forked from OSchip/llvm-project
1371 lines
40 KiB
C++
1371 lines
40 KiB
C++
#include "llvm/Analysis/Passes.h"
|
|
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
|
|
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
|
|
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
|
|
#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
|
|
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include <cctype>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <map>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::orc;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lexer
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
|
|
// of these for known things.
|
|
enum Token {
|
|
tok_eof = -1,
|
|
|
|
// commands
|
|
tok_def = -2, tok_extern = -3,
|
|
|
|
// primary
|
|
tok_identifier = -4, tok_number = -5,
|
|
|
|
// control
|
|
tok_if = -6, tok_then = -7, tok_else = -8,
|
|
tok_for = -9, tok_in = -10,
|
|
|
|
// operators
|
|
tok_binary = -11, tok_unary = -12,
|
|
|
|
// var definition
|
|
tok_var = -13
|
|
};
|
|
|
|
static std::string IdentifierStr; // Filled in if tok_identifier
|
|
static double NumVal; // Filled in if tok_number
|
|
|
|
/// gettok - Return the next token from standard input.
|
|
static int gettok() {
|
|
static int LastChar = ' ';
|
|
|
|
// Skip any whitespace.
|
|
while (isspace(LastChar))
|
|
LastChar = getchar();
|
|
|
|
if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
|
|
IdentifierStr = LastChar;
|
|
while (isalnum((LastChar = getchar())))
|
|
IdentifierStr += LastChar;
|
|
|
|
if (IdentifierStr == "def") return tok_def;
|
|
if (IdentifierStr == "extern") return tok_extern;
|
|
if (IdentifierStr == "if") return tok_if;
|
|
if (IdentifierStr == "then") return tok_then;
|
|
if (IdentifierStr == "else") return tok_else;
|
|
if (IdentifierStr == "for") return tok_for;
|
|
if (IdentifierStr == "in") return tok_in;
|
|
if (IdentifierStr == "binary") return tok_binary;
|
|
if (IdentifierStr == "unary") return tok_unary;
|
|
if (IdentifierStr == "var") return tok_var;
|
|
return tok_identifier;
|
|
}
|
|
|
|
if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
|
|
std::string NumStr;
|
|
do {
|
|
NumStr += LastChar;
|
|
LastChar = getchar();
|
|
} while (isdigit(LastChar) || LastChar == '.');
|
|
|
|
NumVal = strtod(NumStr.c_str(), nullptr);
|
|
return tok_number;
|
|
}
|
|
|
|
if (LastChar == '#') {
|
|
// Comment until end of line.
|
|
do LastChar = getchar();
|
|
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
|
|
|
|
if (LastChar != EOF)
|
|
return gettok();
|
|
}
|
|
|
|
// Check for end of file. Don't eat the EOF.
|
|
if (LastChar == EOF)
|
|
return tok_eof;
|
|
|
|
// Otherwise, just return the character as its ascii value.
|
|
int ThisChar = LastChar;
|
|
LastChar = getchar();
|
|
return ThisChar;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Abstract Syntax Tree (aka Parse Tree)
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class IRGenContext;
|
|
|
|
/// ExprAST - Base class for all expression nodes.
|
|
struct ExprAST {
|
|
virtual ~ExprAST() {}
|
|
virtual Value *IRGen(IRGenContext &C) const = 0;
|
|
};
|
|
|
|
/// NumberExprAST - Expression class for numeric literals like "1.0".
|
|
struct NumberExprAST : public ExprAST {
|
|
NumberExprAST(double Val) : Val(Val) {}
|
|
Value *IRGen(IRGenContext &C) const override;
|
|
|
|
double Val;
|
|
};
|
|
|
|
/// VariableExprAST - Expression class for referencing a variable, like "a".
|
|
struct VariableExprAST : public ExprAST {
|
|
VariableExprAST(std::string Name) : Name(std::move(Name)) {}
|
|
Value *IRGen(IRGenContext &C) const override;
|
|
|
|
std::string Name;
|
|
};
|
|
|
|
/// UnaryExprAST - Expression class for a unary operator.
|
|
struct UnaryExprAST : public ExprAST {
|
|
UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
|
|
: Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
|
|
|
|
Value *IRGen(IRGenContext &C) const override;
|
|
|
|
char Opcode;
|
|
std::unique_ptr<ExprAST> Operand;
|
|
};
|
|
|
|
/// BinaryExprAST - Expression class for a binary operator.
|
|
struct BinaryExprAST : public ExprAST {
|
|
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
|
|
std::unique_ptr<ExprAST> RHS)
|
|
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
|
|
|
|
Value *IRGen(IRGenContext &C) const override;
|
|
|
|
char Op;
|
|
std::unique_ptr<ExprAST> LHS, RHS;
|
|
};
|
|
|
|
/// CallExprAST - Expression class for function calls.
|
|
struct CallExprAST : public ExprAST {
|
|
CallExprAST(std::string CalleeName,
|
|
std::vector<std::unique_ptr<ExprAST>> Args)
|
|
: CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
|
|
|
|
Value *IRGen(IRGenContext &C) const override;
|
|
|
|
std::string CalleeName;
|
|
std::vector<std::unique_ptr<ExprAST>> Args;
|
|
};
|
|
|
|
/// IfExprAST - Expression class for if/then/else.
|
|
struct IfExprAST : public ExprAST {
|
|
IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
|
|
std::unique_ptr<ExprAST> Else)
|
|
: Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
|
|
Value *IRGen(IRGenContext &C) const override;
|
|
|
|
std::unique_ptr<ExprAST> Cond, Then, Else;
|
|
};
|
|
|
|
/// ForExprAST - Expression class for for/in.
|
|
struct ForExprAST : public ExprAST {
|
|
ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
|
|
std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
|
|
std::unique_ptr<ExprAST> Body)
|
|
: VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)),
|
|
Step(std::move(Step)), Body(std::move(Body)) {}
|
|
|
|
Value *IRGen(IRGenContext &C) const override;
|
|
|
|
std::string VarName;
|
|
std::unique_ptr<ExprAST> Start, End, Step, Body;
|
|
};
|
|
|
|
/// VarExprAST - Expression class for var/in
|
|
struct VarExprAST : public ExprAST {
|
|
typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
|
|
typedef std::vector<Binding> BindingList;
|
|
|
|
VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
|
|
: VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
|
|
|
|
Value *IRGen(IRGenContext &C) const override;
|
|
|
|
BindingList VarBindings;
|
|
std::unique_ptr<ExprAST> Body;
|
|
};
|
|
|
|
/// PrototypeAST - This class represents the "prototype" for a function,
|
|
/// which captures its argument names as well as if it is an operator.
|
|
struct PrototypeAST {
|
|
PrototypeAST(std::string Name, std::vector<std::string> Args,
|
|
bool IsOperator = false, unsigned Precedence = 0)
|
|
: Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator),
|
|
Precedence(Precedence) {}
|
|
|
|
Function *IRGen(IRGenContext &C) const;
|
|
void CreateArgumentAllocas(Function *F, IRGenContext &C);
|
|
|
|
bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
|
|
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
|
|
|
|
char getOperatorName() const {
|
|
assert(isUnaryOp() || isBinaryOp());
|
|
return Name[Name.size()-1];
|
|
}
|
|
|
|
std::string Name;
|
|
std::vector<std::string> Args;
|
|
bool IsOperator;
|
|
unsigned Precedence; // Precedence if a binary op.
|
|
};
|
|
|
|
/// FunctionAST - This class represents a function definition itself.
|
|
struct FunctionAST {
|
|
FunctionAST(std::unique_ptr<PrototypeAST> Proto,
|
|
std::unique_ptr<ExprAST> Body)
|
|
: Proto(std::move(Proto)), Body(std::move(Body)) {}
|
|
|
|
Function *IRGen(IRGenContext &C) const;
|
|
|
|
std::unique_ptr<PrototypeAST> Proto;
|
|
std::unique_ptr<ExprAST> Body;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Parser
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
|
|
/// token the parser is looking at. getNextToken reads another token from the
|
|
/// lexer and updates CurTok with its results.
|
|
static int CurTok;
|
|
static int getNextToken() {
|
|
return CurTok = gettok();
|
|
}
|
|
|
|
/// BinopPrecedence - This holds the precedence for each binary operator that is
|
|
/// defined.
|
|
static std::map<char, int> BinopPrecedence;
|
|
|
|
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
|
|
static int GetTokPrecedence() {
|
|
if (!isascii(CurTok))
|
|
return -1;
|
|
|
|
// Make sure it's a declared binop.
|
|
int TokPrec = BinopPrecedence[CurTok];
|
|
if (TokPrec <= 0) return -1;
|
|
return TokPrec;
|
|
}
|
|
|
|
template <typename T>
|
|
std::unique_ptr<T> ErrorU(const std::string &Str) {
|
|
std::cerr << "Error: " << Str << "\n";
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename T>
|
|
T* ErrorP(const std::string &Str) {
|
|
std::cerr << "Error: " << Str << "\n";
|
|
return nullptr;
|
|
}
|
|
|
|
static std::unique_ptr<ExprAST> ParseExpression();
|
|
|
|
/// identifierexpr
|
|
/// ::= identifier
|
|
/// ::= identifier '(' expression* ')'
|
|
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
|
|
std::string IdName = IdentifierStr;
|
|
|
|
getNextToken(); // eat identifier.
|
|
|
|
if (CurTok != '(') // Simple variable ref.
|
|
return llvm::make_unique<VariableExprAST>(IdName);
|
|
|
|
// Call.
|
|
getNextToken(); // eat (
|
|
std::vector<std::unique_ptr<ExprAST>> Args;
|
|
if (CurTok != ')') {
|
|
while (1) {
|
|
auto Arg = ParseExpression();
|
|
if (!Arg) return nullptr;
|
|
Args.push_back(std::move(Arg));
|
|
|
|
if (CurTok == ')') break;
|
|
|
|
if (CurTok != ',')
|
|
return ErrorU<CallExprAST>("Expected ')' or ',' in argument list");
|
|
getNextToken();
|
|
}
|
|
}
|
|
|
|
// Eat the ')'.
|
|
getNextToken();
|
|
|
|
return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
|
|
}
|
|
|
|
/// numberexpr ::= number
|
|
static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
|
|
auto Result = llvm::make_unique<NumberExprAST>(NumVal);
|
|
getNextToken(); // consume the number
|
|
return Result;
|
|
}
|
|
|
|
/// parenexpr ::= '(' expression ')'
|
|
static std::unique_ptr<ExprAST> ParseParenExpr() {
|
|
getNextToken(); // eat (.
|
|
auto V = ParseExpression();
|
|
if (!V)
|
|
return nullptr;
|
|
|
|
if (CurTok != ')')
|
|
return ErrorU<ExprAST>("expected ')'");
|
|
getNextToken(); // eat ).
|
|
return V;
|
|
}
|
|
|
|
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
|
|
static std::unique_ptr<ExprAST> ParseIfExpr() {
|
|
getNextToken(); // eat the if.
|
|
|
|
// condition.
|
|
auto Cond = ParseExpression();
|
|
if (!Cond)
|
|
return nullptr;
|
|
|
|
if (CurTok != tok_then)
|
|
return ErrorU<ExprAST>("expected then");
|
|
getNextToken(); // eat the then
|
|
|
|
auto Then = ParseExpression();
|
|
if (!Then)
|
|
return nullptr;
|
|
|
|
if (CurTok != tok_else)
|
|
return ErrorU<ExprAST>("expected else");
|
|
|
|
getNextToken();
|
|
|
|
auto Else = ParseExpression();
|
|
if (!Else)
|
|
return nullptr;
|
|
|
|
return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
|
|
std::move(Else));
|
|
}
|
|
|
|
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
|
|
static std::unique_ptr<ForExprAST> ParseForExpr() {
|
|
getNextToken(); // eat the for.
|
|
|
|
if (CurTok != tok_identifier)
|
|
return ErrorU<ForExprAST>("expected identifier after for");
|
|
|
|
std::string IdName = IdentifierStr;
|
|
getNextToken(); // eat identifier.
|
|
|
|
if (CurTok != '=')
|
|
return ErrorU<ForExprAST>("expected '=' after for");
|
|
getNextToken(); // eat '='.
|
|
|
|
auto Start = ParseExpression();
|
|
if (!Start)
|
|
return nullptr;
|
|
if (CurTok != ',')
|
|
return ErrorU<ForExprAST>("expected ',' after for start value");
|
|
getNextToken();
|
|
|
|
auto End = ParseExpression();
|
|
if (!End)
|
|
return nullptr;
|
|
|
|
// The step value is optional.
|
|
std::unique_ptr<ExprAST> Step;
|
|
if (CurTok == ',') {
|
|
getNextToken();
|
|
Step = ParseExpression();
|
|
if (!Step)
|
|
return nullptr;
|
|
}
|
|
|
|
if (CurTok != tok_in)
|
|
return ErrorU<ForExprAST>("expected 'in' after for");
|
|
getNextToken(); // eat 'in'.
|
|
|
|
auto Body = ParseExpression();
|
|
if (Body)
|
|
return nullptr;
|
|
|
|
return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
|
|
std::move(Step), std::move(Body));
|
|
}
|
|
|
|
/// varexpr ::= 'var' identifier ('=' expression)?
|
|
// (',' identifier ('=' expression)?)* 'in' expression
|
|
static std::unique_ptr<VarExprAST> ParseVarExpr() {
|
|
getNextToken(); // eat the var.
|
|
|
|
VarExprAST::BindingList VarBindings;
|
|
|
|
// At least one variable name is required.
|
|
if (CurTok != tok_identifier)
|
|
return ErrorU<VarExprAST>("expected identifier after var");
|
|
|
|
while (1) {
|
|
std::string Name = IdentifierStr;
|
|
getNextToken(); // eat identifier.
|
|
|
|
// Read the optional initializer.
|
|
std::unique_ptr<ExprAST> Init;
|
|
if (CurTok == '=') {
|
|
getNextToken(); // eat the '='.
|
|
|
|
Init = ParseExpression();
|
|
if (!Init)
|
|
return nullptr;
|
|
}
|
|
|
|
VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
|
|
|
|
// End of var list, exit loop.
|
|
if (CurTok != ',') break;
|
|
getNextToken(); // eat the ','.
|
|
|
|
if (CurTok != tok_identifier)
|
|
return ErrorU<VarExprAST>("expected identifier list after var");
|
|
}
|
|
|
|
// At this point, we have to have 'in'.
|
|
if (CurTok != tok_in)
|
|
return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
|
|
getNextToken(); // eat 'in'.
|
|
|
|
auto Body = ParseExpression();
|
|
if (!Body)
|
|
return nullptr;
|
|
|
|
return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
|
|
}
|
|
|
|
/// primary
|
|
/// ::= identifierexpr
|
|
/// ::= numberexpr
|
|
/// ::= parenexpr
|
|
/// ::= ifexpr
|
|
/// ::= forexpr
|
|
/// ::= varexpr
|
|
static std::unique_ptr<ExprAST> ParsePrimary() {
|
|
switch (CurTok) {
|
|
default: return ErrorU<ExprAST>("unknown token when expecting an expression");
|
|
case tok_identifier: return ParseIdentifierExpr();
|
|
case tok_number: return ParseNumberExpr();
|
|
case '(': return ParseParenExpr();
|
|
case tok_if: return ParseIfExpr();
|
|
case tok_for: return ParseForExpr();
|
|
case tok_var: return ParseVarExpr();
|
|
}
|
|
}
|
|
|
|
/// unary
|
|
/// ::= primary
|
|
/// ::= '!' unary
|
|
static std::unique_ptr<ExprAST> ParseUnary() {
|
|
// If the current token is not an operator, it must be a primary expr.
|
|
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
|
|
return ParsePrimary();
|
|
|
|
// If this is a unary operator, read it.
|
|
int Opc = CurTok;
|
|
getNextToken();
|
|
if (auto Operand = ParseUnary())
|
|
return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
|
|
return nullptr;
|
|
}
|
|
|
|
/// binoprhs
|
|
/// ::= ('+' unary)*
|
|
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
|
|
std::unique_ptr<ExprAST> LHS) {
|
|
// If this is a binop, find its precedence.
|
|
while (1) {
|
|
int TokPrec = GetTokPrecedence();
|
|
|
|
// If this is a binop that binds at least as tightly as the current binop,
|
|
// consume it, otherwise we are done.
|
|
if (TokPrec < ExprPrec)
|
|
return LHS;
|
|
|
|
// Okay, we know this is a binop.
|
|
int BinOp = CurTok;
|
|
getNextToken(); // eat binop
|
|
|
|
// Parse the unary expression after the binary operator.
|
|
auto RHS = ParseUnary();
|
|
if (!RHS)
|
|
return nullptr;
|
|
|
|
// If BinOp binds less tightly with RHS than the operator after RHS, let
|
|
// the pending operator take RHS as its LHS.
|
|
int NextPrec = GetTokPrecedence();
|
|
if (TokPrec < NextPrec) {
|
|
RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
|
|
if (!RHS)
|
|
return nullptr;
|
|
}
|
|
|
|
// Merge LHS/RHS.
|
|
LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
|
|
}
|
|
}
|
|
|
|
/// expression
|
|
/// ::= unary binoprhs
|
|
///
|
|
static std::unique_ptr<ExprAST> ParseExpression() {
|
|
auto LHS = ParseUnary();
|
|
if (!LHS)
|
|
return nullptr;
|
|
|
|
return ParseBinOpRHS(0, std::move(LHS));
|
|
}
|
|
|
|
/// prototype
|
|
/// ::= id '(' id* ')'
|
|
/// ::= binary LETTER number? (id, id)
|
|
/// ::= unary LETTER (id)
|
|
static std::unique_ptr<PrototypeAST> ParsePrototype() {
|
|
std::string FnName;
|
|
|
|
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
|
|
unsigned BinaryPrecedence = 30;
|
|
|
|
switch (CurTok) {
|
|
default:
|
|
return ErrorU<PrototypeAST>("Expected function name in prototype");
|
|
case tok_identifier:
|
|
FnName = IdentifierStr;
|
|
Kind = 0;
|
|
getNextToken();
|
|
break;
|
|
case tok_unary:
|
|
getNextToken();
|
|
if (!isascii(CurTok))
|
|
return ErrorU<PrototypeAST>("Expected unary operator");
|
|
FnName = "unary";
|
|
FnName += (char)CurTok;
|
|
Kind = 1;
|
|
getNextToken();
|
|
break;
|
|
case tok_binary:
|
|
getNextToken();
|
|
if (!isascii(CurTok))
|
|
return ErrorU<PrototypeAST>("Expected binary operator");
|
|
FnName = "binary";
|
|
FnName += (char)CurTok;
|
|
Kind = 2;
|
|
getNextToken();
|
|
|
|
// Read the precedence if present.
|
|
if (CurTok == tok_number) {
|
|
if (NumVal < 1 || NumVal > 100)
|
|
return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100");
|
|
BinaryPrecedence = (unsigned)NumVal;
|
|
getNextToken();
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (CurTok != '(')
|
|
return ErrorU<PrototypeAST>("Expected '(' in prototype");
|
|
|
|
std::vector<std::string> ArgNames;
|
|
while (getNextToken() == tok_identifier)
|
|
ArgNames.push_back(IdentifierStr);
|
|
if (CurTok != ')')
|
|
return ErrorU<PrototypeAST>("Expected ')' in prototype");
|
|
|
|
// success.
|
|
getNextToken(); // eat ')'.
|
|
|
|
// Verify right number of names for operator.
|
|
if (Kind && ArgNames.size() != Kind)
|
|
return ErrorU<PrototypeAST>("Invalid number of operands for operator");
|
|
|
|
return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
|
|
BinaryPrecedence);
|
|
}
|
|
|
|
/// definition ::= 'def' prototype expression
|
|
static std::unique_ptr<FunctionAST> ParseDefinition() {
|
|
getNextToken(); // eat def.
|
|
auto Proto = ParsePrototype();
|
|
if (!Proto)
|
|
return nullptr;
|
|
|
|
if (auto Body = ParseExpression())
|
|
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body));
|
|
return nullptr;
|
|
}
|
|
|
|
/// toplevelexpr ::= expression
|
|
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
|
|
if (auto E = ParseExpression()) {
|
|
// Make an anonymous proto.
|
|
auto Proto =
|
|
llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>());
|
|
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// external ::= 'extern' prototype
|
|
static std::unique_ptr<PrototypeAST> ParseExtern() {
|
|
getNextToken(); // eat extern.
|
|
return ParsePrototype();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code Generation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// FIXME: Obviously we can do better than this
|
|
std::string GenerateUniqueName(const std::string &Root) {
|
|
static int i = 0;
|
|
std::ostringstream NameStream;
|
|
NameStream << Root << ++i;
|
|
return NameStream.str();
|
|
}
|
|
|
|
std::string MakeLegalFunctionName(std::string Name)
|
|
{
|
|
std::string NewName;
|
|
assert(!Name.empty() && "Base name must not be empty");
|
|
|
|
// Start with what we have
|
|
NewName = Name;
|
|
|
|
// Look for a numberic first character
|
|
if (NewName.find_first_of("0123456789") == 0) {
|
|
NewName.insert(0, 1, 'n');
|
|
}
|
|
|
|
// Replace illegal characters with their ASCII equivalent
|
|
std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
|
|
size_t pos;
|
|
while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
|
|
std::ostringstream NumStream;
|
|
NumStream << (int)NewName.at(pos);
|
|
NewName = NewName.replace(pos, 1, NumStream.str());
|
|
}
|
|
|
|
return NewName;
|
|
}
|
|
|
|
class SessionContext {
|
|
public:
|
|
SessionContext(LLVMContext &C)
|
|
: Context(C), TM(EngineBuilder().selectTarget()) {}
|
|
LLVMContext& getLLVMContext() const { return Context; }
|
|
TargetMachine& getTarget() { return *TM; }
|
|
void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
|
|
PrototypeAST* getPrototypeAST(const std::string &Name);
|
|
private:
|
|
typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
|
|
|
|
LLVMContext &Context;
|
|
std::unique_ptr<TargetMachine> TM;
|
|
|
|
PrototypeMap Prototypes;
|
|
};
|
|
|
|
void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
|
|
Prototypes[P->Name] = std::move(P);
|
|
}
|
|
|
|
PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
|
|
PrototypeMap::iterator I = Prototypes.find(Name);
|
|
if (I != Prototypes.end())
|
|
return I->second.get();
|
|
return nullptr;
|
|
}
|
|
|
|
class IRGenContext {
|
|
public:
|
|
|
|
IRGenContext(SessionContext &S)
|
|
: Session(S),
|
|
M(new Module(GenerateUniqueName("jit_module_"),
|
|
Session.getLLVMContext())),
|
|
Builder(Session.getLLVMContext()) {
|
|
M->setDataLayout(Session.getTarget().createDataLayout());
|
|
}
|
|
|
|
SessionContext& getSession() { return Session; }
|
|
Module& getM() const { return *M; }
|
|
std::unique_ptr<Module> takeM() { return std::move(M); }
|
|
IRBuilder<>& getBuilder() { return Builder; }
|
|
LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
|
|
Function* getPrototype(const std::string &Name);
|
|
|
|
std::map<std::string, AllocaInst*> NamedValues;
|
|
private:
|
|
SessionContext &Session;
|
|
std::unique_ptr<Module> M;
|
|
IRBuilder<> Builder;
|
|
};
|
|
|
|
Function* IRGenContext::getPrototype(const std::string &Name) {
|
|
if (Function *ExistingProto = M->getFunction(Name))
|
|
return ExistingProto;
|
|
if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
|
|
return ProtoAST->IRGen(*this);
|
|
return nullptr;
|
|
}
|
|
|
|
/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
|
|
/// the function. This is used for mutable variables etc.
|
|
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
|
|
const std::string &VarName) {
|
|
IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
|
|
TheFunction->getEntryBlock().begin());
|
|
return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), nullptr,
|
|
VarName.c_str());
|
|
}
|
|
|
|
Value *NumberExprAST::IRGen(IRGenContext &C) const {
|
|
return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
|
|
}
|
|
|
|
Value *VariableExprAST::IRGen(IRGenContext &C) const {
|
|
// Look this variable up in the function.
|
|
Value *V = C.NamedValues[Name];
|
|
|
|
if (!V)
|
|
return ErrorP<Value>("Unknown variable name '" + Name + "'");
|
|
|
|
// Load the value.
|
|
return C.getBuilder().CreateLoad(V, Name.c_str());
|
|
}
|
|
|
|
Value *UnaryExprAST::IRGen(IRGenContext &C) const {
|
|
if (Value *OperandV = Operand->IRGen(C)) {
|
|
std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode);
|
|
if (Function *F = C.getPrototype(FnName))
|
|
return C.getBuilder().CreateCall(F, OperandV, "unop");
|
|
return ErrorP<Value>("Unknown unary operator");
|
|
}
|
|
|
|
// Could not codegen operand - return null.
|
|
return nullptr;
|
|
}
|
|
|
|
Value *BinaryExprAST::IRGen(IRGenContext &C) const {
|
|
// Special case '=' because we don't want to emit the LHS as an expression.
|
|
if (Op == '=') {
|
|
// Assignment requires the LHS to be an identifier.
|
|
auto &LHSVar = static_cast<VariableExprAST &>(*LHS);
|
|
// Codegen the RHS.
|
|
Value *Val = RHS->IRGen(C);
|
|
if (!Val) return nullptr;
|
|
|
|
// Look up the name.
|
|
if (auto Variable = C.NamedValues[LHSVar.Name]) {
|
|
C.getBuilder().CreateStore(Val, Variable);
|
|
return Val;
|
|
}
|
|
return ErrorP<Value>("Unknown variable name");
|
|
}
|
|
|
|
Value *L = LHS->IRGen(C);
|
|
Value *R = RHS->IRGen(C);
|
|
if (!L || !R) return nullptr;
|
|
|
|
switch (Op) {
|
|
case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
|
|
case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
|
|
case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
|
|
case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
|
|
case '<':
|
|
L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
|
|
// Convert bool 0/1 to double 0.0 or 1.0
|
|
return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
|
|
"booltmp");
|
|
default: break;
|
|
}
|
|
|
|
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
|
|
// a call to it.
|
|
std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
|
|
if (Function *F = C.getPrototype(FnName)) {
|
|
Value *Ops[] = { L, R };
|
|
return C.getBuilder().CreateCall(F, Ops, "binop");
|
|
}
|
|
|
|
return ErrorP<Value>("Unknown binary operator");
|
|
}
|
|
|
|
Value *CallExprAST::IRGen(IRGenContext &C) const {
|
|
// Look up the name in the global module table.
|
|
if (auto CalleeF = C.getPrototype(CalleeName)) {
|
|
// If argument mismatch error.
|
|
if (CalleeF->arg_size() != Args.size())
|
|
return ErrorP<Value>("Incorrect # arguments passed");
|
|
|
|
std::vector<Value*> ArgsV;
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
ArgsV.push_back(Args[i]->IRGen(C));
|
|
if (!ArgsV.back()) return nullptr;
|
|
}
|
|
|
|
return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
|
|
}
|
|
|
|
return ErrorP<Value>("Unknown function referenced");
|
|
}
|
|
|
|
Value *IfExprAST::IRGen(IRGenContext &C) const {
|
|
Value *CondV = Cond->IRGen(C);
|
|
if (!CondV) return nullptr;
|
|
|
|
// Convert condition to a bool by comparing equal to 0.0.
|
|
ConstantFP *FPZero =
|
|
ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
|
|
CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
|
|
|
|
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
|
|
|
|
// Create blocks for the then and else cases. Insert the 'then' block at the
|
|
// end of the function.
|
|
BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
|
|
BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
|
|
BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
|
|
|
|
C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
|
|
|
|
// Emit then value.
|
|
C.getBuilder().SetInsertPoint(ThenBB);
|
|
|
|
Value *ThenV = Then->IRGen(C);
|
|
if (!ThenV) return nullptr;
|
|
|
|
C.getBuilder().CreateBr(MergeBB);
|
|
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
|
|
ThenBB = C.getBuilder().GetInsertBlock();
|
|
|
|
// Emit else block.
|
|
TheFunction->getBasicBlockList().push_back(ElseBB);
|
|
C.getBuilder().SetInsertPoint(ElseBB);
|
|
|
|
Value *ElseV = Else->IRGen(C);
|
|
if (!ElseV) return nullptr;
|
|
|
|
C.getBuilder().CreateBr(MergeBB);
|
|
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
|
|
ElseBB = C.getBuilder().GetInsertBlock();
|
|
|
|
// Emit merge block.
|
|
TheFunction->getBasicBlockList().push_back(MergeBB);
|
|
C.getBuilder().SetInsertPoint(MergeBB);
|
|
PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
|
|
"iftmp");
|
|
|
|
PN->addIncoming(ThenV, ThenBB);
|
|
PN->addIncoming(ElseV, ElseBB);
|
|
return PN;
|
|
}
|
|
|
|
Value *ForExprAST::IRGen(IRGenContext &C) const {
|
|
// Output this as:
|
|
// var = alloca double
|
|
// ...
|
|
// start = startexpr
|
|
// store start -> var
|
|
// goto loop
|
|
// loop:
|
|
// ...
|
|
// bodyexpr
|
|
// ...
|
|
// loopend:
|
|
// step = stepexpr
|
|
// endcond = endexpr
|
|
//
|
|
// curvar = load var
|
|
// nextvar = curvar + step
|
|
// store nextvar -> var
|
|
// br endcond, loop, endloop
|
|
// outloop:
|
|
|
|
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
|
|
|
|
// Create an alloca for the variable in the entry block.
|
|
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
|
|
|
|
// Emit the start code first, without 'variable' in scope.
|
|
Value *StartVal = Start->IRGen(C);
|
|
if (!StartVal) return nullptr;
|
|
|
|
// Store the value into the alloca.
|
|
C.getBuilder().CreateStore(StartVal, Alloca);
|
|
|
|
// Make the new basic block for the loop header, inserting after current
|
|
// block.
|
|
BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
|
|
|
|
// Insert an explicit fall through from the current block to the LoopBB.
|
|
C.getBuilder().CreateBr(LoopBB);
|
|
|
|
// Start insertion in LoopBB.
|
|
C.getBuilder().SetInsertPoint(LoopBB);
|
|
|
|
// Within the loop, the variable is defined equal to the PHI node. If it
|
|
// shadows an existing variable, we have to restore it, so save it now.
|
|
AllocaInst *OldVal = C.NamedValues[VarName];
|
|
C.NamedValues[VarName] = Alloca;
|
|
|
|
// Emit the body of the loop. This, like any other expr, can change the
|
|
// current BB. Note that we ignore the value computed by the body, but don't
|
|
// allow an error.
|
|
if (!Body->IRGen(C))
|
|
return nullptr;
|
|
|
|
// Emit the step value.
|
|
Value *StepVal;
|
|
if (Step) {
|
|
StepVal = Step->IRGen(C);
|
|
if (!StepVal) return nullptr;
|
|
} else {
|
|
// If not specified, use 1.0.
|
|
StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
|
|
}
|
|
|
|
// Compute the end condition.
|
|
Value *EndCond = End->IRGen(C);
|
|
if (!EndCond) return nullptr;
|
|
|
|
// Reload, increment, and restore the alloca. This handles the case where
|
|
// the body of the loop mutates the variable.
|
|
Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
|
|
Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
|
|
C.getBuilder().CreateStore(NextVar, Alloca);
|
|
|
|
// Convert condition to a bool by comparing equal to 0.0.
|
|
EndCond = C.getBuilder().CreateFCmpONE(EndCond,
|
|
ConstantFP::get(getGlobalContext(), APFloat(0.0)),
|
|
"loopcond");
|
|
|
|
// Create the "after loop" block and insert it.
|
|
BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
|
|
|
|
// Insert the conditional branch into the end of LoopEndBB.
|
|
C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
|
|
|
|
// Any new code will be inserted in AfterBB.
|
|
C.getBuilder().SetInsertPoint(AfterBB);
|
|
|
|
// Restore the unshadowed variable.
|
|
if (OldVal)
|
|
C.NamedValues[VarName] = OldVal;
|
|
else
|
|
C.NamedValues.erase(VarName);
|
|
|
|
// for expr always returns 0.0.
|
|
return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
|
|
}
|
|
|
|
Value *VarExprAST::IRGen(IRGenContext &C) const {
|
|
std::vector<AllocaInst *> OldBindings;
|
|
|
|
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
|
|
|
|
// Register all variables and emit their initializer.
|
|
for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
|
|
auto &VarName = VarBindings[i].first;
|
|
auto &Init = VarBindings[i].second;
|
|
|
|
// Emit the initializer before adding the variable to scope, this prevents
|
|
// the initializer from referencing the variable itself, and permits stuff
|
|
// like this:
|
|
// var a = 1 in
|
|
// var a = a in ... # refers to outer 'a'.
|
|
Value *InitVal;
|
|
if (Init) {
|
|
InitVal = Init->IRGen(C);
|
|
if (!InitVal) return nullptr;
|
|
} else // If not specified, use 0.0.
|
|
InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
|
|
|
|
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
|
|
C.getBuilder().CreateStore(InitVal, Alloca);
|
|
|
|
// Remember the old variable binding so that we can restore the binding when
|
|
// we unrecurse.
|
|
OldBindings.push_back(C.NamedValues[VarName]);
|
|
|
|
// Remember this binding.
|
|
C.NamedValues[VarName] = Alloca;
|
|
}
|
|
|
|
// Codegen the body, now that all vars are in scope.
|
|
Value *BodyVal = Body->IRGen(C);
|
|
if (!BodyVal) return nullptr;
|
|
|
|
// Pop all our variables from scope.
|
|
for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
|
|
C.NamedValues[VarBindings[i].first] = OldBindings[i];
|
|
|
|
// Return the body computation.
|
|
return BodyVal;
|
|
}
|
|
|
|
Function *PrototypeAST::IRGen(IRGenContext &C) const {
|
|
std::string FnName = MakeLegalFunctionName(Name);
|
|
|
|
// Make the function type: double(double,double) etc.
|
|
std::vector<Type*> Doubles(Args.size(),
|
|
Type::getDoubleTy(getGlobalContext()));
|
|
FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
|
|
Doubles, false);
|
|
Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
|
|
&C.getM());
|
|
|
|
// If F conflicted, there was already something named 'FnName'. If it has a
|
|
// body, don't allow redefinition or reextern.
|
|
if (F->getName() != FnName) {
|
|
// Delete the one we just made and get the existing one.
|
|
F->eraseFromParent();
|
|
F = C.getM().getFunction(Name);
|
|
|
|
// If F already has a body, reject this.
|
|
if (!F->empty()) {
|
|
ErrorP<Function>("redefinition of function");
|
|
return nullptr;
|
|
}
|
|
|
|
// If F took a different number of args, reject.
|
|
if (F->arg_size() != Args.size()) {
|
|
ErrorP<Function>("redefinition of function with different # args");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Set names for all arguments.
|
|
unsigned Idx = 0;
|
|
for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
|
|
++AI, ++Idx)
|
|
AI->setName(Args[Idx]);
|
|
|
|
return F;
|
|
}
|
|
|
|
/// CreateArgumentAllocas - Create an alloca for each argument and register the
|
|
/// argument in the symbol table so that references to it will succeed.
|
|
void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
|
|
Function::arg_iterator AI = F->arg_begin();
|
|
for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
|
|
// Create an alloca for this variable.
|
|
AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
|
|
|
|
// Store the initial value into the alloca.
|
|
C.getBuilder().CreateStore(AI, Alloca);
|
|
|
|
// Add arguments to variable symbol table.
|
|
C.NamedValues[Args[Idx]] = Alloca;
|
|
}
|
|
}
|
|
|
|
Function *FunctionAST::IRGen(IRGenContext &C) const {
|
|
C.NamedValues.clear();
|
|
|
|
Function *TheFunction = Proto->IRGen(C);
|
|
if (!TheFunction)
|
|
return nullptr;
|
|
|
|
// If this is an operator, install it.
|
|
if (Proto->isBinaryOp())
|
|
BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
|
|
|
|
// Create a new basic block to start insertion into.
|
|
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
|
|
C.getBuilder().SetInsertPoint(BB);
|
|
|
|
// Add all arguments to the symbol table and create their allocas.
|
|
Proto->CreateArgumentAllocas(TheFunction, C);
|
|
|
|
if (Value *RetVal = Body->IRGen(C)) {
|
|
// Finish off the function.
|
|
C.getBuilder().CreateRet(RetVal);
|
|
|
|
// Validate the generated code, checking for consistency.
|
|
verifyFunction(*TheFunction);
|
|
|
|
return TheFunction;
|
|
}
|
|
|
|
// Error reading body, remove function.
|
|
TheFunction->eraseFromParent();
|
|
|
|
if (Proto->isBinaryOp())
|
|
BinopPrecedence.erase(Proto->getOperatorName());
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-Level parsing and JIT Driver
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static std::unique_ptr<llvm::Module> IRGen(SessionContext &S,
|
|
const FunctionAST &F) {
|
|
IRGenContext C(S);
|
|
auto LF = F.IRGen(C);
|
|
if (!LF)
|
|
return nullptr;
|
|
#ifndef MINIMAL_STDERR_OUTPUT
|
|
fprintf(stderr, "Read function definition:");
|
|
LF->dump();
|
|
#endif
|
|
return C.takeM();
|
|
}
|
|
|
|
template <typename T>
|
|
static std::vector<T> singletonSet(T t) {
|
|
std::vector<T> Vec;
|
|
Vec.push_back(std::move(t));
|
|
return Vec;
|
|
}
|
|
|
|
class KaleidoscopeJIT {
|
|
public:
|
|
typedef ObjectLinkingLayer<> ObjLayerT;
|
|
typedef IRCompileLayer<ObjLayerT> CompileLayerT;
|
|
typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
|
|
typedef LazyEmitLayerT::ModuleSetHandleT ModuleHandleT;
|
|
|
|
KaleidoscopeJIT(SessionContext &Session)
|
|
: Session(Session),
|
|
CompileLayer(ObjectLayer, SimpleCompiler(Session.getTarget())),
|
|
LazyEmitLayer(CompileLayer) {}
|
|
|
|
std::string mangle(const std::string &Name) {
|
|
std::string MangledName;
|
|
{
|
|
raw_string_ostream MangledNameStream(MangledName);
|
|
Mangler::getNameWithPrefix(MangledNameStream, Name,
|
|
Session.getTarget().createDataLayout());
|
|
}
|
|
return MangledName;
|
|
}
|
|
|
|
void addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
|
|
std::cerr << "Adding AST: " << FnAST->Proto->Name << "\n";
|
|
FunctionDefs[mangle(FnAST->Proto->Name)] = std::move(FnAST);
|
|
}
|
|
|
|
ModuleHandleT addModule(std::unique_ptr<Module> M) {
|
|
// We need a memory manager to allocate memory and resolve symbols for this
|
|
// new module. Create one that resolves symbols by looking back into the
|
|
// JIT.
|
|
auto Resolver = createLambdaResolver(
|
|
[&](const std::string &Name) {
|
|
// First try to find 'Name' within the JIT.
|
|
if (auto Symbol = findSymbol(Name))
|
|
return RuntimeDyld::SymbolInfo(Symbol.getAddress(),
|
|
Symbol.getFlags());
|
|
|
|
// If we don't already have a definition of 'Name' then search
|
|
// the ASTs.
|
|
return searchFunctionASTs(Name);
|
|
},
|
|
[](const std::string &S) { return nullptr; } );
|
|
|
|
return LazyEmitLayer.addModuleSet(singletonSet(std::move(M)),
|
|
make_unique<SectionMemoryManager>(),
|
|
std::move(Resolver));
|
|
}
|
|
|
|
void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); }
|
|
|
|
JITSymbol findSymbol(const std::string &Name) {
|
|
return LazyEmitLayer.findSymbol(Name, true);
|
|
}
|
|
|
|
JITSymbol findSymbolIn(ModuleHandleT H, const std::string &Name) {
|
|
return LazyEmitLayer.findSymbolIn(H, Name, true);
|
|
}
|
|
|
|
JITSymbol findUnmangledSymbol(const std::string &Name) {
|
|
return findSymbol(mangle(Name));
|
|
}
|
|
|
|
private:
|
|
|
|
// This method searches the FunctionDefs map for a definition of 'Name'. If it
|
|
// finds one it generates a stub for it and returns the address of the stub.
|
|
RuntimeDyld::SymbolInfo searchFunctionASTs(const std::string &Name) {
|
|
auto DefI = FunctionDefs.find(Name);
|
|
if (DefI == FunctionDefs.end())
|
|
return nullptr;
|
|
|
|
// Take the FunctionAST out of the map.
|
|
auto FnAST = std::move(DefI->second);
|
|
FunctionDefs.erase(DefI);
|
|
|
|
// IRGen the AST, add it to the JIT, and return the address for it.
|
|
auto H = addModule(IRGen(Session, *FnAST));
|
|
auto Sym = findSymbolIn(H, Name);
|
|
return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
|
|
}
|
|
|
|
SessionContext &Session;
|
|
ObjLayerT ObjectLayer;
|
|
CompileLayerT CompileLayer;
|
|
LazyEmitLayerT LazyEmitLayer;
|
|
|
|
std::map<std::string, std::unique_ptr<FunctionAST>> FunctionDefs;
|
|
};
|
|
|
|
static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
|
|
if (auto F = ParseDefinition()) {
|
|
S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
|
|
J.addFunctionAST(std::move(F));
|
|
} else {
|
|
// Skip token for error recovery.
|
|
getNextToken();
|
|
}
|
|
}
|
|
|
|
static void HandleExtern(SessionContext &S) {
|
|
if (auto P = ParseExtern())
|
|
S.addPrototypeAST(std::move(P));
|
|
else {
|
|
// Skip token for error recovery.
|
|
getNextToken();
|
|
}
|
|
}
|
|
|
|
static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) {
|
|
// Evaluate a top-level expression into an anonymous function.
|
|
if (auto F = ParseTopLevelExpr()) {
|
|
IRGenContext C(S);
|
|
if (auto ExprFunc = F->IRGen(C)) {
|
|
#ifndef MINIMAL_STDERR_OUTPUT
|
|
std::cerr << "Expression function:\n";
|
|
ExprFunc->dump();
|
|
#endif
|
|
// Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove
|
|
// this module as soon as we've executed Function ExprFunc.
|
|
auto H = J.addModule(C.takeM());
|
|
|
|
// Get the address of the JIT'd function in memory.
|
|
auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
|
|
|
|
// Cast it to the right type (takes no arguments, returns a double) so we
|
|
// can call it as a native function.
|
|
double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
|
|
#ifdef MINIMAL_STDERR_OUTPUT
|
|
FP();
|
|
#else
|
|
std::cerr << "Evaluated to " << FP() << "\n";
|
|
#endif
|
|
|
|
// Remove the function.
|
|
J.removeModule(H);
|
|
}
|
|
} else {
|
|
// Skip token for error recovery.
|
|
getNextToken();
|
|
}
|
|
}
|
|
|
|
/// top ::= definition | external | expression | ';'
|
|
static void MainLoop() {
|
|
SessionContext S(getGlobalContext());
|
|
KaleidoscopeJIT J(S);
|
|
|
|
while (1) {
|
|
switch (CurTok) {
|
|
case tok_eof: return;
|
|
case ';': getNextToken(); continue; // ignore top-level semicolons.
|
|
case tok_def: HandleDefinition(S, J); break;
|
|
case tok_extern: HandleExtern(S); break;
|
|
default: HandleTopLevelExpression(S, J); break;
|
|
}
|
|
#ifndef MINIMAL_STDERR_OUTPUT
|
|
std::cerr << "ready> ";
|
|
#endif
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// "Library" functions that can be "extern'd" from user code.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// putchard - putchar that takes a double and returns 0.
|
|
extern "C"
|
|
double putchard(double X) {
|
|
putchar((char)X);
|
|
return 0;
|
|
}
|
|
|
|
/// printd - printf that takes a double prints it as "%f\n", returning 0.
|
|
extern "C"
|
|
double printd(double X) {
|
|
printf("%f", X);
|
|
return 0;
|
|
}
|
|
|
|
extern "C"
|
|
double printlf() {
|
|
printf("\n");
|
|
return 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Main driver code.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
int main() {
|
|
InitializeNativeTarget();
|
|
InitializeNativeTargetAsmPrinter();
|
|
InitializeNativeTargetAsmParser();
|
|
|
|
// Install standard binary operators.
|
|
// 1 is lowest precedence.
|
|
BinopPrecedence['='] = 2;
|
|
BinopPrecedence['<'] = 10;
|
|
BinopPrecedence['+'] = 20;
|
|
BinopPrecedence['-'] = 20;
|
|
BinopPrecedence['/'] = 40;
|
|
BinopPrecedence['*'] = 40; // highest.
|
|
|
|
// Prime the first token.
|
|
#ifndef MINIMAL_STDERR_OUTPUT
|
|
std::cerr << "ready> ";
|
|
#endif
|
|
getNextToken();
|
|
|
|
std::cerr << std::fixed;
|
|
|
|
// Run the main "interpreter loop" now.
|
|
MainLoop();
|
|
|
|
return 0;
|
|
}
|