Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64;
if (IsMips && !SysRoot.empty())
ExtraOpts.push_back("--sysroot=" + SysRoot);
// Do not use 'gnu' hash style for Mips targets because .gnu.hash
// and the MIPS ABI require .dynsym to be sorted in different ways.
// .gnu.hash needs symbols to be grouped by hash code whereas the MIPS
// ABI requires a mapping between the GOT and the symbol table.
// Android loader does not support .gnu.hash.
// Hexagon linker/loader does not support .gnu.hash
if (!IsMips && !IsAndroid && !IsHexagon) {
if (Distro.IsRedhat() || Distro.IsOpenSUSE() || Distro.IsAlpineLinux() ||
(Distro.IsUbuntu() && Distro >= Distro::UbuntuMaverick))
ExtraOpts.push_back("--hash-style=gnu");
if (Distro.IsDebian() || Distro.IsOpenSUSE() || Distro == Distro::UbuntuLucid ||
Distro == Distro::UbuntuJaunty || Distro == Distro::UbuntuKarmic)
ExtraOpts.push_back("--hash-style=both");
}
if (Distro.IsRedhat() && Distro != Distro::RHEL5 && Distro != Distro::RHEL6)
ExtraOpts.push_back("--no-add-needed");
#ifdef ENABLE_LINKER_BUILD_ID
ExtraOpts.push_back("--build-id");
#endif
if (IsAndroid || Distro.IsOpenSUSE())
ExtraOpts.push_back("--enable-new-dtags");
// The selection of paths to try here is designed to match the patterns which
// the GCC driver itself uses, as this is part of the GCC-compatible driver.
// This was determined by running GCC in a fake filesystem, creating all
// possible permutations of these directories, and seeing which ones it added
// to the link paths.
path_list &Paths = getFilePaths();
const std::string OSLibDir = getOSLibDir(Triple, Args);
const std::string MultiarchTriple = getMultiarchTriple(D, Triple, SysRoot);
// Add the multilib suffixed paths where they are available.
if (GCCInstallation.isValid()) {
const llvm::Triple &GCCTriple = GCCInstallation.getTriple();
const std::string &LibPath = GCCInstallation.getParentLibPath();
// Add toolchain / multilib specific file paths.
addMultilibsFilePaths(D, Multilibs, SelectedMultilib,
GCCInstallation.getInstallPath(), Paths);
// Sourcery CodeBench MIPS toolchain holds some libraries under
// a biarch-like suffix of the GCC installation.
addPathIfExists(D, GCCInstallation.getInstallPath() + SelectedMultilib.gccSuffix(),
Paths);
// GCC cross compiling toolchains will install target libraries which ship
// as part of the toolchain under <prefix>/<triple>/<libdir> rather than as
// any part of the GCC installation in
// <prefix>/<libdir>/gcc/<triple>/<version>. This decision is somewhat
// debatable, but is the reality today. We need to search this tree even
// when we have a sysroot somewhere else. It is the responsibility of
// whomever is doing the cross build targeting a sysroot using a GCC
// installation that is *not* within the system root to ensure two things:
//
// 1) Any DSOs that are linked in from this tree or from the install path
// above must be present on the system root and found via an
// appropriate rpath.
// 2) There must not be libraries installed into
// <prefix>/<triple>/<libdir> unless they should be preferred over
// those within the system root.
//
// Note that this matches the GCC behavior. See the below comment for where
// Clang diverges from GCC's behavior.
addPathIfExists(D, LibPath + "/../" + GCCTriple.str() + "/lib/../" +
OSLibDir + SelectedMultilib.osSuffix(),
Paths);
// If the GCC installation we found is inside of the sysroot, we want to
// prefer libraries installed in the parent prefix of the GCC installation.
// It is important to *not* use these paths when the GCC installation is
// outside of the system root as that can pick up unintended libraries.
// This usually happens when there is an external cross compiler on the
// host system, and a more minimal sysroot available that is the target of
// the cross. Note that GCC does include some of these directories in some
// configurations but this seems somewhere between questionable and simply
// a bug.
if (StringRef(LibPath).startswith(SysRoot)) {
addPathIfExists(D, LibPath + "/" + MultiarchTriple, Paths);
addPathIfExists(D, LibPath + "/../" + OSLibDir, Paths);
}
}
// Similar to the logic for GCC above, if we currently running Clang inside
// of the requested system root, add its parent library paths to
// those searched.
// FIXME: It's not clear whether we should use the driver's installed
// directory ('Dir' below) or the ResourceDir.
if (StringRef(D.Dir).startswith(SysRoot)) {
addPathIfExists(D, D.Dir + "/../lib/" + MultiarchTriple, Paths);
addPathIfExists(D, D.Dir + "/../" + OSLibDir, Paths);
}
addPathIfExists(D, SysRoot + "/lib/" + MultiarchTriple, Paths);
addPathIfExists(D, SysRoot + "/lib/../" + OSLibDir, Paths);
if (IsAndroid) {
// Android sysroots contain a library directory for each supported OS
// version as well as some unversioned libraries in the usual multiarch
// directory.
unsigned Major;
unsigned Minor;
unsigned Micro;
Triple.getEnvironmentVersion(Major, Minor, Micro);
addPathIfExists(D,
SysRoot + "/usr/lib/" + MultiarchTriple + "/" +
llvm::to_string(Major),
Paths);
}
addPathIfExists(D, SysRoot + "/usr/lib/" + MultiarchTriple, Paths);
// 64-bit OpenEmbedded sysroots may not have a /usr/lib dir. So they cannot
// find /usr/lib64 as it is referenced as /usr/lib/../lib64. So we handle
// this here.
if (Triple.getVendor() == llvm::Triple::OpenEmbedded &&
Triple.isArch64Bit())
addPathIfExists(D, SysRoot + "/usr/" + OSLibDir, Paths);
else
addPathIfExists(D, SysRoot + "/usr/lib/../" + OSLibDir, Paths);
if (IsRISCV) {
StringRef ABIName = tools::riscv::getRISCVABI(Args, Triple);
addPathIfExists(D, SysRoot + "/" + OSLibDir + "/" + ABIName, Paths);
addPathIfExists(D, SysRoot + "/usr/" + OSLibDir + "/" + ABIName, Paths);
}
// Try walking via the GCC triple path in case of biarch or multiarch GCC
// installations with strange symlinks.
if (GCCInstallation.isValid()) {
addPathIfExists(D,
SysRoot + "/usr/lib/" + GCCInstallation.getTriple().str() +
"/../../" + OSLibDir,
Paths);
// Add the 'other' biarch variant path
Multilib BiarchSibling;
if (GCCInstallation.getBiarchSibling(BiarchSibling)) {
addPathIfExists(D, GCCInstallation.getInstallPath() +
BiarchSibling.gccSuffix(),
Paths);
}
// See comments above on the multilib variant for details of why this is
// included even from outside the sysroot.
const std::string &LibPath = GCCInstallation.getParentLibPath();
const llvm::Triple &GCCTriple = GCCInstallation.getTriple();
const Multilib &Multilib = GCCInstallation.getMultilib();
addPathIfExists(D, LibPath + "/../" + GCCTriple.str() + "/lib" +
Multilib.osSuffix(),
Paths);
// See comments above on the multilib variant for details of why this is
// only included from within the sysroot.
if (StringRef(LibPath).startswith(SysRoot))
addPathIfExists(D, LibPath, Paths);
}
// Similar to the logic for GCC above, if we are currently running Clang
// inside of the requested system root, add its parent library path to those
// searched.
// FIXME: It's not clear whether we should use the driver's installed
// directory ('Dir' below) or the ResourceDir.
if (StringRef(D.Dir).startswith(SysRoot))
addPathIfExists(D, D.Dir + "/../lib", Paths);
addPathIfExists(D, SysRoot + "/lib", Paths);
addPathIfExists(D, SysRoot + "/usr/lib", Paths);
}
bool Linux::HasNativeLLVMSupport() const { return true; }
Tool *Linux::buildLinker() const { return new tools::gnutools::Linker(*this); }
Tool *Linux::buildAssembler() const {
return new tools::gnutools::Assembler(*this);
}
std::string Linux::computeSysRoot() const {
if (!getDriver().SysRoot.empty())
return getDriver().SysRoot;
if (getTriple().isAndroid()) {
// Android toolchains typically include a sysroot at ../sysroot relative to
// the clang binary.
const StringRef ClangDir = getDriver().getInstalledDir();
std::string AndroidSysRootPath = (ClangDir + "/../sysroot").str();
if (getVFS().exists(AndroidSysRootPath))
return AndroidSysRootPath;
}
if (!GCCInstallation.isValid() || !getTriple().isMIPS())
return std::string();
// Standalone MIPS toolchains use different names for sysroot folder
// and put it into different places. Here we try to check some known
// variants.
const StringRef InstallDir = GCCInstallation.getInstallPath();
const StringRef TripleStr = GCCInstallation.getTriple().str();
const Multilib &Multilib = GCCInstallation.getMultilib();
std::string Path =
(InstallDir + "/../../../../" + TripleStr + "/libc" + Multilib.osSuffix())
.str();
if (getVFS().exists(Path))
return Path;
Path = (InstallDir + "/../../../../sysroot" + Multilib.osSuffix()).str();
if (getVFS().exists(Path))
return Path;
return std::string();
}
std::string Linux::getDynamicLinker(const ArgList &Args) const {
const llvm::Triple::ArchType Arch = getArch();
const llvm::Triple &Triple = getTriple();
const Distro Distro(getDriver().getVFS());
if (Triple.isAndroid())
return Triple.isArch64Bit() ? "/system/bin/linker64" : "/system/bin/linker";
if (Triple.isMusl()) {
std::string ArchName;
bool IsArm = false;
switch (Arch) {
case llvm::Triple::arm:
case llvm::Triple::thumb:
ArchName = "arm";
IsArm = true;
break;
case llvm::Triple::armeb:
case llvm::Triple::thumbeb:
ArchName = "armeb";
IsArm = true;
break;
default:
ArchName = Triple.getArchName().str();
}
if (IsArm &&
(Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
tools::arm::getARMFloatABI(*this, Args) == tools::arm::FloatABI::Hard))
ArchName += "hf";
return "/lib/ld-musl-" + ArchName + ".so.1";
}
std::string LibDir;
std::string Loader;
switch (Arch) {
default:
llvm_unreachable("unsupported architecture");
case llvm::Triple::aarch64:
LibDir = "lib";
Loader = "ld-linux-aarch64.so.1";
break;
case llvm::Triple::aarch64_be:
LibDir = "lib";
Loader = "ld-linux-aarch64_be.so.1";
break;
case llvm::Triple::arm:
case llvm::Triple::thumb:
case llvm::Triple::armeb:
case llvm::Triple::thumbeb: {
const bool HF =
Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
tools::arm::getARMFloatABI(*this, Args) == tools::arm::FloatABI::Hard;
LibDir = "lib";
Loader = HF ? "ld-linux-armhf.so.3" : "ld-linux.so.3";
break;
}
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el: {
bool IsNaN2008 = tools::mips::isNaN2008(Args, Triple);
LibDir = "lib" + tools::mips::getMipsABILibSuffix(Args, Triple);
if (tools::mips::isUCLibc(Args))
Loader = IsNaN2008 ? "ld-uClibc-mipsn8.so.0" : "ld-uClibc.so.0";
else if (!Triple.hasEnvironment() &&
Triple.getVendor() == llvm::Triple::VendorType::MipsTechnologies)
Loader =
Triple.isLittleEndian() ? "ld-musl-mipsel.so.1" : "ld-musl-mips.so.1";
else
Loader = IsNaN2008 ? "ld-linux-mipsn8.so.1" : "ld.so.1";
break;
}
case llvm::Triple::ppc:
LibDir = "lib";
Loader = "ld.so.1";
break;
case llvm::Triple::ppc64:
LibDir = "lib64";
Loader =
(tools::ppc::hasPPCAbiArg(Args, "elfv2")) ? "ld64.so.2" : "ld64.so.1";
break;
case llvm::Triple::ppc64le:
LibDir = "lib64";
Loader =
(tools::ppc::hasPPCAbiArg(Args, "elfv1")) ? "ld64.so.1" : "ld64.so.2";
break;
case llvm::Triple::riscv32: {
StringRef ABIName = tools::riscv::getRISCVABI(Args, Triple);
LibDir = "lib";
Loader = ("ld-linux-riscv32-" + ABIName + ".so.1").str();
break;
}
case llvm::Triple::riscv64: {
StringRef ABIName = tools::riscv::getRISCVABI(Args, Triple);
LibDir = "lib";
Loader = ("ld-linux-riscv64-" + ABIName + ".so.1").str();
break;
}
case llvm::Triple::sparc:
case llvm::Triple::sparcel:
LibDir = "lib";
Loader = "ld-linux.so.2";
break;
case llvm::Triple::sparcv9:
LibDir = "lib64";
Loader = "ld-linux.so.2";
break;
case llvm::Triple::systemz:
LibDir = "lib";
Loader = "ld64.so.1";
break;
case llvm::Triple::x86:
LibDir = "lib";
Loader = "ld-linux.so.2";
break;
case llvm::Triple::x86_64: {
bool X32 = Triple.getEnvironment() == llvm::Triple::GNUX32;
LibDir = X32 ? "libx32" : "lib64";
Loader = X32 ? "ld-linux-x32.so.2" : "ld-linux-x86-64.so.2";
break;
}
}
if (Distro == Distro::Exherbo && (Triple.getVendor() == llvm::Triple::UnknownVendor ||
Triple.getVendor() == llvm::Triple::PC))
return "/usr/" + Triple.str() + "/lib/" + Loader;
return "/" + LibDir + "/" + Loader;
}
void Linux::AddClangSystemIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {
const Driver &D = getDriver();
std::string SysRoot = computeSysRoot();
if (DriverArgs.hasArg(clang::driver::options::OPT_nostdinc))
return;
if (!DriverArgs.hasArg(options::OPT_nostdlibinc))
addSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/local/include");
if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) {
SmallString<128> P(D.ResourceDir);
llvm::sys::path::append(P, "include");
addSystemInclude(DriverArgs, CC1Args, P);
}
if (DriverArgs.hasArg(options::OPT_nostdlibinc))
return;
// Check for configure-time C include directories.
StringRef CIncludeDirs(C_INCLUDE_DIRS);
if (CIncludeDirs != "") {
SmallVector<StringRef, 5> dirs;
CIncludeDirs.split(dirs, ":");
for (StringRef dir : dirs) {
StringRef Prefix =
llvm::sys::path::is_absolute(dir) ? StringRef(SysRoot) : "";
addExternCSystemInclude(DriverArgs, CC1Args, Prefix + dir);
}
return;
}
// Lacking those, try to detect the correct set of system includes for the
// target triple.
// Add include directories specific to the selected multilib set and multilib.
if (GCCInstallation.isValid()) {
const auto &Callback = Multilibs.includeDirsCallback();
if (Callback) {
for (const auto &Path : Callback(GCCInstallation.getMultilib()))
addExternCSystemIncludeIfExists(
DriverArgs, CC1Args, GCCInstallation.getInstallPath() + Path);
}
}
// Implement generic Debian multiarch support.
const StringRef X86_64MultiarchIncludeDirs[] = {
"/usr/include/x86_64-linux-gnu",
// FIXME: These are older forms of multiarch. It's not clear that they're
// in use in any released version of Debian, so we should consider
// removing them.
"/usr/include/i686-linux-gnu/64", "/usr/include/i486-linux-gnu/64"};
const StringRef X86MultiarchIncludeDirs[] = {
"/usr/include/i386-linux-gnu",
// FIXME: These are older forms of multiarch. It's not clear that they're
// in use in any released version of Debian, so we should consider
// removing them.
"/usr/include/x86_64-linux-gnu/32", "/usr/include/i686-linux-gnu",
"/usr/include/i486-linux-gnu"};
const StringRef AArch64MultiarchIncludeDirs[] = {
"/usr/include/aarch64-linux-gnu"};
const StringRef ARMMultiarchIncludeDirs[] = {
"/usr/include/arm-linux-gnueabi"};
const StringRef ARMHFMultiarchIncludeDirs[] = {
"/usr/include/arm-linux-gnueabihf"};
const StringRef ARMEBMultiarchIncludeDirs[] = {
"/usr/include/armeb-linux-gnueabi"};
const StringRef ARMEBHFMultiarchIncludeDirs[] = {
"/usr/include/armeb-linux-gnueabihf"};
const StringRef MIPSMultiarchIncludeDirs[] = {"/usr/include/mips-linux-gnu"};
const StringRef MIPSELMultiarchIncludeDirs[] = {
"/usr/include/mipsel-linux-gnu"};
const StringRef MIPS64MultiarchIncludeDirs[] = {
"/usr/include/mips64-linux-gnu", "/usr/include/mips64-linux-gnuabi64"};
const StringRef MIPS64ELMultiarchIncludeDirs[] = {
"/usr/include/mips64el-linux-gnu",
"/usr/include/mips64el-linux-gnuabi64"};
const StringRef PPCMultiarchIncludeDirs[] = {
"/usr/include/powerpc-linux-gnu",
"/usr/include/powerpc-linux-gnuspe"};
const StringRef PPC64MultiarchIncludeDirs[] = {
"/usr/include/powerpc64-linux-gnu"};
const StringRef PPC64LEMultiarchIncludeDirs[] = {
"/usr/include/powerpc64le-linux-gnu"};
const StringRef SparcMultiarchIncludeDirs[] = {
"/usr/include/sparc-linux-gnu"};
const StringRef Sparc64MultiarchIncludeDirs[] = {
"/usr/include/sparc64-linux-gnu"};
const StringRef SYSTEMZMultiarchIncludeDirs[] = {
"/usr/include/s390x-linux-gnu"};
ArrayRef<StringRef> MultiarchIncludeDirs;
switch (getTriple().getArch()) {
case llvm::Triple::x86_64:
MultiarchIncludeDirs = X86_64MultiarchIncludeDirs;
break;
case llvm::Triple::x86:
MultiarchIncludeDirs = X86MultiarchIncludeDirs;
break;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_be:
MultiarchIncludeDirs = AArch64MultiarchIncludeDirs;
break;
case llvm::Triple::arm:
case llvm::Triple::thumb:
if (getTriple().getEnvironment() == llvm::Triple::GNUEABIHF)
MultiarchIncludeDirs = ARMHFMultiarchIncludeDirs;
else
MultiarchIncludeDirs = ARMMultiarchIncludeDirs;
break;
case llvm::Triple::armeb:
case llvm::Triple::thumbeb:
if (getTriple().getEnvironment() == llvm::Triple::GNUEABIHF)
MultiarchIncludeDirs = ARMEBHFMultiarchIncludeDirs;
else
MultiarchIncludeDirs = ARMEBMultiarchIncludeDirs;
break;
case llvm::Triple::mips:
MultiarchIncludeDirs = MIPSMultiarchIncludeDirs;
break;
case llvm::Triple::mipsel:
MultiarchIncludeDirs = MIPSELMultiarchIncludeDirs;
break;
case llvm::Triple::mips64:
MultiarchIncludeDirs = MIPS64MultiarchIncludeDirs;
break;
case llvm::Triple::mips64el:
MultiarchIncludeDirs = MIPS64ELMultiarchIncludeDirs;
break;
case llvm::Triple::ppc:
MultiarchIncludeDirs = PPCMultiarchIncludeDirs;
break;
case llvm::Triple::ppc64:
MultiarchIncludeDirs = PPC64MultiarchIncludeDirs;
break;
case llvm::Triple::ppc64le:
MultiarchIncludeDirs = PPC64LEMultiarchIncludeDirs;
break;
case llvm::Triple::sparc:
MultiarchIncludeDirs = SparcMultiarchIncludeDirs;
break;
case llvm::Triple::sparcv9:
MultiarchIncludeDirs = Sparc64MultiarchIncludeDirs;
break;
case llvm::Triple::systemz:
MultiarchIncludeDirs = SYSTEMZMultiarchIncludeDirs;
break;
default:
break;
}
const std::string AndroidMultiarchIncludeDir =
std::string("/usr/include/") +
getMultiarchTriple(D, getTriple(), SysRoot);
const StringRef AndroidMultiarchIncludeDirs[] = {AndroidMultiarchIncludeDir};
if (getTriple().isAndroid())
MultiarchIncludeDirs = AndroidMultiarchIncludeDirs;
for (StringRef Dir : MultiarchIncludeDirs) {
if (D.getVFS().exists(SysRoot + Dir)) {
addExternCSystemInclude(DriverArgs, CC1Args, SysRoot + Dir);
break;
}
}
if (getTriple().getOS() == llvm::Triple::RTEMS)
return;
// Add an include of '/include' directly. This isn't provided by default by
// system GCCs, but is often used with cross-compiling GCCs, and harmless to
// add even when Clang is acting as-if it were a system compiler.
addExternCSystemInclude(DriverArgs, CC1Args, SysRoot + "/include");
addExternCSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/include");
}
static std::string DetectLibcxxIncludePath(StringRef base) {
std::error_code EC;
int MaxVersion = 0;
std::string MaxVersionString = "";
for (llvm::sys::fs::directory_iterator LI(base, EC), LE; !EC && LI != LE;
LI = LI.increment(EC)) {
StringRef VersionText = llvm::sys::path::filename(LI->path());
int Version;
if (VersionText[0] == 'v' &&
!VersionText.slice(1, StringRef::npos).getAsInteger(10, Version)) {
if (Version > MaxVersion) {
MaxVersion = Version;
MaxVersionString = VersionText;
}
}
}
return MaxVersion ? (base + "/" + MaxVersionString).str() : "";
}
void Linux::addLibCxxIncludePaths(const llvm::opt::ArgList &DriverArgs,
llvm::opt::ArgStringList &CC1Args) const {
const std::string& SysRoot = computeSysRoot();
const std::string LibCXXIncludePathCandidates[] = {
DetectLibcxxIncludePath(getDriver().ResourceDir + "/include/c++"),
DetectLibcxxIncludePath(getDriver().Dir + "/../include/c++"),
// If this is a development, non-installed, clang, libcxx will
// not be found at ../include/c++ but it likely to be found at
// one of the following two locations:
DetectLibcxxIncludePath(SysRoot + "/usr/local/include/c++"),
DetectLibcxxIncludePath(SysRoot + "/usr/include/c++") };
for (const auto &IncludePath : LibCXXIncludePathCandidates) {
if (IncludePath.empty() || !getVFS().exists(IncludePath))
continue;
// Use the first candidate that exists.
addSystemInclude(DriverArgs, CC1Args, IncludePath);
return;
}
}
void Linux::addLibStdCxxIncludePaths(const llvm::opt::ArgList &DriverArgs,
llvm::opt::ArgStringList &CC1Args) const {
// We need a detected GCC installation on Linux to provide libstdc++'s
// headers.
if (!GCCInstallation.isValid())
return;
// By default, look for the C++ headers in an include directory adjacent to
// the lib directory of the GCC installation. Note that this is expect to be
// equivalent to '/usr/include/c++/X.Y' in almost all cases.
StringRef LibDir = GCCInstallation.getParentLibPath();
StringRef InstallDir = GCCInstallation.getInstallPath();
StringRef TripleStr = GCCInstallation.getTriple().str();
const Multilib &Multilib = GCCInstallation.getMultilib();
const std::string GCCMultiarchTriple = getMultiarchTriple(
getDriver(), GCCInstallation.getTriple(), getDriver().SysRoot);
const std::string TargetMultiarchTriple =
getMultiarchTriple(getDriver(), getTriple(), getDriver().SysRoot);
const GCCVersion &Version = GCCInstallation.getVersion();
// The primary search for libstdc++ supports multiarch variants.
if (addLibStdCXXIncludePaths(LibDir.str() + "/../include",
"/c++/" + Version.Text, TripleStr,
GCCMultiarchTriple, TargetMultiarchTriple,
Multilib.includeSuffix(), DriverArgs, CC1Args))
return;
// Otherwise, fall back on a bunch of options which don't use multiarch
// layouts for simplicity.
const std::string LibStdCXXIncludePathCandidates[] = {
// Gentoo is weird and places its headers inside the GCC install,
// so if the first attempt to find the headers fails, try these patterns.
InstallDir.str() + "/include/g++-v" + Version.Text,
InstallDir.str() + "/include/g++-v" + Version.MajorStr + "." +
Version.MinorStr,
InstallDir.str() + "/include/g++-v" + Version.MajorStr,
// Android standalone toolchain has C++ headers in yet another place.
LibDir.str() + "/../" + TripleStr.str() + "/include/c++/" + Version.Text,
// Freescale SDK C++ headers are directly in <sysroot>/usr/include/c++,
// without a subdirectory corresponding to the gcc version.
LibDir.str() + "/../include/c++",
};
for (const auto &IncludePath : LibStdCXXIncludePathCandidates) {
if (addLibStdCXXIncludePaths(IncludePath, /*Suffix*/ "", TripleStr,
/*GCCMultiarchTriple*/ "",
/*TargetMultiarchTriple*/ "",
Multilib.includeSuffix(), DriverArgs, CC1Args))
break;
}
}
void Linux::AddCudaIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {
CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args);
}
void Linux::AddIAMCUIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {
if (GCCInstallation.isValid()) {
CC1Args.push_back("-isystem");
CC1Args.push_back(DriverArgs.MakeArgString(
GCCInstallation.getParentLibPath() + "/../" +
GCCInstallation.getTriple().str() + "/include"));
}
}
bool Linux::isPIEDefault() const {
return (getTriple().isAndroid() && !getTriple().isAndroidVersionLT(16)) ||
getTriple().isMusl() || getSanitizerArgs().requiresPIE();
}
bool Linux::IsMathErrnoDefault() const {
if (getTriple().isAndroid())
return false;
return Generic_ELF::IsMathErrnoDefault();
}
SanitizerMask Linux::getSupportedSanitizers() const {
const bool IsX86 = getTriple().getArch() == llvm::Triple::x86;
const bool IsX86_64 = getTriple().getArch() == llvm::Triple::x86_64;
const bool IsMIPS = getTriple().isMIPS32();
const bool IsMIPS64 = getTriple().isMIPS64();
const bool IsPowerPC64 = getTriple().getArch() == llvm::Triple::ppc64 ||
getTriple().getArch() == llvm::Triple::ppc64le;
const bool IsAArch64 = getTriple().getArch() == llvm::Triple::aarch64 ||
getTriple().getArch() == llvm::Triple::aarch64_be;
const bool IsArmArch = getTriple().getArch() == llvm::Triple::arm ||
getTriple().getArch() == llvm::Triple::thumb ||
getTriple().getArch() == llvm::Triple::armeb ||
getTriple().getArch() == llvm::Triple::thumbeb;
SanitizerMask Res = ToolChain::getSupportedSanitizers();
Res |= SanitizerKind::Address;
Res |= SanitizerKind::Fuzzer;
Res |= SanitizerKind::FuzzerNoLink;
Res |= SanitizerKind::KernelAddress;
Res |= SanitizerKind::Memory;
Res |= SanitizerKind::Vptr;
Res |= SanitizerKind::SafeStack;
if (IsX86_64 || IsMIPS64 || IsAArch64)
Res |= SanitizerKind::DataFlow;
if (IsX86_64 || IsMIPS64 || IsAArch64 || IsX86 || IsArmArch || IsPowerPC64)
Res |= SanitizerKind::Leak;
if (IsX86_64 || IsMIPS64 || IsAArch64 || IsPowerPC64)
Res |= SanitizerKind::Thread;
if (IsX86_64)
Res |= SanitizerKind::KernelMemory;
if (IsX86_64 || IsMIPS64)
Res |= SanitizerKind::Efficiency;
if (IsX86 || IsX86_64)
Res |= SanitizerKind::Function;
if (IsX86_64 || IsMIPS64 || IsAArch64 || IsX86 || IsMIPS || IsArmArch ||
IsPowerPC64)
Res |= SanitizerKind::Scudo;
if (IsX86_64 || IsAArch64) {
Res |= SanitizerKind::HWAddress;
Res |= SanitizerKind::KernelHWAddress;
}
return Res;
}
void Linux::addProfileRTLibs(const llvm::opt::ArgList &Args,
llvm::opt::ArgStringList &CmdArgs) const {
if (!needsProfileRT(Args)) return;
// Add linker option -u__llvm_runtime_variable to cause runtime
// initialization module to be linked in.
if (!Args.hasArg(options::OPT_coverage))
CmdArgs.push_back(Args.MakeArgString(
Twine("-u", llvm::getInstrProfRuntimeHookVarName())));
ToolChain::addProfileRTLibs(Args, CmdArgs);
}