forked from OSchip/llvm-project
227 lines
8.2 KiB
C++
227 lines
8.2 KiB
C++
//===-- SystemZCallingConv.h - Calling conventions for SystemZ --*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
|
|
#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
|
|
|
|
#include "SystemZSubtarget.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
|
|
namespace llvm {
|
|
namespace SystemZ {
|
|
const unsigned ELFNumArgGPRs = 5;
|
|
extern const MCPhysReg ELFArgGPRs[ELFNumArgGPRs];
|
|
|
|
const unsigned ELFNumArgFPRs = 4;
|
|
extern const MCPhysReg ELFArgFPRs[ELFNumArgFPRs];
|
|
|
|
const unsigned XPLINK64NumArgGPRs = 3;
|
|
extern const MCPhysReg XPLINK64ArgGPRs[XPLINK64NumArgGPRs];
|
|
|
|
const unsigned XPLINK64NumArgFPRs = 4;
|
|
extern const MCPhysReg XPLINK64ArgFPRs[XPLINK64NumArgFPRs];
|
|
} // end namespace SystemZ
|
|
|
|
class SystemZCCState : public CCState {
|
|
private:
|
|
/// Records whether the value was a fixed argument.
|
|
/// See ISD::OutputArg::IsFixed.
|
|
SmallVector<bool, 4> ArgIsFixed;
|
|
|
|
/// Records whether the value was widened from a short vector type.
|
|
SmallVector<bool, 4> ArgIsShortVector;
|
|
|
|
// Check whether ArgVT is a short vector type.
|
|
bool IsShortVectorType(EVT ArgVT) {
|
|
return ArgVT.isVector() && ArgVT.getStoreSize() <= 8;
|
|
}
|
|
|
|
public:
|
|
SystemZCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
|
|
SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
|
|
: CCState(CC, isVarArg, MF, locs, C) {}
|
|
|
|
void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
CCAssignFn Fn) {
|
|
// Formal arguments are always fixed.
|
|
ArgIsFixed.clear();
|
|
for (unsigned i = 0; i < Ins.size(); ++i)
|
|
ArgIsFixed.push_back(true);
|
|
// Record whether the call operand was a short vector.
|
|
ArgIsShortVector.clear();
|
|
for (unsigned i = 0; i < Ins.size(); ++i)
|
|
ArgIsShortVector.push_back(IsShortVectorType(Ins[i].ArgVT));
|
|
|
|
CCState::AnalyzeFormalArguments(Ins, Fn);
|
|
}
|
|
|
|
void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
CCAssignFn Fn) {
|
|
// Record whether the call operand was a fixed argument.
|
|
ArgIsFixed.clear();
|
|
for (unsigned i = 0; i < Outs.size(); ++i)
|
|
ArgIsFixed.push_back(Outs[i].IsFixed);
|
|
// Record whether the call operand was a short vector.
|
|
ArgIsShortVector.clear();
|
|
for (unsigned i = 0; i < Outs.size(); ++i)
|
|
ArgIsShortVector.push_back(IsShortVectorType(Outs[i].ArgVT));
|
|
|
|
CCState::AnalyzeCallOperands(Outs, Fn);
|
|
}
|
|
|
|
// This version of AnalyzeCallOperands in the base class is not usable
|
|
// since we must provide a means of accessing ISD::OutputArg::IsFixed.
|
|
void AnalyzeCallOperands(const SmallVectorImpl<MVT> &Outs,
|
|
SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
|
|
CCAssignFn Fn) = delete;
|
|
|
|
bool IsFixed(unsigned ValNo) { return ArgIsFixed[ValNo]; }
|
|
bool IsShortVector(unsigned ValNo) { return ArgIsShortVector[ValNo]; }
|
|
};
|
|
|
|
// Handle i128 argument types. These need to be passed by implicit
|
|
// reference. This could be as simple as the following .td line:
|
|
// CCIfType<[i128], CCPassIndirect<i64>>,
|
|
// except that i128 is not a legal type, and therefore gets split by
|
|
// common code into a pair of i64 arguments.
|
|
inline bool CC_SystemZ_I128Indirect(unsigned &ValNo, MVT &ValVT,
|
|
MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State) {
|
|
SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
|
|
|
|
// ArgFlags.isSplit() is true on the first part of a i128 argument;
|
|
// PendingMembers.empty() is false on all subsequent parts.
|
|
if (!ArgFlags.isSplit() && PendingMembers.empty())
|
|
return false;
|
|
|
|
// Push a pending Indirect value location for each part.
|
|
LocVT = MVT::i64;
|
|
LocInfo = CCValAssign::Indirect;
|
|
PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT,
|
|
LocVT, LocInfo));
|
|
if (!ArgFlags.isSplitEnd())
|
|
return true;
|
|
|
|
// OK, we've collected all parts in the pending list. Allocate
|
|
// the location (register or stack slot) for the indirect pointer.
|
|
// (This duplicates the usual i64 calling convention rules.)
|
|
unsigned Reg;
|
|
const SystemZSubtarget &Subtarget =
|
|
State.getMachineFunction().getSubtarget<SystemZSubtarget>();
|
|
if (Subtarget.isTargetELF())
|
|
Reg = State.AllocateReg(SystemZ::ELFArgGPRs);
|
|
else if (Subtarget.isTargetXPLINK64())
|
|
Reg = State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
|
|
else
|
|
llvm_unreachable("Unknown Calling Convention!");
|
|
|
|
unsigned Offset = Reg ? 0 : State.AllocateStack(8, Align(8));
|
|
|
|
// Use that same location for all the pending parts.
|
|
for (auto &It : PendingMembers) {
|
|
if (Reg)
|
|
It.convertToReg(Reg);
|
|
else
|
|
It.convertToMem(Offset);
|
|
State.addLoc(It);
|
|
}
|
|
|
|
PendingMembers.clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
inline bool CC_XPLINK64_Shadow_Reg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
|
|
if (LocVT == MVT::f32 || LocVT == MVT::f64) {
|
|
State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
|
|
}
|
|
if (LocVT == MVT::f128 || LocVT.is128BitVector()) {
|
|
// Shadow next two GPRs, if available.
|
|
State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
|
|
State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
|
|
|
|
// Quad precision floating point needs to
|
|
// go inside pre-defined FPR pair.
|
|
if (LocVT == MVT::f128) {
|
|
for (unsigned I = 0; I < SystemZ::XPLINK64NumArgFPRs; I += 2)
|
|
if (State.isAllocated(SystemZ::XPLINK64ArgFPRs[I]))
|
|
State.AllocateReg(SystemZ::XPLINK64ArgFPRs[I + 1]);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
inline bool CC_XPLINK64_Allocate128BitVararg(unsigned &ValNo, MVT &ValVT,
|
|
MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State) {
|
|
if (LocVT.getSizeInBits() < 128)
|
|
return false;
|
|
|
|
if (static_cast<SystemZCCState *>(&State)->IsFixed(ValNo))
|
|
return false;
|
|
|
|
// For any C or C++ program, this should always be
|
|
// false, since it is illegal to have a function
|
|
// where the first argument is variadic. Therefore
|
|
// the first fixed argument should already have
|
|
// allocated GPR1 either through shadowing it or
|
|
// using it for parameter passing.
|
|
State.AllocateReg(SystemZ::R1D);
|
|
|
|
bool AllocGPR2 = State.AllocateReg(SystemZ::R2D);
|
|
bool AllocGPR3 = State.AllocateReg(SystemZ::R3D);
|
|
|
|
// If GPR2 and GPR3 are available, then we may pass vararg in R2Q.
|
|
if (AllocGPR2 && AllocGPR3) {
|
|
State.addLoc(
|
|
CCValAssign::getReg(ValNo, ValVT, SystemZ::R2Q, LocVT, LocInfo));
|
|
return true;
|
|
}
|
|
|
|
// If only GPR3 is available, we allocate on stack but need to
|
|
// set custom handling to copy hi bits into GPR3.
|
|
if (!AllocGPR2 && AllocGPR3) {
|
|
auto Offset = State.AllocateStack(16, Align(8));
|
|
State.addLoc(
|
|
CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
inline bool RetCC_SystemZ_Error(unsigned &, MVT &, MVT &,
|
|
CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
|
|
CCState &) {
|
|
llvm_unreachable("Return value calling convention currently unsupported.");
|
|
}
|
|
|
|
inline bool CC_SystemZ_Error(unsigned &, MVT &, MVT &, CCValAssign::LocInfo &,
|
|
ISD::ArgFlagsTy &, CCState &) {
|
|
llvm_unreachable("Argument calling convention currently unsupported.");
|
|
}
|
|
|
|
inline bool CC_SystemZ_GHC_Error(unsigned &, MVT &, MVT &,
|
|
CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
|
|
CCState &) {
|
|
report_fatal_error("No registers left in GHC calling convention");
|
|
return false;
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif
|