forked from OSchip/llvm-project
1000 lines
37 KiB
C++
1000 lines
37 KiB
C++
//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the C++ related Decl classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Decl Allocation/Deallocation Method Implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
|
|
SourceLocation L, IdentifierInfo *Id,
|
|
CXXRecordDecl *PrevDecl,
|
|
SourceLocation TKL)
|
|
: RecordDecl(K, TK, DC, L, Id, PrevDecl, TKL),
|
|
UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
|
|
UserDeclaredCopyAssignment(false), UserDeclaredDestructor(false),
|
|
Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
|
|
Abstract(false), HasTrivialConstructor(true),
|
|
HasTrivialCopyConstructor(true), HasTrivialCopyAssignment(true),
|
|
HasTrivialDestructor(true), ComputedVisibleConversions(false),
|
|
Bases(0), NumBases(0), VBases(0), NumVBases(0),
|
|
TemplateOrInstantiation() { }
|
|
|
|
CXXRecordDecl *CXXRecordDecl::Create(ASTContext &C, TagKind TK, DeclContext *DC,
|
|
SourceLocation L, IdentifierInfo *Id,
|
|
SourceLocation TKL,
|
|
CXXRecordDecl* PrevDecl,
|
|
bool DelayTypeCreation) {
|
|
CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, L, Id,
|
|
PrevDecl, TKL);
|
|
|
|
// FIXME: DelayTypeCreation seems like such a hack
|
|
if (!DelayTypeCreation)
|
|
C.getTypeDeclType(R, PrevDecl);
|
|
return R;
|
|
}
|
|
|
|
CXXRecordDecl::~CXXRecordDecl() {
|
|
}
|
|
|
|
void CXXRecordDecl::Destroy(ASTContext &C) {
|
|
C.Deallocate(Bases);
|
|
C.Deallocate(VBases);
|
|
this->RecordDecl::Destroy(C);
|
|
}
|
|
|
|
void
|
|
CXXRecordDecl::setBases(ASTContext &C,
|
|
CXXBaseSpecifier const * const *Bases,
|
|
unsigned NumBases) {
|
|
// C++ [dcl.init.aggr]p1:
|
|
// An aggregate is an array or a class (clause 9) with [...]
|
|
// no base classes [...].
|
|
Aggregate = false;
|
|
|
|
if (this->Bases)
|
|
C.Deallocate(this->Bases);
|
|
|
|
int vbaseCount = 0;
|
|
llvm::SmallVector<const CXXBaseSpecifier*, 8> UniqueVbases;
|
|
bool hasDirectVirtualBase = false;
|
|
|
|
this->Bases = new(C) CXXBaseSpecifier [NumBases];
|
|
this->NumBases = NumBases;
|
|
for (unsigned i = 0; i < NumBases; ++i) {
|
|
this->Bases[i] = *Bases[i];
|
|
// Keep track of inherited vbases for this base class.
|
|
const CXXBaseSpecifier *Base = Bases[i];
|
|
QualType BaseType = Base->getType();
|
|
// Skip template types.
|
|
// FIXME. This means that this list must be rebuilt during template
|
|
// instantiation.
|
|
if (BaseType->isDependentType())
|
|
continue;
|
|
CXXRecordDecl *BaseClassDecl
|
|
= cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
|
|
if (Base->isVirtual())
|
|
hasDirectVirtualBase = true;
|
|
for (CXXRecordDecl::base_class_iterator VBase =
|
|
BaseClassDecl->vbases_begin(),
|
|
E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
|
|
// Add this vbase to the array of vbases for current class if it is
|
|
// not already in the list.
|
|
// FIXME. Note that we do a linear search as number of such classes are
|
|
// very few.
|
|
int i;
|
|
for (i = 0; i < vbaseCount; ++i)
|
|
if (UniqueVbases[i]->getType() == VBase->getType())
|
|
break;
|
|
if (i == vbaseCount) {
|
|
UniqueVbases.push_back(VBase);
|
|
++vbaseCount;
|
|
}
|
|
}
|
|
}
|
|
if (hasDirectVirtualBase) {
|
|
// Iterate one more time through the direct bases and add the virtual
|
|
// base to the list of vritual bases for current class.
|
|
for (unsigned i = 0; i < NumBases; ++i) {
|
|
const CXXBaseSpecifier *VBase = Bases[i];
|
|
if (!VBase->isVirtual())
|
|
continue;
|
|
int j;
|
|
for (j = 0; j < vbaseCount; ++j)
|
|
if (UniqueVbases[j]->getType() == VBase->getType())
|
|
break;
|
|
if (j == vbaseCount) {
|
|
UniqueVbases.push_back(VBase);
|
|
++vbaseCount;
|
|
}
|
|
}
|
|
}
|
|
if (vbaseCount > 0) {
|
|
// build AST for inhireted, direct or indirect, virtual bases.
|
|
this->VBases = new (C) CXXBaseSpecifier [vbaseCount];
|
|
this->NumVBases = vbaseCount;
|
|
for (int i = 0; i < vbaseCount; i++) {
|
|
QualType QT = UniqueVbases[i]->getType();
|
|
CXXRecordDecl *VBaseClassDecl
|
|
= cast<CXXRecordDecl>(QT->getAs<RecordType>()->getDecl());
|
|
this->VBases[i] =
|
|
CXXBaseSpecifier(VBaseClassDecl->getSourceRange(), true,
|
|
VBaseClassDecl->getTagKind() == RecordDecl::TK_class,
|
|
UniqueVbases[i]->getAccessSpecifier(), QT);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CXXRecordDecl::hasConstCopyConstructor(ASTContext &Context) const {
|
|
return getCopyConstructor(Context, Qualifiers::Const) != 0;
|
|
}
|
|
|
|
CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(ASTContext &Context,
|
|
unsigned TypeQuals) const{
|
|
QualType ClassType
|
|
= Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
|
|
DeclarationName ConstructorName
|
|
= Context.DeclarationNames.getCXXConstructorName(
|
|
Context.getCanonicalType(ClassType));
|
|
unsigned FoundTQs;
|
|
DeclContext::lookup_const_iterator Con, ConEnd;
|
|
for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
|
|
Con != ConEnd; ++Con) {
|
|
// C++ [class.copy]p2:
|
|
// A non-template constructor for class X is a copy constructor if [...]
|
|
if (isa<FunctionTemplateDecl>(*Con))
|
|
continue;
|
|
|
|
if (cast<CXXConstructorDecl>(*Con)->isCopyConstructor(FoundTQs)) {
|
|
if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
|
|
(!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
|
|
return cast<CXXConstructorDecl>(*Con);
|
|
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool CXXRecordDecl::hasConstCopyAssignment(ASTContext &Context,
|
|
const CXXMethodDecl *& MD) const {
|
|
QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
|
|
const_cast<CXXRecordDecl*>(this)));
|
|
DeclarationName OpName =Context.DeclarationNames.getCXXOperatorName(OO_Equal);
|
|
|
|
DeclContext::lookup_const_iterator Op, OpEnd;
|
|
for (llvm::tie(Op, OpEnd) = this->lookup(OpName);
|
|
Op != OpEnd; ++Op) {
|
|
// C++ [class.copy]p9:
|
|
// A user-declared copy assignment operator is a non-static non-template
|
|
// member function of class X with exactly one parameter of type X, X&,
|
|
// const X&, volatile X& or const volatile X&.
|
|
const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
|
|
if (!Method)
|
|
continue;
|
|
|
|
if (Method->isStatic())
|
|
continue;
|
|
if (Method->getPrimaryTemplate())
|
|
continue;
|
|
const FunctionProtoType *FnType =
|
|
Method->getType()->getAs<FunctionProtoType>();
|
|
assert(FnType && "Overloaded operator has no prototype.");
|
|
// Don't assert on this; an invalid decl might have been left in the AST.
|
|
if (FnType->getNumArgs() != 1 || FnType->isVariadic())
|
|
continue;
|
|
bool AcceptsConst = true;
|
|
QualType ArgType = FnType->getArgType(0);
|
|
if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
|
|
ArgType = Ref->getPointeeType();
|
|
// Is it a non-const lvalue reference?
|
|
if (!ArgType.isConstQualified())
|
|
AcceptsConst = false;
|
|
}
|
|
if (!Context.hasSameUnqualifiedType(ArgType, ClassType))
|
|
continue;
|
|
MD = Method;
|
|
// We have a single argument of type cv X or cv X&, i.e. we've found the
|
|
// copy assignment operator. Return whether it accepts const arguments.
|
|
return AcceptsConst;
|
|
}
|
|
assert(isInvalidDecl() &&
|
|
"No copy assignment operator declared in valid code.");
|
|
return false;
|
|
}
|
|
|
|
void
|
|
CXXRecordDecl::addedConstructor(ASTContext &Context,
|
|
CXXConstructorDecl *ConDecl) {
|
|
assert(!ConDecl->isImplicit() && "addedConstructor - not for implicit decl");
|
|
// Note that we have a user-declared constructor.
|
|
UserDeclaredConstructor = true;
|
|
|
|
// C++ [dcl.init.aggr]p1:
|
|
// An aggregate is an array or a class (clause 9) with no
|
|
// user-declared constructors (12.1) [...].
|
|
Aggregate = false;
|
|
|
|
// C++ [class]p4:
|
|
// A POD-struct is an aggregate class [...]
|
|
PlainOldData = false;
|
|
|
|
// C++ [class.ctor]p5:
|
|
// A constructor is trivial if it is an implicitly-declared default
|
|
// constructor.
|
|
// FIXME: C++0x: don't do this for "= default" default constructors.
|
|
HasTrivialConstructor = false;
|
|
|
|
// Note when we have a user-declared copy constructor, which will
|
|
// suppress the implicit declaration of a copy constructor.
|
|
if (ConDecl->isCopyConstructor()) {
|
|
UserDeclaredCopyConstructor = true;
|
|
|
|
// C++ [class.copy]p6:
|
|
// A copy constructor is trivial if it is implicitly declared.
|
|
// FIXME: C++0x: don't do this for "= default" copy constructors.
|
|
HasTrivialCopyConstructor = false;
|
|
}
|
|
}
|
|
|
|
void CXXRecordDecl::addedAssignmentOperator(ASTContext &Context,
|
|
CXXMethodDecl *OpDecl) {
|
|
// We're interested specifically in copy assignment operators.
|
|
const FunctionProtoType *FnType = OpDecl->getType()->getAs<FunctionProtoType>();
|
|
assert(FnType && "Overloaded operator has no proto function type.");
|
|
assert(FnType->getNumArgs() == 1 && !FnType->isVariadic());
|
|
|
|
// Copy assignment operators must be non-templates.
|
|
if (OpDecl->getPrimaryTemplate() || OpDecl->getDescribedFunctionTemplate())
|
|
return;
|
|
|
|
QualType ArgType = FnType->getArgType(0);
|
|
if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>())
|
|
ArgType = Ref->getPointeeType();
|
|
|
|
ArgType = ArgType.getUnqualifiedType();
|
|
QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
|
|
const_cast<CXXRecordDecl*>(this)));
|
|
|
|
if (!Context.hasSameUnqualifiedType(ClassType, ArgType))
|
|
return;
|
|
|
|
// This is a copy assignment operator.
|
|
// Note on the decl that it is a copy assignment operator.
|
|
OpDecl->setCopyAssignment(true);
|
|
|
|
// Suppress the implicit declaration of a copy constructor.
|
|
UserDeclaredCopyAssignment = true;
|
|
|
|
// C++ [class.copy]p11:
|
|
// A copy assignment operator is trivial if it is implicitly declared.
|
|
// FIXME: C++0x: don't do this for "= default" copy operators.
|
|
HasTrivialCopyAssignment = false;
|
|
|
|
// C++ [class]p4:
|
|
// A POD-struct is an aggregate class that [...] has no user-defined copy
|
|
// assignment operator [...].
|
|
PlainOldData = false;
|
|
}
|
|
|
|
void
|
|
CXXRecordDecl::collectConversionFunctions(
|
|
llvm::SmallPtrSet<CanQualType, 8>& ConversionsTypeSet) const
|
|
{
|
|
const UnresolvedSet *Cs = getConversionFunctions();
|
|
for (UnresolvedSet::iterator I = Cs->begin(), E = Cs->end(); I != E; ++I) {
|
|
NamedDecl *TopConv = *I;
|
|
CanQualType TConvType;
|
|
if (FunctionTemplateDecl *TConversionTemplate =
|
|
dyn_cast<FunctionTemplateDecl>(TopConv))
|
|
TConvType =
|
|
getASTContext().getCanonicalType(
|
|
TConversionTemplate->getTemplatedDecl()->getResultType());
|
|
else
|
|
TConvType =
|
|
getASTContext().getCanonicalType(
|
|
cast<CXXConversionDecl>(TopConv)->getConversionType());
|
|
ConversionsTypeSet.insert(TConvType);
|
|
}
|
|
}
|
|
|
|
/// getNestedVisibleConversionFunctions - imports unique conversion
|
|
/// functions from base classes into the visible conversion function
|
|
/// list of the class 'RD'. This is a private helper method.
|
|
/// TopConversionsTypeSet is the set of conversion functions of the class
|
|
/// we are interested in. HiddenConversionTypes is set of conversion functions
|
|
/// of the immediate derived class which hides the conversion functions found
|
|
/// in current class.
|
|
void
|
|
CXXRecordDecl::getNestedVisibleConversionFunctions(CXXRecordDecl *RD,
|
|
const llvm::SmallPtrSet<CanQualType, 8> &TopConversionsTypeSet,
|
|
const llvm::SmallPtrSet<CanQualType, 8> &HiddenConversionTypes)
|
|
{
|
|
bool inTopClass = (RD == this);
|
|
QualType ClassType = getASTContext().getTypeDeclType(this);
|
|
if (const RecordType *Record = ClassType->getAs<RecordType>()) {
|
|
const UnresolvedSet *Cs
|
|
= cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
|
|
|
|
for (UnresolvedSet::iterator I = Cs->begin(), E = Cs->end(); I != E; ++I) {
|
|
NamedDecl *Conv = *I;
|
|
// Only those conversions not exact match of conversions in current
|
|
// class are candidateconversion routines.
|
|
CanQualType ConvType;
|
|
if (FunctionTemplateDecl *ConversionTemplate =
|
|
dyn_cast<FunctionTemplateDecl>(Conv))
|
|
ConvType =
|
|
getASTContext().getCanonicalType(
|
|
ConversionTemplate->getTemplatedDecl()->getResultType());
|
|
else
|
|
ConvType =
|
|
getASTContext().getCanonicalType(
|
|
cast<CXXConversionDecl>(Conv)->getConversionType());
|
|
// We only add conversion functions found in the base class if they
|
|
// are not hidden by those found in HiddenConversionTypes which are
|
|
// the conversion functions in its derived class.
|
|
if (inTopClass ||
|
|
(!TopConversionsTypeSet.count(ConvType) &&
|
|
!HiddenConversionTypes.count(ConvType)) ) {
|
|
if (FunctionTemplateDecl *ConversionTemplate =
|
|
dyn_cast<FunctionTemplateDecl>(Conv))
|
|
RD->addVisibleConversionFunction(ConversionTemplate);
|
|
else
|
|
RD->addVisibleConversionFunction(cast<CXXConversionDecl>(Conv));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (getNumBases() == 0 && getNumVBases() == 0)
|
|
return;
|
|
|
|
llvm::SmallPtrSet<CanQualType, 8> ConversionFunctions;
|
|
if (!inTopClass)
|
|
collectConversionFunctions(ConversionFunctions);
|
|
|
|
for (CXXRecordDecl::base_class_iterator VBase = vbases_begin(),
|
|
E = vbases_end(); VBase != E; ++VBase) {
|
|
if (const RecordType *RT = VBase->getType()->getAs<RecordType>()) {
|
|
CXXRecordDecl *VBaseClassDecl
|
|
= cast<CXXRecordDecl>(RT->getDecl());
|
|
VBaseClassDecl->getNestedVisibleConversionFunctions(RD,
|
|
TopConversionsTypeSet,
|
|
(inTopClass ? TopConversionsTypeSet : ConversionFunctions));
|
|
}
|
|
}
|
|
for (CXXRecordDecl::base_class_iterator Base = bases_begin(),
|
|
E = bases_end(); Base != E; ++Base) {
|
|
if (Base->isVirtual())
|
|
continue;
|
|
if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
|
|
CXXRecordDecl *BaseClassDecl
|
|
= cast<CXXRecordDecl>(RT->getDecl());
|
|
|
|
BaseClassDecl->getNestedVisibleConversionFunctions(RD,
|
|
TopConversionsTypeSet,
|
|
(inTopClass ? TopConversionsTypeSet : ConversionFunctions));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// getVisibleConversionFunctions - get all conversion functions visible
|
|
/// in current class; including conversion function templates.
|
|
const UnresolvedSet *CXXRecordDecl::getVisibleConversionFunctions() {
|
|
// If root class, all conversions are visible.
|
|
if (bases_begin() == bases_end())
|
|
return &Conversions;
|
|
// If visible conversion list is already evaluated, return it.
|
|
if (ComputedVisibleConversions)
|
|
return &VisibleConversions;
|
|
llvm::SmallPtrSet<CanQualType, 8> TopConversionsTypeSet;
|
|
collectConversionFunctions(TopConversionsTypeSet);
|
|
getNestedVisibleConversionFunctions(this, TopConversionsTypeSet,
|
|
TopConversionsTypeSet);
|
|
ComputedVisibleConversions = true;
|
|
return &VisibleConversions;
|
|
}
|
|
|
|
void CXXRecordDecl::addVisibleConversionFunction(
|
|
CXXConversionDecl *ConvDecl) {
|
|
assert(!ConvDecl->getDescribedFunctionTemplate() &&
|
|
"Conversion function templates should cast to FunctionTemplateDecl.");
|
|
VisibleConversions.addDecl(ConvDecl);
|
|
}
|
|
|
|
void CXXRecordDecl::addVisibleConversionFunction(
|
|
FunctionTemplateDecl *ConvDecl) {
|
|
assert(isa<CXXConversionDecl>(ConvDecl->getTemplatedDecl()) &&
|
|
"Function template is not a conversion function template");
|
|
VisibleConversions.addDecl(ConvDecl);
|
|
}
|
|
|
|
void CXXRecordDecl::addConversionFunction(CXXConversionDecl *ConvDecl) {
|
|
assert(!ConvDecl->getDescribedFunctionTemplate() &&
|
|
"Conversion function templates should cast to FunctionTemplateDecl.");
|
|
Conversions.addDecl(ConvDecl);
|
|
}
|
|
|
|
void CXXRecordDecl::addConversionFunction(FunctionTemplateDecl *ConvDecl) {
|
|
assert(isa<CXXConversionDecl>(ConvDecl->getTemplatedDecl()) &&
|
|
"Function template is not a conversion function template");
|
|
Conversions.addDecl(ConvDecl);
|
|
}
|
|
|
|
|
|
void CXXRecordDecl::setMethodAsVirtual(FunctionDecl *Method) {
|
|
Method->setVirtualAsWritten(true);
|
|
setAggregate(false);
|
|
setPOD(false);
|
|
setEmpty(false);
|
|
setPolymorphic(true);
|
|
setHasTrivialConstructor(false);
|
|
setHasTrivialCopyConstructor(false);
|
|
setHasTrivialCopyAssignment(false);
|
|
}
|
|
|
|
CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
|
|
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
|
|
return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
|
|
|
|
return 0;
|
|
}
|
|
|
|
MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
|
|
return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
|
|
}
|
|
|
|
void
|
|
CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
|
|
TemplateSpecializationKind TSK) {
|
|
assert(TemplateOrInstantiation.isNull() &&
|
|
"Previous template or instantiation?");
|
|
assert(!isa<ClassTemplateSpecializationDecl>(this));
|
|
TemplateOrInstantiation
|
|
= new (getASTContext()) MemberSpecializationInfo(RD, TSK);
|
|
}
|
|
|
|
TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
|
|
if (const ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(this))
|
|
return Spec->getSpecializationKind();
|
|
|
|
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
|
|
return MSInfo->getTemplateSpecializationKind();
|
|
|
|
return TSK_Undeclared;
|
|
}
|
|
|
|
void
|
|
CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
|
|
if (ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(this)) {
|
|
Spec->setSpecializationKind(TSK);
|
|
return;
|
|
}
|
|
|
|
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
|
|
MSInfo->setTemplateSpecializationKind(TSK);
|
|
return;
|
|
}
|
|
|
|
assert(false && "Not a class template or member class specialization");
|
|
}
|
|
|
|
CXXConstructorDecl *
|
|
CXXRecordDecl::getDefaultConstructor(ASTContext &Context) {
|
|
QualType ClassType = Context.getTypeDeclType(this);
|
|
DeclarationName ConstructorName
|
|
= Context.DeclarationNames.getCXXConstructorName(
|
|
Context.getCanonicalType(ClassType.getUnqualifiedType()));
|
|
|
|
DeclContext::lookup_const_iterator Con, ConEnd;
|
|
for (llvm::tie(Con, ConEnd) = lookup(ConstructorName);
|
|
Con != ConEnd; ++Con) {
|
|
// FIXME: In C++0x, a constructor template can be a default constructor.
|
|
if (isa<FunctionTemplateDecl>(*Con))
|
|
continue;
|
|
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
|
|
if (Constructor->isDefaultConstructor())
|
|
return Constructor;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
CXXDestructorDecl *CXXRecordDecl::getDestructor(ASTContext &Context) {
|
|
QualType ClassType = Context.getTypeDeclType(this);
|
|
|
|
DeclarationName Name
|
|
= Context.DeclarationNames.getCXXDestructorName(
|
|
Context.getCanonicalType(ClassType));
|
|
|
|
DeclContext::lookup_iterator I, E;
|
|
llvm::tie(I, E) = lookup(Name);
|
|
assert(I != E && "Did not find a destructor!");
|
|
|
|
CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
|
|
assert(++I == E && "Found more than one destructor!");
|
|
|
|
return Dtor;
|
|
}
|
|
|
|
CXXMethodDecl *
|
|
CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
|
|
SourceLocation L, DeclarationName N,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
bool isStatic, bool isInline) {
|
|
return new (C) CXXMethodDecl(CXXMethod, RD, L, N, T, TInfo,
|
|
isStatic, isInline);
|
|
}
|
|
|
|
bool CXXMethodDecl::isUsualDeallocationFunction() const {
|
|
if (getOverloadedOperator() != OO_Delete &&
|
|
getOverloadedOperator() != OO_Array_Delete)
|
|
return false;
|
|
|
|
// C++ [basic.stc.dynamic.deallocation]p2:
|
|
// If a class T has a member deallocation function named operator delete
|
|
// with exactly one parameter, then that function is a usual (non-placement)
|
|
// deallocation function. [...]
|
|
if (getNumParams() == 1)
|
|
return true;
|
|
|
|
// C++ [basic.stc.dynamic.deallocation]p2:
|
|
// [...] If class T does not declare such an operator delete but does
|
|
// declare a member deallocation function named operator delete with
|
|
// exactly two parameters, the second of which has type std::size_t (18.1),
|
|
// then this function is a usual deallocation function.
|
|
ASTContext &Context = getASTContext();
|
|
if (getNumParams() != 2 ||
|
|
!Context.hasSameType(getParamDecl(1)->getType(), Context.getSizeType()))
|
|
return false;
|
|
|
|
// This function is a usual deallocation function if there are no
|
|
// single-parameter deallocation functions of the same kind.
|
|
for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
|
|
R.first != R.second; ++R.first) {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
|
|
if (FD->getNumParams() == 1)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
typedef llvm::DenseMap<const CXXMethodDecl*,
|
|
std::vector<const CXXMethodDecl *> *>
|
|
OverriddenMethodsMapTy;
|
|
|
|
// FIXME: We hate static data. This doesn't survive PCH saving/loading, and
|
|
// the vtable building code uses it at CG time.
|
|
static OverriddenMethodsMapTy *OverriddenMethods = 0;
|
|
|
|
void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
|
|
assert(MD->isCanonicalDecl() && "Method is not canonical!");
|
|
|
|
// FIXME: The CXXMethodDecl dtor needs to remove and free the entry.
|
|
|
|
if (!OverriddenMethods)
|
|
OverriddenMethods = new OverriddenMethodsMapTy();
|
|
|
|
std::vector<const CXXMethodDecl *> *&Methods = (*OverriddenMethods)[this];
|
|
if (!Methods)
|
|
Methods = new std::vector<const CXXMethodDecl *>;
|
|
|
|
Methods->push_back(MD);
|
|
}
|
|
|
|
CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
|
|
if (!OverriddenMethods)
|
|
return 0;
|
|
|
|
OverriddenMethodsMapTy::iterator it = OverriddenMethods->find(this);
|
|
if (it == OverriddenMethods->end() || it->second->empty())
|
|
return 0;
|
|
|
|
return &(*it->second)[0];
|
|
}
|
|
|
|
CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
|
|
if (!OverriddenMethods)
|
|
return 0;
|
|
|
|
OverriddenMethodsMapTy::iterator it = OverriddenMethods->find(this);
|
|
if (it == OverriddenMethods->end() || it->second->empty())
|
|
return 0;
|
|
|
|
return &(*it->second)[0] + it->second->size();
|
|
}
|
|
|
|
QualType CXXMethodDecl::getThisType(ASTContext &C) const {
|
|
// C++ 9.3.2p1: The type of this in a member function of a class X is X*.
|
|
// If the member function is declared const, the type of this is const X*,
|
|
// if the member function is declared volatile, the type of this is
|
|
// volatile X*, and if the member function is declared const volatile,
|
|
// the type of this is const volatile X*.
|
|
|
|
assert(isInstance() && "No 'this' for static methods!");
|
|
|
|
QualType ClassTy;
|
|
if (ClassTemplateDecl *TD = getParent()->getDescribedClassTemplate())
|
|
ClassTy = TD->getInjectedClassNameType(C);
|
|
else
|
|
ClassTy = C.getTagDeclType(getParent());
|
|
ClassTy = C.getQualifiedType(ClassTy,
|
|
Qualifiers::fromCVRMask(getTypeQualifiers()));
|
|
return C.getPointerType(ClassTy);
|
|
}
|
|
|
|
static bool MethodHasBody(const CXXMethodDecl *MD, const FunctionDecl *&fn) {
|
|
// Simple case: function has a body
|
|
if (MD->getBody(fn))
|
|
return true;
|
|
|
|
// Complex case: function is an instantiation of a function which has a
|
|
// body, but the definition hasn't been instantiated.
|
|
const FunctionDecl *PatternDecl = MD->getTemplateInstantiationPattern();
|
|
if (PatternDecl && PatternDecl->getBody(fn))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool CXXMethodDecl::hasInlineBody() const {
|
|
const FunctionDecl *fn;
|
|
return MethodHasBody(this, fn) && !fn->isOutOfLine();
|
|
}
|
|
|
|
CXXBaseOrMemberInitializer::
|
|
CXXBaseOrMemberInitializer(ASTContext &Context,
|
|
TypeSourceInfo *TInfo, CXXConstructorDecl *C,
|
|
SourceLocation L,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation R)
|
|
: BaseOrMember(TInfo), Args(0), NumArgs(0), CtorOrAnonUnion(C),
|
|
LParenLoc(L), RParenLoc(R)
|
|
{
|
|
if (NumArgs > 0) {
|
|
this->NumArgs = NumArgs;
|
|
this->Args = new (Context) Stmt*[NumArgs];
|
|
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
|
|
this->Args[Idx] = Args[Idx];
|
|
}
|
|
}
|
|
|
|
CXXBaseOrMemberInitializer::
|
|
CXXBaseOrMemberInitializer(ASTContext &Context,
|
|
FieldDecl *Member, SourceLocation MemberLoc,
|
|
CXXConstructorDecl *C, SourceLocation L,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation R)
|
|
: BaseOrMember(Member), MemberLocation(MemberLoc), Args(0), NumArgs(0),
|
|
CtorOrAnonUnion(C), LParenLoc(L), RParenLoc(R)
|
|
{
|
|
if (NumArgs > 0) {
|
|
this->NumArgs = NumArgs;
|
|
this->Args = new (Context) Stmt*[NumArgs];
|
|
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
|
|
this->Args[Idx] = Args[Idx];
|
|
}
|
|
}
|
|
|
|
void CXXBaseOrMemberInitializer::Destroy(ASTContext &Context) {
|
|
for (unsigned I = 0; I != NumArgs; ++I)
|
|
Args[I]->Destroy(Context);
|
|
Context.Deallocate(Args);
|
|
this->~CXXBaseOrMemberInitializer();
|
|
}
|
|
|
|
TypeLoc CXXBaseOrMemberInitializer::getBaseClassLoc() const {
|
|
if (isBaseInitializer())
|
|
return BaseOrMember.get<TypeSourceInfo*>()->getTypeLoc();
|
|
else
|
|
return TypeLoc();
|
|
}
|
|
|
|
Type *CXXBaseOrMemberInitializer::getBaseClass() {
|
|
if (isBaseInitializer())
|
|
return BaseOrMember.get<TypeSourceInfo*>()->getType().getTypePtr();
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
const Type *CXXBaseOrMemberInitializer::getBaseClass() const {
|
|
if (isBaseInitializer())
|
|
return BaseOrMember.get<TypeSourceInfo*>()->getType().getTypePtr();
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
SourceLocation CXXBaseOrMemberInitializer::getSourceLocation() const {
|
|
if (isMemberInitializer())
|
|
return getMemberLocation();
|
|
|
|
return getBaseClassLoc().getSourceRange().getBegin();
|
|
}
|
|
|
|
SourceRange CXXBaseOrMemberInitializer::getSourceRange() const {
|
|
return SourceRange(getSourceLocation(), getRParenLoc());
|
|
}
|
|
|
|
CXXConstructorDecl *
|
|
CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
|
|
SourceLocation L, DeclarationName N,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
bool isExplicit,
|
|
bool isInline, bool isImplicitlyDeclared) {
|
|
assert(N.getNameKind() == DeclarationName::CXXConstructorName &&
|
|
"Name must refer to a constructor");
|
|
return new (C) CXXConstructorDecl(RD, L, N, T, TInfo, isExplicit, isInline,
|
|
isImplicitlyDeclared);
|
|
}
|
|
|
|
bool CXXConstructorDecl::isDefaultConstructor() const {
|
|
// C++ [class.ctor]p5:
|
|
// A default constructor for a class X is a constructor of class
|
|
// X that can be called without an argument.
|
|
return (getNumParams() == 0) ||
|
|
(getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
|
|
}
|
|
|
|
bool
|
|
CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
|
|
// C++ [class.copy]p2:
|
|
// A non-template constructor for class X is a copy constructor
|
|
// if its first parameter is of type X&, const X&, volatile X& or
|
|
// const volatile X&, and either there are no other parameters
|
|
// or else all other parameters have default arguments (8.3.6).
|
|
if ((getNumParams() < 1) ||
|
|
(getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
|
|
(getPrimaryTemplate() != 0) ||
|
|
(getDescribedFunctionTemplate() != 0))
|
|
return false;
|
|
|
|
const ParmVarDecl *Param = getParamDecl(0);
|
|
|
|
// Do we have a reference type? Rvalue references don't count.
|
|
const LValueReferenceType *ParamRefType =
|
|
Param->getType()->getAs<LValueReferenceType>();
|
|
if (!ParamRefType)
|
|
return false;
|
|
|
|
// Is it a reference to our class type?
|
|
ASTContext &Context = getASTContext();
|
|
|
|
CanQualType PointeeType
|
|
= Context.getCanonicalType(ParamRefType->getPointeeType());
|
|
CanQualType ClassTy
|
|
= Context.getCanonicalType(Context.getTagDeclType(getParent()));
|
|
if (PointeeType.getUnqualifiedType() != ClassTy)
|
|
return false;
|
|
|
|
// FIXME: other qualifiers?
|
|
|
|
// We have a copy constructor.
|
|
TypeQuals = PointeeType.getCVRQualifiers();
|
|
return true;
|
|
}
|
|
|
|
bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
|
|
// C++ [class.conv.ctor]p1:
|
|
// A constructor declared without the function-specifier explicit
|
|
// that can be called with a single parameter specifies a
|
|
// conversion from the type of its first parameter to the type of
|
|
// its class. Such a constructor is called a converting
|
|
// constructor.
|
|
if (isExplicit() && !AllowExplicit)
|
|
return false;
|
|
|
|
return (getNumParams() == 0 &&
|
|
getType()->getAs<FunctionProtoType>()->isVariadic()) ||
|
|
(getNumParams() == 1) ||
|
|
(getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
|
|
}
|
|
|
|
bool CXXConstructorDecl::isCopyConstructorLikeSpecialization() const {
|
|
if ((getNumParams() < 1) ||
|
|
(getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
|
|
(getPrimaryTemplate() == 0) ||
|
|
(getDescribedFunctionTemplate() != 0))
|
|
return false;
|
|
|
|
const ParmVarDecl *Param = getParamDecl(0);
|
|
|
|
ASTContext &Context = getASTContext();
|
|
CanQualType ParamType = Context.getCanonicalType(Param->getType());
|
|
|
|
// Strip off the lvalue reference, if any.
|
|
if (CanQual<LValueReferenceType> ParamRefType
|
|
= ParamType->getAs<LValueReferenceType>())
|
|
ParamType = ParamRefType->getPointeeType();
|
|
|
|
|
|
// Is it the same as our our class type?
|
|
CanQualType ClassTy
|
|
= Context.getCanonicalType(Context.getTagDeclType(getParent()));
|
|
if (ParamType.getUnqualifiedType() != ClassTy)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
CXXDestructorDecl *
|
|
CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
|
|
SourceLocation L, DeclarationName N,
|
|
QualType T, bool isInline,
|
|
bool isImplicitlyDeclared) {
|
|
assert(N.getNameKind() == DeclarationName::CXXDestructorName &&
|
|
"Name must refer to a destructor");
|
|
return new (C) CXXDestructorDecl(RD, L, N, T, isInline,
|
|
isImplicitlyDeclared);
|
|
}
|
|
|
|
void
|
|
CXXConstructorDecl::Destroy(ASTContext& C) {
|
|
C.Deallocate(BaseOrMemberInitializers);
|
|
CXXMethodDecl::Destroy(C);
|
|
}
|
|
|
|
CXXConversionDecl *
|
|
CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
|
|
SourceLocation L, DeclarationName N,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
bool isInline, bool isExplicit) {
|
|
assert(N.getNameKind() == DeclarationName::CXXConversionFunctionName &&
|
|
"Name must refer to a conversion function");
|
|
return new (C) CXXConversionDecl(RD, L, N, T, TInfo, isInline, isExplicit);
|
|
}
|
|
|
|
FriendDecl *FriendDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation L,
|
|
FriendUnion Friend,
|
|
SourceLocation FriendL) {
|
|
#ifndef NDEBUG
|
|
if (Friend.is<NamedDecl*>()) {
|
|
NamedDecl *D = Friend.get<NamedDecl*>();
|
|
assert(isa<FunctionDecl>(D) ||
|
|
isa<CXXRecordDecl>(D) ||
|
|
isa<FunctionTemplateDecl>(D) ||
|
|
isa<ClassTemplateDecl>(D));
|
|
|
|
// As a temporary hack, we permit template instantiation to point
|
|
// to the original declaration when instantiating members.
|
|
assert(D->getFriendObjectKind() ||
|
|
(cast<CXXRecordDecl>(DC)->getTemplateSpecializationKind()));
|
|
}
|
|
#endif
|
|
|
|
return new (C) FriendDecl(DC, L, Friend, FriendL);
|
|
}
|
|
|
|
LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
|
|
DeclContext *DC,
|
|
SourceLocation L,
|
|
LanguageIDs Lang, bool Braces) {
|
|
return new (C) LinkageSpecDecl(DC, L, Lang, Braces);
|
|
}
|
|
|
|
UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation L,
|
|
SourceLocation NamespaceLoc,
|
|
SourceRange QualifierRange,
|
|
NestedNameSpecifier *Qualifier,
|
|
SourceLocation IdentLoc,
|
|
NamedDecl *Used,
|
|
DeclContext *CommonAncestor) {
|
|
if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
|
|
Used = NS->getOriginalNamespace();
|
|
return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierRange,
|
|
Qualifier, IdentLoc, Used, CommonAncestor);
|
|
}
|
|
|
|
NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
|
|
if (NamespaceAliasDecl *NA =
|
|
dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
|
|
return NA->getNamespace();
|
|
return cast_or_null<NamespaceDecl>(NominatedNamespace);
|
|
}
|
|
|
|
NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation L,
|
|
SourceLocation AliasLoc,
|
|
IdentifierInfo *Alias,
|
|
SourceRange QualifierRange,
|
|
NestedNameSpecifier *Qualifier,
|
|
SourceLocation IdentLoc,
|
|
NamedDecl *Namespace) {
|
|
if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
|
|
Namespace = NS->getOriginalNamespace();
|
|
return new (C) NamespaceAliasDecl(DC, L, AliasLoc, Alias, QualifierRange,
|
|
Qualifier, IdentLoc, Namespace);
|
|
}
|
|
|
|
UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation L, SourceRange NNR, SourceLocation UL,
|
|
NestedNameSpecifier* TargetNNS, DeclarationName Name,
|
|
bool IsTypeNameArg) {
|
|
return new (C) UsingDecl(DC, L, NNR, UL, TargetNNS, Name, IsTypeNameArg);
|
|
}
|
|
|
|
UnresolvedUsingValueDecl *
|
|
UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation UsingLoc,
|
|
SourceRange TargetNNR,
|
|
NestedNameSpecifier *TargetNNS,
|
|
SourceLocation TargetNameLoc,
|
|
DeclarationName TargetName) {
|
|
return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
|
|
TargetNNR, TargetNNS,
|
|
TargetNameLoc, TargetName);
|
|
}
|
|
|
|
UnresolvedUsingTypenameDecl *
|
|
UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation UsingLoc,
|
|
SourceLocation TypenameLoc,
|
|
SourceRange TargetNNR,
|
|
NestedNameSpecifier *TargetNNS,
|
|
SourceLocation TargetNameLoc,
|
|
DeclarationName TargetName) {
|
|
return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
|
|
TargetNNR, TargetNNS,
|
|
TargetNameLoc,
|
|
TargetName.getAsIdentifierInfo());
|
|
}
|
|
|
|
StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation L, Expr *AssertExpr,
|
|
StringLiteral *Message) {
|
|
return new (C) StaticAssertDecl(DC, L, AssertExpr, Message);
|
|
}
|
|
|
|
void StaticAssertDecl::Destroy(ASTContext& C) {
|
|
AssertExpr->Destroy(C);
|
|
Message->Destroy(C);
|
|
this->~StaticAssertDecl();
|
|
C.Deallocate((void *)this);
|
|
}
|
|
|
|
StaticAssertDecl::~StaticAssertDecl() {
|
|
}
|
|
|
|
static const char *getAccessName(AccessSpecifier AS) {
|
|
switch (AS) {
|
|
default:
|
|
case AS_none:
|
|
assert("Invalid access specifier!");
|
|
return 0;
|
|
case AS_public:
|
|
return "public";
|
|
case AS_private:
|
|
return "private";
|
|
case AS_protected:
|
|
return "protected";
|
|
}
|
|
}
|
|
|
|
const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
|
|
AccessSpecifier AS) {
|
|
return DB << getAccessName(AS);
|
|
}
|
|
|
|
|