llvm-project/llvm/examples/Kaleidoscope/Orc/lazy_irgen/toy.cpp

1371 lines
40 KiB
C++

#include "llvm/Analysis/Passes.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Transforms/Scalar.h"
#include <cctype>
#include <iomanip>
#include <iostream>
#include <map>
#include <sstream>
#include <string>
#include <vector>
using namespace llvm;
using namespace llvm::orc;
//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
tok_eof = -1,
// commands
tok_def = -2, tok_extern = -3,
// primary
tok_identifier = -4, tok_number = -5,
// control
tok_if = -6, tok_then = -7, tok_else = -8,
tok_for = -9, tok_in = -10,
// operators
tok_binary = -11, tok_unary = -12,
// var definition
tok_var = -13
};
static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number
/// gettok - Return the next token from standard input.
static int gettok() {
static int LastChar = ' ';
// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();
if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))
IdentifierStr += LastChar;
if (IdentifierStr == "def") return tok_def;
if (IdentifierStr == "extern") return tok_extern;
if (IdentifierStr == "if") return tok_if;
if (IdentifierStr == "then") return tok_then;
if (IdentifierStr == "else") return tok_else;
if (IdentifierStr == "for") return tok_for;
if (IdentifierStr == "in") return tok_in;
if (IdentifierStr == "binary") return tok_binary;
if (IdentifierStr == "unary") return tok_unary;
if (IdentifierStr == "var") return tok_var;
return tok_identifier;
}
if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {
NumStr += LastChar;
LastChar = getchar();
} while (isdigit(LastChar) || LastChar == '.');
NumVal = strtod(NumStr.c_str(), nullptr);
return tok_number;
}
if (LastChar == '#') {
// Comment until end of line.
do LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
if (LastChar != EOF)
return gettok();
}
// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;
// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;
}
//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
class IRGenContext;
/// ExprAST - Base class for all expression nodes.
struct ExprAST {
virtual ~ExprAST() {}
virtual Value *IRGen(IRGenContext &C) const = 0;
};
/// NumberExprAST - Expression class for numeric literals like "1.0".
struct NumberExprAST : public ExprAST {
NumberExprAST(double Val) : Val(Val) {}
Value *IRGen(IRGenContext &C) const override;
double Val;
};
/// VariableExprAST - Expression class for referencing a variable, like "a".
struct VariableExprAST : public ExprAST {
VariableExprAST(std::string Name) : Name(std::move(Name)) {}
Value *IRGen(IRGenContext &C) const override;
std::string Name;
};
/// UnaryExprAST - Expression class for a unary operator.
struct UnaryExprAST : public ExprAST {
UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
: Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
Value *IRGen(IRGenContext &C) const override;
char Opcode;
std::unique_ptr<ExprAST> Operand;
};
/// BinaryExprAST - Expression class for a binary operator.
struct BinaryExprAST : public ExprAST {
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *IRGen(IRGenContext &C) const override;
char Op;
std::unique_ptr<ExprAST> LHS, RHS;
};
/// CallExprAST - Expression class for function calls.
struct CallExprAST : public ExprAST {
CallExprAST(std::string CalleeName,
std::vector<std::unique_ptr<ExprAST>> Args)
: CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
Value *IRGen(IRGenContext &C) const override;
std::string CalleeName;
std::vector<std::unique_ptr<ExprAST>> Args;
};
/// IfExprAST - Expression class for if/then/else.
struct IfExprAST : public ExprAST {
IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
std::unique_ptr<ExprAST> Else)
: Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
Value *IRGen(IRGenContext &C) const override;
std::unique_ptr<ExprAST> Cond, Then, Else;
};
/// ForExprAST - Expression class for for/in.
struct ForExprAST : public ExprAST {
ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
std::unique_ptr<ExprAST> Body)
: VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)),
Step(std::move(Step)), Body(std::move(Body)) {}
Value *IRGen(IRGenContext &C) const override;
std::string VarName;
std::unique_ptr<ExprAST> Start, End, Step, Body;
};
/// VarExprAST - Expression class for var/in
struct VarExprAST : public ExprAST {
typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
typedef std::vector<Binding> BindingList;
VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
: VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
Value *IRGen(IRGenContext &C) const override;
BindingList VarBindings;
std::unique_ptr<ExprAST> Body;
};
/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its argument names as well as if it is an operator.
struct PrototypeAST {
PrototypeAST(std::string Name, std::vector<std::string> Args,
bool IsOperator = false, unsigned Precedence = 0)
: Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator),
Precedence(Precedence) {}
Function *IRGen(IRGenContext &C) const;
void CreateArgumentAllocas(Function *F, IRGenContext &C);
bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size()-1];
}
std::string Name;
std::vector<std::string> Args;
bool IsOperator;
unsigned Precedence; // Precedence if a binary op.
};
/// FunctionAST - This class represents a function definition itself.
struct FunctionAST {
FunctionAST(std::unique_ptr<PrototypeAST> Proto,
std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}
Function *IRGen(IRGenContext &C) const;
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;
};
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() {
return CurTok = gettok();
}
/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;
// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0) return -1;
return TokPrec;
}
template <typename T>
std::unique_ptr<T> ErrorU(const std::string &Str) {
std::cerr << "Error: " << Str << "\n";
return nullptr;
}
template <typename T>
T* ErrorP(const std::string &Str) {
std::cerr << "Error: " << Str << "\n";
return nullptr;
}
static std::unique_ptr<ExprAST> ParseExpression();
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(IdName);
// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (1) {
auto Arg = ParseExpression();
if (!Arg) return nullptr;
Args.push_back(std::move(Arg));
if (CurTok == ')') break;
if (CurTok != ',')
return ErrorU<CallExprAST>("Expected ')' or ',' in argument list");
getNextToken();
}
}
// Eat the ')'.
getNextToken();
return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}
/// numberexpr ::= number
static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return Result;
}
/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;
if (CurTok != ')')
return ErrorU<ExprAST>("expected ')'");
getNextToken(); // eat ).
return V;
}
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.
// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;
if (CurTok != tok_then)
return ErrorU<ExprAST>("expected then");
getNextToken(); // eat the then
auto Then = ParseExpression();
if (!Then)
return nullptr;
if (CurTok != tok_else)
return ErrorU<ExprAST>("expected else");
getNextToken();
auto Else = ParseExpression();
if (!Else)
return nullptr;
return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));
}
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ForExprAST> ParseForExpr() {
getNextToken(); // eat the for.
if (CurTok != tok_identifier)
return ErrorU<ForExprAST>("expected identifier after for");
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '=')
return ErrorU<ForExprAST>("expected '=' after for");
getNextToken(); // eat '='.
auto Start = ParseExpression();
if (!Start)
return nullptr;
if (CurTok != ',')
return ErrorU<ForExprAST>("expected ',' after for start value");
getNextToken();
auto End = ParseExpression();
if (!End)
return nullptr;
// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
if (!Step)
return nullptr;
}
if (CurTok != tok_in)
return ErrorU<ForExprAST>("expected 'in' after for");
getNextToken(); // eat 'in'.
auto Body = ParseExpression();
if (Body)
return nullptr;
return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
std::move(Step), std::move(Body));
}
/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<VarExprAST> ParseVarExpr() {
getNextToken(); // eat the var.
VarExprAST::BindingList VarBindings;
// At least one variable name is required.
if (CurTok != tok_identifier)
return ErrorU<VarExprAST>("expected identifier after var");
while (1) {
std::string Name = IdentifierStr;
getNextToken(); // eat identifier.
// Read the optional initializer.
std::unique_ptr<ExprAST> Init;
if (CurTok == '=') {
getNextToken(); // eat the '='.
Init = ParseExpression();
if (!Init)
return nullptr;
}
VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
// End of var list, exit loop.
if (CurTok != ',') break;
getNextToken(); // eat the ','.
if (CurTok != tok_identifier)
return ErrorU<VarExprAST>("expected identifier list after var");
}
// At this point, we have to have 'in'.
if (CurTok != tok_in)
return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
getNextToken(); // eat 'in'.
auto Body = ParseExpression();
if (!Body)
return nullptr;
return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
}
/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default: return ErrorU<ExprAST>("unknown token when expecting an expression");
case tok_identifier: return ParseIdentifierExpr();
case tok_number: return ParseNumberExpr();
case '(': return ParseParenExpr();
case tok_if: return ParseIfExpr();
case tok_for: return ParseForExpr();
case tok_var: return ParseVarExpr();
}
}
/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
if (auto Operand = ParseUnary())
return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
return nullptr;
}
/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)
return LHS;
// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop
// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)
return nullptr;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
if (!RHS)
return nullptr;
}
// Merge LHS/RHS.
LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}
}
/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParseUnary();
if (!LHS)
return nullptr;
return ParseBinOpRHS(0, std::move(LHS));
}
/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;
switch (CurTok) {
default:
return ErrorU<PrototypeAST>("Expected function name in prototype");
case tok_identifier:
FnName = IdentifierStr;
Kind = 0;
getNextToken();
break;
case tok_unary:
getNextToken();
if (!isascii(CurTok))
return ErrorU<PrototypeAST>("Expected unary operator");
FnName = "unary";
FnName += (char)CurTok;
Kind = 1;
getNextToken();
break;
case tok_binary:
getNextToken();
if (!isascii(CurTok))
return ErrorU<PrototypeAST>("Expected binary operator");
FnName = "binary";
FnName += (char)CurTok;
Kind = 2;
getNextToken();
// Read the precedence if present.
if (CurTok == tok_number) {
if (NumVal < 1 || NumVal > 100)
return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100");
BinaryPrecedence = (unsigned)NumVal;
getNextToken();
}
break;
}
if (CurTok != '(')
return ErrorU<PrototypeAST>("Expected '(' in prototype");
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return ErrorU<PrototypeAST>("Expected ')' in prototype");
// success.
getNextToken(); // eat ')'.
// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return ErrorU<PrototypeAST>("Invalid number of operands for operator");
return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
BinaryPrecedence);
}
/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;
if (auto Body = ParseExpression())
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body));
return nullptr;
}
/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto =
llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>());
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
return nullptr;
}
/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//
// FIXME: Obviously we can do better than this
std::string GenerateUniqueName(const std::string &Root) {
static int i = 0;
std::ostringstream NameStream;
NameStream << Root << ++i;
return NameStream.str();
}
std::string MakeLegalFunctionName(std::string Name)
{
std::string NewName;
assert(!Name.empty() && "Base name must not be empty");
// Start with what we have
NewName = Name;
// Look for a numberic first character
if (NewName.find_first_of("0123456789") == 0) {
NewName.insert(0, 1, 'n');
}
// Replace illegal characters with their ASCII equivalent
std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
size_t pos;
while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
std::ostringstream NumStream;
NumStream << (int)NewName.at(pos);
NewName = NewName.replace(pos, 1, NumStream.str());
}
return NewName;
}
class SessionContext {
public:
SessionContext(LLVMContext &C)
: Context(C), TM(EngineBuilder().selectTarget()) {}
LLVMContext& getLLVMContext() const { return Context; }
TargetMachine& getTarget() { return *TM; }
void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
PrototypeAST* getPrototypeAST(const std::string &Name);
private:
typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
LLVMContext &Context;
std::unique_ptr<TargetMachine> TM;
PrototypeMap Prototypes;
};
void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
Prototypes[P->Name] = std::move(P);
}
PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
PrototypeMap::iterator I = Prototypes.find(Name);
if (I != Prototypes.end())
return I->second.get();
return nullptr;
}
class IRGenContext {
public:
IRGenContext(SessionContext &S)
: Session(S),
M(new Module(GenerateUniqueName("jit_module_"),
Session.getLLVMContext())),
Builder(Session.getLLVMContext()) {
M->setDataLayout(Session.getTarget().createDataLayout());
}
SessionContext& getSession() { return Session; }
Module& getM() const { return *M; }
std::unique_ptr<Module> takeM() { return std::move(M); }
IRBuilder<>& getBuilder() { return Builder; }
LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
Function* getPrototype(const std::string &Name);
std::map<std::string, AllocaInst*> NamedValues;
private:
SessionContext &Session;
std::unique_ptr<Module> M;
IRBuilder<> Builder;
};
Function* IRGenContext::getPrototype(const std::string &Name) {
if (Function *ExistingProto = M->getFunction(Name))
return ExistingProto;
if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
return ProtoAST->IRGen(*this);
return nullptr;
}
/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function. This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
const std::string &VarName) {
IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
TheFunction->getEntryBlock().begin());
return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), nullptr,
VarName.c_str());
}
Value *NumberExprAST::IRGen(IRGenContext &C) const {
return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
}
Value *VariableExprAST::IRGen(IRGenContext &C) const {
// Look this variable up in the function.
Value *V = C.NamedValues[Name];
if (!V)
return ErrorP<Value>("Unknown variable name '" + Name + "'");
// Load the value.
return C.getBuilder().CreateLoad(V, Name.c_str());
}
Value *UnaryExprAST::IRGen(IRGenContext &C) const {
if (Value *OperandV = Operand->IRGen(C)) {
std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode);
if (Function *F = C.getPrototype(FnName))
return C.getBuilder().CreateCall(F, OperandV, "unop");
return ErrorP<Value>("Unknown unary operator");
}
// Could not codegen operand - return null.
return nullptr;
}
Value *BinaryExprAST::IRGen(IRGenContext &C) const {
// Special case '=' because we don't want to emit the LHS as an expression.
if (Op == '=') {
// Assignment requires the LHS to be an identifier.
auto &LHSVar = static_cast<VariableExprAST &>(*LHS);
// Codegen the RHS.
Value *Val = RHS->IRGen(C);
if (!Val) return nullptr;
// Look up the name.
if (auto Variable = C.NamedValues[LHSVar.Name]) {
C.getBuilder().CreateStore(Val, Variable);
return Val;
}
return ErrorP<Value>("Unknown variable name");
}
Value *L = LHS->IRGen(C);
Value *R = RHS->IRGen(C);
if (!L || !R) return nullptr;
switch (Op) {
case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
case '<':
L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
"booltmp");
default: break;
}
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
if (Function *F = C.getPrototype(FnName)) {
Value *Ops[] = { L, R };
return C.getBuilder().CreateCall(F, Ops, "binop");
}
return ErrorP<Value>("Unknown binary operator");
}
Value *CallExprAST::IRGen(IRGenContext &C) const {
// Look up the name in the global module table.
if (auto CalleeF = C.getPrototype(CalleeName)) {
// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return ErrorP<Value>("Incorrect # arguments passed");
std::vector<Value*> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->IRGen(C));
if (!ArgsV.back()) return nullptr;
}
return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
}
return ErrorP<Value>("Unknown function referenced");
}
Value *IfExprAST::IRGen(IRGenContext &C) const {
Value *CondV = Cond->IRGen(C);
if (!CondV) return nullptr;
// Convert condition to a bool by comparing equal to 0.0.
ConstantFP *FPZero =
ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
// Emit then value.
C.getBuilder().SetInsertPoint(ThenBB);
Value *ThenV = Then->IRGen(C);
if (!ThenV) return nullptr;
C.getBuilder().CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = C.getBuilder().GetInsertBlock();
// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
C.getBuilder().SetInsertPoint(ElseBB);
Value *ElseV = Else->IRGen(C);
if (!ElseV) return nullptr;
C.getBuilder().CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = C.getBuilder().GetInsertBlock();
// Emit merge block.
TheFunction->getBasicBlockList().push_back(MergeBB);
C.getBuilder().SetInsertPoint(MergeBB);
PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
"iftmp");
PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;
}
Value *ForExprAST::IRGen(IRGenContext &C) const {
// Output this as:
// var = alloca double
// ...
// start = startexpr
// store start -> var
// goto loop
// loop:
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// endcond = endexpr
//
// curvar = load var
// nextvar = curvar + step
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->IRGen(C);
if (!StartVal) return nullptr;
// Store the value into the alloca.
C.getBuilder().CreateStore(StartVal, Alloca);
// Make the new basic block for the loop header, inserting after current
// block.
BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
// Insert an explicit fall through from the current block to the LoopBB.
C.getBuilder().CreateBr(LoopBB);
// Start insertion in LoopBB.
C.getBuilder().SetInsertPoint(LoopBB);
// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
AllocaInst *OldVal = C.NamedValues[VarName];
C.NamedValues[VarName] = Alloca;
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->IRGen(C))
return nullptr;
// Emit the step value.
Value *StepVal;
if (Step) {
StepVal = Step->IRGen(C);
if (!StepVal) return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
}
// Compute the end condition.
Value *EndCond = End->IRGen(C);
if (!EndCond) return nullptr;
// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
C.getBuilder().CreateStore(NextVar, Alloca);
// Convert condition to a bool by comparing equal to 0.0.
EndCond = C.getBuilder().CreateFCmpONE(EndCond,
ConstantFP::get(getGlobalContext(), APFloat(0.0)),
"loopcond");
// Create the "after loop" block and insert it.
BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
// Insert the conditional branch into the end of LoopEndBB.
C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
// Any new code will be inserted in AfterBB.
C.getBuilder().SetInsertPoint(AfterBB);
// Restore the unshadowed variable.
if (OldVal)
C.NamedValues[VarName] = OldVal;
else
C.NamedValues.erase(VarName);
// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
}
Value *VarExprAST::IRGen(IRGenContext &C) const {
std::vector<AllocaInst *> OldBindings;
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
auto &VarName = VarBindings[i].first;
auto &Init = VarBindings[i].second;
// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
// like this:
// var a = 1 in
// var a = a in ... # refers to outer 'a'.
Value *InitVal;
if (Init) {
InitVal = Init->IRGen(C);
if (!InitVal) return nullptr;
} else // If not specified, use 0.0.
InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
C.getBuilder().CreateStore(InitVal, Alloca);
// Remember the old variable binding so that we can restore the binding when
// we unrecurse.
OldBindings.push_back(C.NamedValues[VarName]);
// Remember this binding.
C.NamedValues[VarName] = Alloca;
}
// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->IRGen(C);
if (!BodyVal) return nullptr;
// Pop all our variables from scope.
for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
C.NamedValues[VarBindings[i].first] = OldBindings[i];
// Return the body computation.
return BodyVal;
}
Function *PrototypeAST::IRGen(IRGenContext &C) const {
std::string FnName = MakeLegalFunctionName(Name);
// Make the function type: double(double,double) etc.
std::vector<Type*> Doubles(Args.size(),
Type::getDoubleTy(getGlobalContext()));
FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
Doubles, false);
Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
&C.getM());
// If F conflicted, there was already something named 'FnName'. If it has a
// body, don't allow redefinition or reextern.
if (F->getName() != FnName) {
// Delete the one we just made and get the existing one.
F->eraseFromParent();
F = C.getM().getFunction(Name);
// If F already has a body, reject this.
if (!F->empty()) {
ErrorP<Function>("redefinition of function");
return nullptr;
}
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorP<Function>("redefinition of function with different # args");
return nullptr;
}
}
// Set names for all arguments.
unsigned Idx = 0;
for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
++AI, ++Idx)
AI->setName(Args[Idx]);
return F;
}
/// CreateArgumentAllocas - Create an alloca for each argument and register the
/// argument in the symbol table so that references to it will succeed.
void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
Function::arg_iterator AI = F->arg_begin();
for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
// Create an alloca for this variable.
AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
// Store the initial value into the alloca.
C.getBuilder().CreateStore(AI, Alloca);
// Add arguments to variable symbol table.
C.NamedValues[Args[Idx]] = Alloca;
}
}
Function *FunctionAST::IRGen(IRGenContext &C) const {
C.NamedValues.clear();
Function *TheFunction = Proto->IRGen(C);
if (!TheFunction)
return nullptr;
// If this is an operator, install it.
if (Proto->isBinaryOp())
BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
C.getBuilder().SetInsertPoint(BB);
// Add all arguments to the symbol table and create their allocas.
Proto->CreateArgumentAllocas(TheFunction, C);
if (Value *RetVal = Body->IRGen(C)) {
// Finish off the function.
C.getBuilder().CreateRet(RetVal);
// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);
return TheFunction;
}
// Error reading body, remove function.
TheFunction->eraseFromParent();
if (Proto->isBinaryOp())
BinopPrecedence.erase(Proto->getOperatorName());
return nullptr;
}
//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//
static std::unique_ptr<llvm::Module> IRGen(SessionContext &S,
const FunctionAST &F) {
IRGenContext C(S);
auto LF = F.IRGen(C);
if (!LF)
return nullptr;
#ifndef MINIMAL_STDERR_OUTPUT
fprintf(stderr, "Read function definition:");
LF->dump();
#endif
return C.takeM();
}
template <typename T>
static std::vector<T> singletonSet(T t) {
std::vector<T> Vec;
Vec.push_back(std::move(t));
return Vec;
}
class KaleidoscopeJIT {
public:
typedef ObjectLinkingLayer<> ObjLayerT;
typedef IRCompileLayer<ObjLayerT> CompileLayerT;
typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
typedef LazyEmitLayerT::ModuleSetHandleT ModuleHandleT;
KaleidoscopeJIT(SessionContext &Session)
: Session(Session),
CompileLayer(ObjectLayer, SimpleCompiler(Session.getTarget())),
LazyEmitLayer(CompileLayer) {}
std::string mangle(const std::string &Name) {
std::string MangledName;
{
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name,
Session.getTarget().createDataLayout());
}
return MangledName;
}
void addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
std::cerr << "Adding AST: " << FnAST->Proto->Name << "\n";
FunctionDefs[mangle(FnAST->Proto->Name)] = std::move(FnAST);
}
ModuleHandleT addModule(std::unique_ptr<Module> M) {
// We need a memory manager to allocate memory and resolve symbols for this
// new module. Create one that resolves symbols by looking back into the
// JIT.
auto Resolver = createLambdaResolver(
[&](const std::string &Name) {
// First try to find 'Name' within the JIT.
if (auto Symbol = findSymbol(Name))
return RuntimeDyld::SymbolInfo(Symbol.getAddress(),
Symbol.getFlags());
// If we don't already have a definition of 'Name' then search
// the ASTs.
return searchFunctionASTs(Name);
},
[](const std::string &S) { return nullptr; } );
return LazyEmitLayer.addModuleSet(singletonSet(std::move(M)),
make_unique<SectionMemoryManager>(),
std::move(Resolver));
}
void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); }
JITSymbol findSymbol(const std::string &Name) {
return LazyEmitLayer.findSymbol(Name, true);
}
JITSymbol findSymbolIn(ModuleHandleT H, const std::string &Name) {
return LazyEmitLayer.findSymbolIn(H, Name, true);
}
JITSymbol findUnmangledSymbol(const std::string &Name) {
return findSymbol(mangle(Name));
}
private:
// This method searches the FunctionDefs map for a definition of 'Name'. If it
// finds one it generates a stub for it and returns the address of the stub.
RuntimeDyld::SymbolInfo searchFunctionASTs(const std::string &Name) {
auto DefI = FunctionDefs.find(Name);
if (DefI == FunctionDefs.end())
return nullptr;
// Take the FunctionAST out of the map.
auto FnAST = std::move(DefI->second);
FunctionDefs.erase(DefI);
// IRGen the AST, add it to the JIT, and return the address for it.
auto H = addModule(IRGen(Session, *FnAST));
auto Sym = findSymbolIn(H, Name);
return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
}
SessionContext &Session;
ObjLayerT ObjectLayer;
CompileLayerT CompileLayer;
LazyEmitLayerT LazyEmitLayer;
std::map<std::string, std::unique_ptr<FunctionAST>> FunctionDefs;
};
static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
if (auto F = ParseDefinition()) {
S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
J.addFunctionAST(std::move(F));
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleExtern(SessionContext &S) {
if (auto P = ParseExtern())
S.addPrototypeAST(std::move(P));
else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) {
// Evaluate a top-level expression into an anonymous function.
if (auto F = ParseTopLevelExpr()) {
IRGenContext C(S);
if (auto ExprFunc = F->IRGen(C)) {
#ifndef MINIMAL_STDERR_OUTPUT
std::cerr << "Expression function:\n";
ExprFunc->dump();
#endif
// Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove
// this module as soon as we've executed Function ExprFunc.
auto H = J.addModule(C.takeM());
// Get the address of the JIT'd function in memory.
auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
// Cast it to the right type (takes no arguments, returns a double) so we
// can call it as a native function.
double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
#ifdef MINIMAL_STDERR_OUTPUT
FP();
#else
std::cerr << "Evaluated to " << FP() << "\n";
#endif
// Remove the function.
J.removeModule(H);
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
/// top ::= definition | external | expression | ';'
static void MainLoop() {
SessionContext S(getGlobalContext());
KaleidoscopeJIT J(S);
while (1) {
switch (CurTok) {
case tok_eof: return;
case ';': getNextToken(); continue; // ignore top-level semicolons.
case tok_def: HandleDefinition(S, J); break;
case tok_extern: HandleExtern(S); break;
default: HandleTopLevelExpression(S, J); break;
}
#ifndef MINIMAL_STDERR_OUTPUT
std::cerr << "ready> ";
#endif
}
}
//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//
/// putchard - putchar that takes a double and returns 0.
extern "C"
double putchard(double X) {
putchar((char)X);
return 0;
}
/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C"
double printd(double X) {
printf("%f", X);
return 0;
}
extern "C"
double printlf() {
printf("\n");
return 0;
}
//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//
int main() {
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['='] = 2;
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['/'] = 40;
BinopPrecedence['*'] = 40; // highest.
// Prime the first token.
#ifndef MINIMAL_STDERR_OUTPUT
std::cerr << "ready> ";
#endif
getNextToken();
std::cerr << std::fixed;
// Run the main "interpreter loop" now.
MainLoop();
return 0;
}