llvm-project/lld/COFF/README.md

244 lines
9.9 KiB
Markdown

The New PE/COFF Linker
======================
This directory contains an experimental linker for the PE/COFF file
format. Because the fundamental design of this port is different from
the other ports of LLD, this port is separated to this directory.
The other ports are based on the Atom model, in which symbols and
references are represented as vertices and edges of graphs.
We don't use that model to aim for performance and simplicity.
Our plan is to implement a linker for the PE/COFF format based on a
different idea, and then apply the same idea to the ELF if proved to
be effective.
Overall Design
--------------
This is a list of important data types in this linker.
* SymbolBody
SymbolBody is a class for symbols. They may be created for symbols
in object files or in archive file headers. The linker may create
them out of nothing.
There are mainly three types of SymbolBodies: Defined, Undefined, or
Lazy. Defined symbols are for all symbols that are considered as
"resolved", including real defined symbols, COMDAT symbols, common
symbols, absolute symbols, linker-created symbols, etc. Undefined
symbols are for undefined symbols, which need to be replaced by
Defined symbols by the resolver. Lazy symbols represent symbols we
found in archive file headers -- which can turn into Defined symbols
if we read archieve members, but we haven't done that yet.
* Symbol
Symbol is a pointer to a SymbolBody. There's only one Symbol for
each unique symbol name (this uniqueness is guaranteed by the symbol
table). Because SymbolBodies are created for each file
independently, there can be many SymbolBodies for the same
name. Thus, the relationship between Symbols and SymbolBodies is 1:N.
The resolver keeps the Symbol's pointer to always point to the "best"
SymbolBody. Pointer mutation is the resolve operation in this
linker.
SymbolBodies have pointers to their Symbols. That means you can
always find the best SymbolBody from any SymbolBody by following
pointers twice. This structure makes it very easy to find
replacements for symbols. For example, if you have an Undefined
SymbolBody, you can find a Defined SymbolBody for that symbol just
by going to its Symbol and then to SymbolBody, assuming the resolver
have successfully resolved all undefined symbols.
* Chunk
Chunk represents a chunk of data that will occupy space in an
output. Each regular section becomes a chunk.
Chunks created for common or BSS symbols are not backed by sections.
The linker may create chunks out of nothing to append additional
data to an output.
Chunks know about their size, how to copy their data to mmap'ed
outputs, and how to apply relocations to them. Specifically,
section-based chunks know how to read relocation tables and how to
apply them.
* SymbolTable
SymbolTable is basically a hash table from strings to Symbols, with
a logic to resolve symbol conflicts. It resolves conflicts by symbol
type. For example, if we add Undefined and Defined symbols, the
symbol table will keep the latter. If we add Defined and Lazy
symbols, it will keep the former. If we add Lazy and Undefined, it
will keep the former, but it will also trigger the Lazy symbol to
load the archive member to actually resolve the symbol.
* OutputSection
OutputSection is a container of Chunks. A Chunk belongs to at most
one OutputSection.
There are mainly three actors in this linker.
* InputFile
InputFile is a superclass of file readers. We have a different
subclass for each input file type, such as regular object file,
archive file, etc. They are responsible for creating and owning
SymbolBodies and Chunks.
* Writer
The writer is responsible for writing file headers and Chunks to a
file. It creates OutputSections, put all Chunks into them, assign
unique, non-overlapping addresses and file offsets to them, and then
write them down to a file.
* Driver
The linking process is drived by the driver. The driver
- processes command line options,
- creates a symbol table,
- creates an InputFile for each input file and put all symbols in it
into the symbol table,
- checks if there's no remaining undefined symbols,
- creates a writer,
- and passes the symbol table to the writer to write the result to a
file.
Performance
-----------
Currently it's able to self-host on the Windows platform. It takes 1.2
seconds to self-host on my Xeon 2580 machine, while the existing
Atom-based linker takes 5 seconds to self-host. We believe the
performance difference comes from simplification and optimizations we
made to the new port. Notable differences are listed below.
* Reduced number of relocation table reads
In the existing design, relocation tables are read from beginning to
construct graphs because they consist of graph edges. In the new
design, they are not read until we actually apply relocations.
This simplification has two benefits. One is that we don't create
additional objects for relocations but instead consume relocation
tables directly. The other is that it reduces number of relocation
entries we have to read, because we won't read relocations for
dead-stripped COMDAT sections. Large C++ programs tend to consist of
lots of COMDAT sections. In the existing design, the time to process
relocation table is linear to size of input. In this new model, it's
linear to size of output.
* Reduced number of symbol table lookup
Symbol table lookup can be a heavy operation because number of
symbols can be very large and each symbol name can be very long
(think of C++ mangled symbols -- time to compute a hash value for a
string is linear to the length.)
We look up the symbol table exactly only once for each symbol in the
new design. This is I believe the minimum possible number. This is
achieved by the separation of Symbol and SymbolBody. Once you get a
pointer to a Symbol by looking up the symbol table, you can always
get the latest symbol resolution result by just dereferencing a
pointer. (I'm not sure if the idea is new to the linker. At least,
all other linkers I've investigated so far seem to look up hash
tables or sets more than once for each new symbol, but I may be
wrong.)
* Reduced number of file visits
The symbol table implements the Windows linker semantics. We treat
the symbol table as a bucket of all known symbols, including symbols
in archive file headers. We put all symbols into one bucket as we
visit new files. That means we visit each file only once.
This is different from the Unix linker semantics, in which we only
keep undefined symbols and visit each file one by one until we
resolve all undefined symbols. In the Unix model, we have to visit
archive files many times if there are circular dependencies between
archives.
* Avoiding creating additional objects or copying data
The data structures described in the previous section are all thin
wrappers for classes that LLVM libObject provides. We avoid copying
data from libObject's objects to our objects. We read much less data
than before. For example, we don't read symbol values until we apply
relocations because these values are not relevant to symbol
resolution. Again, COMDAT symbols may be discarded during symbol
resolution, so reading their attributes too early could result in a
waste. We use underlying objects directly where doing so makes
sense.
Parallelism
-----------
The abovementioned data structures are also chosen with
multi-threading in mind. It should relatively be easy to make the
symbol table a concurrent hash map, so that we let multiple workers
work on symbol table concurrently. Symbol resolution in this design is
a single pointer mutation, which allows the resolver work concurrently
in a lock-free manner using atomic pointer compare-and-swap.
It should also be easy to apply relocations and write chunks concurrently.
We created an experimental multi-threaded linker using the Microsoft
ConcRT concurrency library, and it was able to link itself in 0.5
seconds, so we think the design is promising.
Link-Time Optimization
----------------------
LTO is implemented by handling LLVM bitcode files as object files.
The linker resolves symbols in bitcode files normally. If all symbols
are successfully resolved, it then calls an LLVM libLTO function
with all bitcode files to convert them to one big regular COFF file.
Finally, the linker replaces bitcode symbols with COFF symbols,
so that we can link the input files as if they were in the native
format from the beginning.
The details are described in this document.
http://llvm.org/docs/LinkTimeOptimization.html
Glossary
--------
* RVA
Short for Relative Virtual Address.
Windows executables or DLLs are not position-independent; they are
linked against a fixed address called an image base. RVAs are
offsets from an image base.
Default image bases are 0x140000000 for executables and 0x18000000
for DLLs. For example, when we are creating an executable, we assume
that the executable will be loaded at address 0x140000000 by the
loader, so we apply relocations accordingly. Result texts and data
will contain raw absolute addresses.
* VA
Short for Virtual Address. Equivalent to RVA + image base. It is
rarely used. We almost always use RVAs instead.
* Base relocations
Relocation information for the loader. If the loader decides to map
an executable or a DLL to a different address than their image
bases, it fixes up binaries using information contained in the base
relocation table. A base relocation table consists of a list of
locations containing addresses. The loader adds a difference between
RVA and actual load address to all locations listed there.
Note that this run-time relocation mechanism is much simpler than ELF.
There's no PLT or GOT. Images are relocated as a whole just
by shifting entire images in memory by some offsets. Although doing
this breaks text sharing, I think this mechanism is not actually bad
on today's computers.