llvm-project/llvm/tools/llvm-rtdyld/llvm-rtdyld.cpp

759 lines
26 KiB
C++

//===-- llvm-rtdyld.cpp - MCJIT Testing Tool ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a testing tool for use with the MC-JIT LLVM components.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringMap.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/SymbolSize.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <list>
using namespace llvm;
using namespace llvm::object;
static cl::list<std::string>
InputFileList(cl::Positional, cl::ZeroOrMore,
cl::desc("<input files>"));
enum ActionType {
AC_Execute,
AC_PrintObjectLineInfo,
AC_PrintLineInfo,
AC_PrintDebugLineInfo,
AC_Verify
};
static cl::opt<ActionType>
Action(cl::desc("Action to perform:"),
cl::init(AC_Execute),
cl::values(clEnumValN(AC_Execute, "execute",
"Load, link, and execute the inputs."),
clEnumValN(AC_PrintLineInfo, "printline",
"Load, link, and print line information for each function."),
clEnumValN(AC_PrintDebugLineInfo, "printdebugline",
"Load, link, and print line information for each function using the debug object"),
clEnumValN(AC_PrintObjectLineInfo, "printobjline",
"Like -printlineinfo but does not load the object first"),
clEnumValN(AC_Verify, "verify",
"Load, link and verify the resulting memory image.")));
static cl::opt<std::string>
EntryPoint("entry",
cl::desc("Function to call as entry point."),
cl::init("_main"));
static cl::list<std::string>
Dylibs("dylib",
cl::desc("Add library."),
cl::ZeroOrMore);
static cl::opt<std::string>
TripleName("triple", cl::desc("Target triple for disassembler"));
static cl::opt<std::string>
MCPU("mcpu",
cl::desc("Target a specific cpu type (-mcpu=help for details)"),
cl::value_desc("cpu-name"),
cl::init(""));
static cl::list<std::string>
CheckFiles("check",
cl::desc("File containing RuntimeDyld verifier checks."),
cl::ZeroOrMore);
static cl::opt<uint64_t>
PreallocMemory("preallocate",
cl::desc("Allocate memory upfront rather than on-demand"),
cl::init(0));
static cl::opt<uint64_t>
TargetAddrStart("target-addr-start",
cl::desc("For -verify only: start of phony target address "
"range."),
cl::init(4096), // Start at "page 1" - no allocating at "null".
cl::Hidden);
static cl::opt<uint64_t>
TargetAddrEnd("target-addr-end",
cl::desc("For -verify only: end of phony target address range."),
cl::init(~0ULL),
cl::Hidden);
static cl::opt<uint64_t>
TargetSectionSep("target-section-sep",
cl::desc("For -verify only: Separation between sections in "
"phony target address space."),
cl::init(0),
cl::Hidden);
static cl::list<std::string>
SpecificSectionMappings("map-section",
cl::desc("For -verify only: Map a section to a "
"specific address."),
cl::ZeroOrMore,
cl::Hidden);
static cl::list<std::string>
DummySymbolMappings("dummy-extern",
cl::desc("For -verify only: Inject a symbol into the extern "
"symbol table."),
cl::ZeroOrMore,
cl::Hidden);
static cl::opt<bool>
PrintAllocationRequests("print-alloc-requests",
cl::desc("Print allocation requests made to the memory "
"manager by RuntimeDyld"),
cl::Hidden);
/* *** */
// A trivial memory manager that doesn't do anything fancy, just uses the
// support library allocation routines directly.
class TrivialMemoryManager : public RTDyldMemoryManager {
public:
SmallVector<sys::MemoryBlock, 16> FunctionMemory;
SmallVector<sys::MemoryBlock, 16> DataMemory;
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName) override;
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, StringRef SectionName,
bool IsReadOnly) override;
void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true) override {
return nullptr;
}
bool finalizeMemory(std::string *ErrMsg) override { return false; }
void addDummySymbol(const std::string &Name, uint64_t Addr) {
DummyExterns[Name] = Addr;
}
JITSymbol findSymbol(const std::string &Name) override {
auto I = DummyExterns.find(Name);
if (I != DummyExterns.end())
return JITSymbol(I->second, JITSymbolFlags::Exported);
return RTDyldMemoryManager::findSymbol(Name);
}
void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
size_t Size) override {}
void deregisterEHFrames() override {}
void preallocateSlab(uint64_t Size) {
std::error_code EC;
sys::MemoryBlock MB =
sys::Memory::allocateMappedMemory(Size, nullptr,
sys::Memory::MF_READ |
sys::Memory::MF_WRITE,
EC);
if (!MB.base())
report_fatal_error("Can't allocate enough memory: " + EC.message());
PreallocSlab = MB;
UsePreallocation = true;
SlabSize = Size;
}
uint8_t *allocateFromSlab(uintptr_t Size, unsigned Alignment, bool isCode) {
Size = alignTo(Size, Alignment);
if (CurrentSlabOffset + Size > SlabSize)
report_fatal_error("Can't allocate enough memory. Tune --preallocate");
uintptr_t OldSlabOffset = CurrentSlabOffset;
sys::MemoryBlock MB((void *)OldSlabOffset, Size);
if (isCode)
FunctionMemory.push_back(MB);
else
DataMemory.push_back(MB);
CurrentSlabOffset += Size;
return (uint8_t*)OldSlabOffset;
}
private:
std::map<std::string, uint64_t> DummyExterns;
sys::MemoryBlock PreallocSlab;
bool UsePreallocation = false;
uintptr_t SlabSize = 0;
uintptr_t CurrentSlabOffset = 0;
};
uint8_t *TrivialMemoryManager::allocateCodeSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID,
StringRef SectionName) {
if (PrintAllocationRequests)
outs() << "allocateCodeSection(Size = " << Size << ", Alignment = "
<< Alignment << ", SectionName = " << SectionName << ")\n";
if (UsePreallocation)
return allocateFromSlab(Size, Alignment, true /* isCode */);
std::error_code EC;
sys::MemoryBlock MB =
sys::Memory::allocateMappedMemory(Size, nullptr,
sys::Memory::MF_READ |
sys::Memory::MF_WRITE,
EC);
if (!MB.base())
report_fatal_error("MemoryManager allocation failed: " + EC.message());
FunctionMemory.push_back(MB);
return (uint8_t*)MB.base();
}
uint8_t *TrivialMemoryManager::allocateDataSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID,
StringRef SectionName,
bool IsReadOnly) {
if (PrintAllocationRequests)
outs() << "allocateDataSection(Size = " << Size << ", Alignment = "
<< Alignment << ", SectionName = " << SectionName << ")\n";
if (UsePreallocation)
return allocateFromSlab(Size, Alignment, false /* isCode */);
std::error_code EC;
sys::MemoryBlock MB =
sys::Memory::allocateMappedMemory(Size, nullptr,
sys::Memory::MF_READ |
sys::Memory::MF_WRITE,
EC);
if (!MB.base())
report_fatal_error("MemoryManager allocation failed: " + EC.message());
DataMemory.push_back(MB);
return (uint8_t*)MB.base();
}
static const char *ProgramName;
static void ErrorAndExit(const Twine &Msg) {
errs() << ProgramName << ": error: " << Msg << "\n";
exit(1);
}
static void loadDylibs() {
for (const std::string &Dylib : Dylibs) {
if (!sys::fs::is_regular_file(Dylib))
report_fatal_error("Dylib not found: '" + Dylib + "'.");
std::string ErrMsg;
if (sys::DynamicLibrary::LoadLibraryPermanently(Dylib.c_str(), &ErrMsg))
report_fatal_error("Error loading '" + Dylib + "': " + ErrMsg);
}
}
/* *** */
static int printLineInfoForInput(bool LoadObjects, bool UseDebugObj) {
assert(LoadObjects || !UseDebugObj);
// Load any dylibs requested on the command line.
loadDylibs();
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for (auto &File : InputFileList) {
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
RuntimeDyld Dyld(MemMgr, MemMgr);
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(File);
if (std::error_code EC = InputBuffer.getError())
ErrorAndExit("unable to read input: '" + EC.message() + "'");
Expected<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (!MaybeObj) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(MaybeObj.takeError(), OS, "");
OS.flush();
ErrorAndExit("unable to create object file: '" + Buf + "'");
}
ObjectFile &Obj = **MaybeObj;
OwningBinary<ObjectFile> DebugObj;
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObjInfo = nullptr;
ObjectFile *SymbolObj = &Obj;
if (LoadObjects) {
// Load the object file
LoadedObjInfo =
Dyld.loadObject(Obj);
if (Dyld.hasError())
ErrorAndExit(Dyld.getErrorString());
// Resolve all the relocations we can.
Dyld.resolveRelocations();
if (UseDebugObj) {
DebugObj = LoadedObjInfo->getObjectForDebug(Obj);
SymbolObj = DebugObj.getBinary();
LoadedObjInfo.reset();
}
}
std::unique_ptr<DIContext> Context =
DWARFContext::create(*SymbolObj, LoadedObjInfo.get());
std::vector<std::pair<SymbolRef, uint64_t>> SymAddr =
object::computeSymbolSizes(*SymbolObj);
// Use symbol info to iterate functions in the object.
for (const auto &P : SymAddr) {
object::SymbolRef Sym = P.first;
Expected<SymbolRef::Type> TypeOrErr = Sym.getType();
if (!TypeOrErr) {
// TODO: Actually report errors helpfully.
consumeError(TypeOrErr.takeError());
continue;
}
SymbolRef::Type Type = *TypeOrErr;
if (Type == object::SymbolRef::ST_Function) {
Expected<StringRef> Name = Sym.getName();
if (!Name) {
// TODO: Actually report errors helpfully.
consumeError(Name.takeError());
continue;
}
Expected<uint64_t> AddrOrErr = Sym.getAddress();
if (!AddrOrErr) {
// TODO: Actually report errors helpfully.
consumeError(AddrOrErr.takeError());
continue;
}
uint64_t Addr = *AddrOrErr;
uint64_t Size = P.second;
// If we're not using the debug object, compute the address of the
// symbol in memory (rather than that in the unrelocated object file)
// and use that to query the DWARFContext.
if (!UseDebugObj && LoadObjects) {
auto SecOrErr = Sym.getSection();
if (!SecOrErr) {
// TODO: Actually report errors helpfully.
consumeError(SecOrErr.takeError());
continue;
}
object::section_iterator Sec = *SecOrErr;
StringRef SecName;
Sec->getName(SecName);
uint64_t SectionLoadAddress =
LoadedObjInfo->getSectionLoadAddress(*Sec);
if (SectionLoadAddress != 0)
Addr += SectionLoadAddress - Sec->getAddress();
}
outs() << "Function: " << *Name << ", Size = " << Size
<< ", Addr = " << Addr << "\n";
DILineInfoTable Lines = Context->getLineInfoForAddressRange(Addr, Size);
for (auto &D : Lines) {
outs() << " Line info @ " << D.first - Addr << ": "
<< D.second.FileName << ", line:" << D.second.Line << "\n";
}
}
}
}
return 0;
}
static void doPreallocation(TrivialMemoryManager &MemMgr) {
// Allocate a slab of memory upfront, if required. This is used if
// we want to test small code models.
if (static_cast<intptr_t>(PreallocMemory) < 0)
report_fatal_error("Pre-allocated bytes of memory must be a positive integer.");
// FIXME: Limit the amount of memory that can be preallocated?
if (PreallocMemory != 0)
MemMgr.preallocateSlab(PreallocMemory);
}
static int executeInput() {
// Load any dylibs requested on the command line.
loadDylibs();
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
doPreallocation(MemMgr);
RuntimeDyld Dyld(MemMgr, MemMgr);
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for (auto &File : InputFileList) {
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(File);
if (std::error_code EC = InputBuffer.getError())
ErrorAndExit("unable to read input: '" + EC.message() + "'");
Expected<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (!MaybeObj) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(MaybeObj.takeError(), OS, "");
OS.flush();
ErrorAndExit("unable to create object file: '" + Buf + "'");
}
ObjectFile &Obj = **MaybeObj;
// Load the object file
Dyld.loadObject(Obj);
if (Dyld.hasError()) {
ErrorAndExit(Dyld.getErrorString());
}
}
// Resove all the relocations we can.
// FIXME: Error out if there are unresolved relocations.
Dyld.resolveRelocations();
// Get the address of the entry point (_main by default).
void *MainAddress = Dyld.getSymbolLocalAddress(EntryPoint);
if (!MainAddress)
ErrorAndExit("no definition for '" + EntryPoint + "'");
// Invalidate the instruction cache for each loaded function.
for (auto &FM : MemMgr.FunctionMemory) {
// Make sure the memory is executable.
// setExecutable will call InvalidateInstructionCache.
if (auto EC = sys::Memory::protectMappedMemory(FM,
sys::Memory::MF_READ |
sys::Memory::MF_EXEC))
ErrorAndExit("unable to mark function executable: '" + EC.message() +
"'");
}
// Dispatch to _main().
errs() << "loaded '" << EntryPoint << "' at: " << (void*)MainAddress << "\n";
int (*Main)(int, const char**) =
(int(*)(int,const char**)) uintptr_t(MainAddress);
const char **Argv = new const char*[2];
// Use the name of the first input object module as argv[0] for the target.
Argv[0] = InputFileList[0].c_str();
Argv[1] = nullptr;
return Main(1, Argv);
}
static int checkAllExpressions(RuntimeDyldChecker &Checker) {
for (const auto& CheckerFileName : CheckFiles) {
ErrorOr<std::unique_ptr<MemoryBuffer>> CheckerFileBuf =
MemoryBuffer::getFileOrSTDIN(CheckerFileName);
if (std::error_code EC = CheckerFileBuf.getError())
ErrorAndExit("unable to read input '" + CheckerFileName + "': " +
EC.message());
if (!Checker.checkAllRulesInBuffer("# rtdyld-check:",
CheckerFileBuf.get().get()))
ErrorAndExit("some checks in '" + CheckerFileName + "' failed");
}
return 0;
}
void applySpecificSectionMappings(RuntimeDyldChecker &Checker) {
for (StringRef Mapping : SpecificSectionMappings) {
size_t EqualsIdx = Mapping.find_first_of("=");
std::string SectionIDStr = Mapping.substr(0, EqualsIdx);
size_t ComaIdx = Mapping.find_first_of(",");
if (ComaIdx == StringRef::npos)
report_fatal_error("Invalid section specification '" + Mapping +
"'. Should be '<file name>,<section name>=<addr>'");
std::string FileName = SectionIDStr.substr(0, ComaIdx);
std::string SectionName = SectionIDStr.substr(ComaIdx + 1);
uint64_t OldAddrInt;
std::string ErrorMsg;
std::tie(OldAddrInt, ErrorMsg) =
Checker.getSectionAddr(FileName, SectionName, true);
if (ErrorMsg != "")
report_fatal_error(ErrorMsg);
void* OldAddr = reinterpret_cast<void*>(static_cast<uintptr_t>(OldAddrInt));
std::string NewAddrStr = Mapping.substr(EqualsIdx + 1);
uint64_t NewAddr;
if (StringRef(NewAddrStr).getAsInteger(0, NewAddr))
report_fatal_error("Invalid section address in mapping '" + Mapping +
"'.");
Checker.getRTDyld().mapSectionAddress(OldAddr, NewAddr);
}
}
// Scatter sections in all directions!
// Remaps section addresses for -verify mode. The following command line options
// can be used to customize the layout of the memory within the phony target's
// address space:
// -target-addr-start <s> -- Specify where the phony target address range starts.
// -target-addr-end <e> -- Specify where the phony target address range ends.
// -target-section-sep <d> -- Specify how big a gap should be left between the
// end of one section and the start of the next.
// Defaults to zero. Set to something big
// (e.g. 1 << 32) to stress-test stubs, GOTs, etc.
//
static void remapSectionsAndSymbols(const llvm::Triple &TargetTriple,
TrivialMemoryManager &MemMgr,
RuntimeDyldChecker &Checker) {
// Set up a work list (section addr/size pairs).
typedef std::list<std::pair<void*, uint64_t>> WorklistT;
WorklistT Worklist;
for (const auto& CodeSection : MemMgr.FunctionMemory)
Worklist.push_back(std::make_pair(CodeSection.base(), CodeSection.size()));
for (const auto& DataSection : MemMgr.DataMemory)
Worklist.push_back(std::make_pair(DataSection.base(), DataSection.size()));
// Apply any section-specific mappings that were requested on the command
// line.
applySpecificSectionMappings(Checker);
// Keep an "already allocated" mapping of section target addresses to sizes.
// Sections whose address mappings aren't specified on the command line will
// allocated around the explicitly mapped sections while maintaining the
// minimum separation.
std::map<uint64_t, uint64_t> AlreadyAllocated;
// Move the previously applied mappings (whether explicitly specified on the
// command line, or implicitly set by RuntimeDyld) into the already-allocated
// map.
for (WorklistT::iterator I = Worklist.begin(), E = Worklist.end();
I != E;) {
WorklistT::iterator Tmp = I;
++I;
auto LoadAddr = Checker.getSectionLoadAddress(Tmp->first);
if (LoadAddr &&
*LoadAddr != static_cast<uint64_t>(
reinterpret_cast<uintptr_t>(Tmp->first))) {
AlreadyAllocated[*LoadAddr] = Tmp->second;
Worklist.erase(Tmp);
}
}
// If the -target-addr-end option wasn't explicitly passed, then set it to a
// sensible default based on the target triple.
if (TargetAddrEnd.getNumOccurrences() == 0) {
if (TargetTriple.isArch16Bit())
TargetAddrEnd = (1ULL << 16) - 1;
else if (TargetTriple.isArch32Bit())
TargetAddrEnd = (1ULL << 32) - 1;
// TargetAddrEnd already has a sensible default for 64-bit systems, so
// there's nothing to do in the 64-bit case.
}
// Process any elements remaining in the worklist.
while (!Worklist.empty()) {
std::pair<void*, uint64_t> CurEntry = Worklist.front();
Worklist.pop_front();
uint64_t NextSectionAddr = TargetAddrStart;
for (const auto &Alloc : AlreadyAllocated)
if (NextSectionAddr + CurEntry.second + TargetSectionSep <= Alloc.first)
break;
else
NextSectionAddr = Alloc.first + Alloc.second + TargetSectionSep;
AlreadyAllocated[NextSectionAddr] = CurEntry.second;
Checker.getRTDyld().mapSectionAddress(CurEntry.first, NextSectionAddr);
}
// Add dummy symbols to the memory manager.
for (const auto &Mapping : DummySymbolMappings) {
size_t EqualsIdx = Mapping.find_first_of('=');
if (EqualsIdx == StringRef::npos)
report_fatal_error("Invalid dummy symbol specification '" + Mapping +
"'. Should be '<symbol name>=<addr>'");
std::string Symbol = Mapping.substr(0, EqualsIdx);
std::string AddrStr = Mapping.substr(EqualsIdx + 1);
uint64_t Addr;
if (StringRef(AddrStr).getAsInteger(0, Addr))
report_fatal_error("Invalid symbol mapping '" + Mapping + "'.");
MemMgr.addDummySymbol(Symbol, Addr);
}
}
// Load and link the objects specified on the command line, but do not execute
// anything. Instead, attach a RuntimeDyldChecker instance and call it to
// verify the correctness of the linked memory.
static int linkAndVerify() {
// Check for missing triple.
if (TripleName == "")
ErrorAndExit("-triple required when running in -verify mode.");
// Look up the target and build the disassembler.
Triple TheTriple(Triple::normalize(TripleName));
std::string ErrorStr;
const Target *TheTarget =
TargetRegistry::lookupTarget("", TheTriple, ErrorStr);
if (!TheTarget)
ErrorAndExit("Error accessing target '" + TripleName + "': " + ErrorStr);
TripleName = TheTriple.getTriple();
std::unique_ptr<MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, MCPU, ""));
if (!STI)
ErrorAndExit("Unable to create subtarget info!");
std::unique_ptr<MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TripleName));
if (!MRI)
ErrorAndExit("Unable to create target register info!");
std::unique_ptr<MCAsmInfo> MAI(TheTarget->createMCAsmInfo(*MRI, TripleName));
if (!MAI)
ErrorAndExit("Unable to create target asm info!");
MCContext Ctx(MAI.get(), MRI.get(), nullptr);
std::unique_ptr<MCDisassembler> Disassembler(
TheTarget->createMCDisassembler(*STI, Ctx));
if (!Disassembler)
ErrorAndExit("Unable to create disassembler!");
std::unique_ptr<MCInstrInfo> MII(TheTarget->createMCInstrInfo());
std::unique_ptr<MCInstPrinter> InstPrinter(
TheTarget->createMCInstPrinter(Triple(TripleName), 0, *MAI, *MII, *MRI));
// Load any dylibs requested on the command line.
loadDylibs();
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
doPreallocation(MemMgr);
RuntimeDyld Dyld(MemMgr, MemMgr);
Dyld.setProcessAllSections(true);
RuntimeDyldChecker Checker(Dyld, Disassembler.get(), InstPrinter.get(),
llvm::dbgs());
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for (auto &Filename : InputFileList) {
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(Filename);
if (std::error_code EC = InputBuffer.getError())
ErrorAndExit("unable to read input: '" + EC.message() + "'");
Expected<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (!MaybeObj) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(MaybeObj.takeError(), OS, "");
OS.flush();
ErrorAndExit("unable to create object file: '" + Buf + "'");
}
ObjectFile &Obj = **MaybeObj;
// Load the object file
Dyld.loadObject(Obj);
if (Dyld.hasError()) {
ErrorAndExit(Dyld.getErrorString());
}
}
// Re-map the section addresses into the phony target address space and add
// dummy symbols.
remapSectionsAndSymbols(TheTriple, MemMgr, Checker);
// Resolve all the relocations we can.
Dyld.resolveRelocations();
// Register EH frames.
Dyld.registerEHFrames();
int ErrorCode = checkAllExpressions(Checker);
if (Dyld.hasError())
ErrorAndExit("RTDyld reported an error applying relocations:\n " +
Dyld.getErrorString());
return ErrorCode;
}
int main(int argc, char **argv) {
InitLLVM X(argc, argv);
ProgramName = argv[0];
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllDisassemblers();
cl::ParseCommandLineOptions(argc, argv, "llvm MC-JIT tool\n");
switch (Action) {
case AC_Execute:
return executeInput();
case AC_PrintDebugLineInfo:
return printLineInfoForInput(/* LoadObjects */ true,/* UseDebugObj */ true);
case AC_PrintLineInfo:
return printLineInfoForInput(/* LoadObjects */ true,/* UseDebugObj */false);
case AC_PrintObjectLineInfo:
return printLineInfoForInput(/* LoadObjects */false,/* UseDebugObj */false);
case AC_Verify:
return linkAndVerify();
}
}