llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp

194 lines
5.4 KiB
C++

//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass does misc. AMDGPU optimizations on IR before instruction
/// selection.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUIntrinsicInfo.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "amdgpu-codegenprepare"
using namespace llvm;
namespace {
class AMDGPUCodeGenPrepare : public FunctionPass,
public InstVisitor<AMDGPUCodeGenPrepare, bool> {
const GCNTargetMachine *TM;
const SISubtarget *ST;
DivergenceAnalysis *DA;
Module *Mod;
bool HasUnsafeFPMath;
public:
static char ID;
AMDGPUCodeGenPrepare(const TargetMachine *TM = nullptr) :
FunctionPass(ID),
TM(static_cast<const GCNTargetMachine *>(TM)),
ST(nullptr),
DA(nullptr),
Mod(nullptr),
HasUnsafeFPMath(false) { }
bool visitFDiv(BinaryOperator &I);
bool visitInstruction(Instruction &I) {
return false;
}
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
const char *getPassName() const override {
return "AMDGPU IR optimizations";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DivergenceAnalysis>();
AU.setPreservesAll();
}
};
} // End anonymous namespace
static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv) {
const ConstantFP *CNum = dyn_cast<ConstantFP>(Num);
if (!CNum)
return false;
// Reciprocal f32 is handled separately without denormals.
return UnsafeDiv || CNum->isExactlyValue(+1.0);
}
// Insert an intrinsic for fast fdiv for safe math situations where we can
// reduce precision. Leave fdiv for situations where the generic node is
// expected to be optimized.
bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
Type *Ty = FDiv.getType();
// TODO: Handle half
if (!Ty->getScalarType()->isFloatTy())
return false;
MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath);
if (!FPMath)
return false;
const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
float ULP = FPOp->getFPAccuracy();
if (ULP < 2.5f)
return false;
FastMathFlags FMF = FPOp->getFastMathFlags();
bool UnsafeDiv = HasUnsafeFPMath || FMF.unsafeAlgebra() ||
FMF.allowReciprocal();
if (ST->hasFP32Denormals() && !UnsafeDiv)
return false;
IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath);
Builder.setFastMathFlags(FMF);
Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
const AMDGPUIntrinsicInfo *II = TM->getIntrinsicInfo();
Function *Decl
= II->getDeclaration(Mod, AMDGPUIntrinsic::amdgcn_fdiv_fast, {});
Value *Num = FDiv.getOperand(0);
Value *Den = FDiv.getOperand(1);
Value *NewFDiv = nullptr;
if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
NewFDiv = UndefValue::get(VT);
// FIXME: Doesn't do the right thing for cases where the vector is partially
// constant. This works when the scalarizer pass is run first.
for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
Value *NumEltI = Builder.CreateExtractElement(Num, I);
Value *DenEltI = Builder.CreateExtractElement(Den, I);
Value *NewElt;
if (shouldKeepFDivF32(NumEltI, UnsafeDiv)) {
NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
} else {
NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI });
}
NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
}
} else {
if (!shouldKeepFDivF32(Num, UnsafeDiv))
NewFDiv = Builder.CreateCall(Decl, { Num, Den });
}
if (NewFDiv) {
FDiv.replaceAllUsesWith(NewFDiv);
NewFDiv->takeName(&FDiv);
FDiv.eraseFromParent();
}
return true;
}
static bool hasUnsafeFPMath(const Function &F) {
Attribute Attr = F.getFnAttribute("unsafe-fp-math");
return Attr.getValueAsString() == "true";
}
bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
Mod = &M;
return false;
}
bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
if (!TM || skipFunction(F))
return false;
ST = &TM->getSubtarget<SISubtarget>(F);
DA = &getAnalysis<DivergenceAnalysis>();
HasUnsafeFPMath = hasUnsafeFPMath(F);
bool MadeChange = false;
for (BasicBlock &BB : F) {
BasicBlock::iterator Next;
for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) {
Next = std::next(I);
MadeChange |= visit(*I);
}
}
return MadeChange;
}
INITIALIZE_TM_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
"AMDGPU IR optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
INITIALIZE_TM_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE,
"AMDGPU IR optimizations", false, false)
char AMDGPUCodeGenPrepare::ID = 0;
FunctionPass *llvm::createAMDGPUCodeGenPreparePass(const GCNTargetMachine *TM) {
return new AMDGPUCodeGenPrepare(TM);
}