forked from OSchip/llvm-project
2602 lines
94 KiB
C++
2602 lines
94 KiB
C++
//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs global value numbering to eliminate fully redundant
|
|
// instructions. It also performs simple dead load elimination.
|
|
//
|
|
// Note that this pass does the value numbering itself; it does not use the
|
|
// ValueNumbering analysis passes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/GVN.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/PHITransAddr.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DomTreeUpdater.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
#include "llvm/Transforms/Utils/VNCoercion.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::gvn;
|
|
using namespace llvm::VNCoercion;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "gvn"
|
|
|
|
STATISTIC(NumGVNInstr, "Number of instructions deleted");
|
|
STATISTIC(NumGVNLoad, "Number of loads deleted");
|
|
STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
|
|
STATISTIC(NumGVNBlocks, "Number of blocks merged");
|
|
STATISTIC(NumGVNSimpl, "Number of instructions simplified");
|
|
STATISTIC(NumGVNEqProp, "Number of equalities propagated");
|
|
STATISTIC(NumPRELoad, "Number of loads PRE'd");
|
|
|
|
static cl::opt<bool> EnablePRE("enable-pre",
|
|
cl::init(true), cl::Hidden);
|
|
static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
|
|
static cl::opt<bool> EnableMemDep("enable-gvn-memdep", cl::init(true));
|
|
|
|
// Maximum allowed recursion depth.
|
|
static cl::opt<uint32_t>
|
|
MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
|
|
cl::desc("Max recurse depth in GVN (default = 1000)"));
|
|
|
|
static cl::opt<uint32_t> MaxNumDeps(
|
|
"gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
|
|
cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
|
|
|
|
struct llvm::GVN::Expression {
|
|
uint32_t opcode;
|
|
Type *type;
|
|
bool commutative = false;
|
|
SmallVector<uint32_t, 4> varargs;
|
|
|
|
Expression(uint32_t o = ~2U) : opcode(o) {}
|
|
|
|
bool operator==(const Expression &other) const {
|
|
if (opcode != other.opcode)
|
|
return false;
|
|
if (opcode == ~0U || opcode == ~1U)
|
|
return true;
|
|
if (type != other.type)
|
|
return false;
|
|
if (varargs != other.varargs)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
friend hash_code hash_value(const Expression &Value) {
|
|
return hash_combine(
|
|
Value.opcode, Value.type,
|
|
hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
|
|
}
|
|
};
|
|
|
|
namespace llvm {
|
|
|
|
template <> struct DenseMapInfo<GVN::Expression> {
|
|
static inline GVN::Expression getEmptyKey() { return ~0U; }
|
|
static inline GVN::Expression getTombstoneKey() { return ~1U; }
|
|
|
|
static unsigned getHashValue(const GVN::Expression &e) {
|
|
using llvm::hash_value;
|
|
|
|
return static_cast<unsigned>(hash_value(e));
|
|
}
|
|
|
|
static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
/// Represents a particular available value that we know how to materialize.
|
|
/// Materialization of an AvailableValue never fails. An AvailableValue is
|
|
/// implicitly associated with a rematerialization point which is the
|
|
/// location of the instruction from which it was formed.
|
|
struct llvm::gvn::AvailableValue {
|
|
enum ValType {
|
|
SimpleVal, // A simple offsetted value that is accessed.
|
|
LoadVal, // A value produced by a load.
|
|
MemIntrin, // A memory intrinsic which is loaded from.
|
|
UndefVal // A UndefValue representing a value from dead block (which
|
|
// is not yet physically removed from the CFG).
|
|
};
|
|
|
|
/// V - The value that is live out of the block.
|
|
PointerIntPair<Value *, 2, ValType> Val;
|
|
|
|
/// Offset - The byte offset in Val that is interesting for the load query.
|
|
unsigned Offset;
|
|
|
|
static AvailableValue get(Value *V, unsigned Offset = 0) {
|
|
AvailableValue Res;
|
|
Res.Val.setPointer(V);
|
|
Res.Val.setInt(SimpleVal);
|
|
Res.Offset = Offset;
|
|
return Res;
|
|
}
|
|
|
|
static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
|
|
AvailableValue Res;
|
|
Res.Val.setPointer(MI);
|
|
Res.Val.setInt(MemIntrin);
|
|
Res.Offset = Offset;
|
|
return Res;
|
|
}
|
|
|
|
static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
|
|
AvailableValue Res;
|
|
Res.Val.setPointer(LI);
|
|
Res.Val.setInt(LoadVal);
|
|
Res.Offset = Offset;
|
|
return Res;
|
|
}
|
|
|
|
static AvailableValue getUndef() {
|
|
AvailableValue Res;
|
|
Res.Val.setPointer(nullptr);
|
|
Res.Val.setInt(UndefVal);
|
|
Res.Offset = 0;
|
|
return Res;
|
|
}
|
|
|
|
bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
|
|
bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
|
|
bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
|
|
bool isUndefValue() const { return Val.getInt() == UndefVal; }
|
|
|
|
Value *getSimpleValue() const {
|
|
assert(isSimpleValue() && "Wrong accessor");
|
|
return Val.getPointer();
|
|
}
|
|
|
|
LoadInst *getCoercedLoadValue() const {
|
|
assert(isCoercedLoadValue() && "Wrong accessor");
|
|
return cast<LoadInst>(Val.getPointer());
|
|
}
|
|
|
|
MemIntrinsic *getMemIntrinValue() const {
|
|
assert(isMemIntrinValue() && "Wrong accessor");
|
|
return cast<MemIntrinsic>(Val.getPointer());
|
|
}
|
|
|
|
/// Emit code at the specified insertion point to adjust the value defined
|
|
/// here to the specified type. This handles various coercion cases.
|
|
Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
|
|
GVN &gvn) const;
|
|
};
|
|
|
|
/// Represents an AvailableValue which can be rematerialized at the end of
|
|
/// the associated BasicBlock.
|
|
struct llvm::gvn::AvailableValueInBlock {
|
|
/// BB - The basic block in question.
|
|
BasicBlock *BB;
|
|
|
|
/// AV - The actual available value
|
|
AvailableValue AV;
|
|
|
|
static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
|
|
AvailableValueInBlock Res;
|
|
Res.BB = BB;
|
|
Res.AV = std::move(AV);
|
|
return Res;
|
|
}
|
|
|
|
static AvailableValueInBlock get(BasicBlock *BB, Value *V,
|
|
unsigned Offset = 0) {
|
|
return get(BB, AvailableValue::get(V, Offset));
|
|
}
|
|
|
|
static AvailableValueInBlock getUndef(BasicBlock *BB) {
|
|
return get(BB, AvailableValue::getUndef());
|
|
}
|
|
|
|
/// Emit code at the end of this block to adjust the value defined here to
|
|
/// the specified type. This handles various coercion cases.
|
|
Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
|
|
return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ValueTable Internal Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
|
|
Expression e;
|
|
e.type = I->getType();
|
|
e.opcode = I->getOpcode();
|
|
for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
|
|
OI != OE; ++OI)
|
|
e.varargs.push_back(lookupOrAdd(*OI));
|
|
if (I->isCommutative()) {
|
|
// Ensure that commutative instructions that only differ by a permutation
|
|
// of their operands get the same value number by sorting the operand value
|
|
// numbers. Since all commutative instructions have two operands it is more
|
|
// efficient to sort by hand rather than using, say, std::sort.
|
|
assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
|
|
if (e.varargs[0] > e.varargs[1])
|
|
std::swap(e.varargs[0], e.varargs[1]);
|
|
e.commutative = true;
|
|
}
|
|
|
|
if (CmpInst *C = dyn_cast<CmpInst>(I)) {
|
|
// Sort the operand value numbers so x<y and y>x get the same value number.
|
|
CmpInst::Predicate Predicate = C->getPredicate();
|
|
if (e.varargs[0] > e.varargs[1]) {
|
|
std::swap(e.varargs[0], e.varargs[1]);
|
|
Predicate = CmpInst::getSwappedPredicate(Predicate);
|
|
}
|
|
e.opcode = (C->getOpcode() << 8) | Predicate;
|
|
e.commutative = true;
|
|
} else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
|
|
for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
|
|
II != IE; ++II)
|
|
e.varargs.push_back(*II);
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
|
|
CmpInst::Predicate Predicate,
|
|
Value *LHS, Value *RHS) {
|
|
assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
|
|
"Not a comparison!");
|
|
Expression e;
|
|
e.type = CmpInst::makeCmpResultType(LHS->getType());
|
|
e.varargs.push_back(lookupOrAdd(LHS));
|
|
e.varargs.push_back(lookupOrAdd(RHS));
|
|
|
|
// Sort the operand value numbers so x<y and y>x get the same value number.
|
|
if (e.varargs[0] > e.varargs[1]) {
|
|
std::swap(e.varargs[0], e.varargs[1]);
|
|
Predicate = CmpInst::getSwappedPredicate(Predicate);
|
|
}
|
|
e.opcode = (Opcode << 8) | Predicate;
|
|
e.commutative = true;
|
|
return e;
|
|
}
|
|
|
|
GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
|
|
assert(EI && "Not an ExtractValueInst?");
|
|
Expression e;
|
|
e.type = EI->getType();
|
|
e.opcode = 0;
|
|
|
|
IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
|
|
if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
|
|
// EI might be an extract from one of our recognised intrinsics. If it
|
|
// is we'll synthesize a semantically equivalent expression instead on
|
|
// an extract value expression.
|
|
switch (I->getIntrinsicID()) {
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::uadd_with_overflow:
|
|
e.opcode = Instruction::Add;
|
|
break;
|
|
case Intrinsic::ssub_with_overflow:
|
|
case Intrinsic::usub_with_overflow:
|
|
e.opcode = Instruction::Sub;
|
|
break;
|
|
case Intrinsic::smul_with_overflow:
|
|
case Intrinsic::umul_with_overflow:
|
|
e.opcode = Instruction::Mul;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (e.opcode != 0) {
|
|
// Intrinsic recognized. Grab its args to finish building the expression.
|
|
assert(I->getNumArgOperands() == 2 &&
|
|
"Expect two args for recognised intrinsics.");
|
|
e.varargs.push_back(lookupOrAdd(I->getArgOperand(0)));
|
|
e.varargs.push_back(lookupOrAdd(I->getArgOperand(1)));
|
|
return e;
|
|
}
|
|
}
|
|
|
|
// Not a recognised intrinsic. Fall back to producing an extract value
|
|
// expression.
|
|
e.opcode = EI->getOpcode();
|
|
for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
|
|
OI != OE; ++OI)
|
|
e.varargs.push_back(lookupOrAdd(*OI));
|
|
|
|
for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
|
|
II != IE; ++II)
|
|
e.varargs.push_back(*II);
|
|
|
|
return e;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ValueTable External Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
GVN::ValueTable::ValueTable() = default;
|
|
GVN::ValueTable::ValueTable(const ValueTable &) = default;
|
|
GVN::ValueTable::ValueTable(ValueTable &&) = default;
|
|
GVN::ValueTable::~ValueTable() = default;
|
|
|
|
/// add - Insert a value into the table with a specified value number.
|
|
void GVN::ValueTable::add(Value *V, uint32_t num) {
|
|
valueNumbering.insert(std::make_pair(V, num));
|
|
if (PHINode *PN = dyn_cast<PHINode>(V))
|
|
NumberingPhi[num] = PN;
|
|
}
|
|
|
|
uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
|
|
if (AA->doesNotAccessMemory(C)) {
|
|
Expression exp = createExpr(C);
|
|
uint32_t e = assignExpNewValueNum(exp).first;
|
|
valueNumbering[C] = e;
|
|
return e;
|
|
} else if (MD && AA->onlyReadsMemory(C)) {
|
|
Expression exp = createExpr(C);
|
|
auto ValNum = assignExpNewValueNum(exp);
|
|
if (ValNum.second) {
|
|
valueNumbering[C] = ValNum.first;
|
|
return ValNum.first;
|
|
}
|
|
|
|
MemDepResult local_dep = MD->getDependency(C);
|
|
|
|
if (!local_dep.isDef() && !local_dep.isNonLocal()) {
|
|
valueNumbering[C] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
|
|
if (local_dep.isDef()) {
|
|
CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
|
|
|
|
if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
|
|
valueNumbering[C] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
|
|
for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
|
|
uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
|
|
uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
|
|
if (c_vn != cd_vn) {
|
|
valueNumbering[C] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
}
|
|
|
|
uint32_t v = lookupOrAdd(local_cdep);
|
|
valueNumbering[C] = v;
|
|
return v;
|
|
}
|
|
|
|
// Non-local case.
|
|
const MemoryDependenceResults::NonLocalDepInfo &deps =
|
|
MD->getNonLocalCallDependency(C);
|
|
// FIXME: Move the checking logic to MemDep!
|
|
CallInst* cdep = nullptr;
|
|
|
|
// Check to see if we have a single dominating call instruction that is
|
|
// identical to C.
|
|
for (unsigned i = 0, e = deps.size(); i != e; ++i) {
|
|
const NonLocalDepEntry *I = &deps[i];
|
|
if (I->getResult().isNonLocal())
|
|
continue;
|
|
|
|
// We don't handle non-definitions. If we already have a call, reject
|
|
// instruction dependencies.
|
|
if (!I->getResult().isDef() || cdep != nullptr) {
|
|
cdep = nullptr;
|
|
break;
|
|
}
|
|
|
|
CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
|
|
// FIXME: All duplicated with non-local case.
|
|
if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
|
|
cdep = NonLocalDepCall;
|
|
continue;
|
|
}
|
|
|
|
cdep = nullptr;
|
|
break;
|
|
}
|
|
|
|
if (!cdep) {
|
|
valueNumbering[C] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
|
|
if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
|
|
valueNumbering[C] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
|
|
uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
|
|
uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
|
|
if (c_vn != cd_vn) {
|
|
valueNumbering[C] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
}
|
|
|
|
uint32_t v = lookupOrAdd(cdep);
|
|
valueNumbering[C] = v;
|
|
return v;
|
|
} else {
|
|
valueNumbering[C] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
}
|
|
|
|
/// Returns true if a value number exists for the specified value.
|
|
bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
|
|
|
|
/// lookup_or_add - Returns the value number for the specified value, assigning
|
|
/// it a new number if it did not have one before.
|
|
uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
|
|
DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
|
|
if (VI != valueNumbering.end())
|
|
return VI->second;
|
|
|
|
if (!isa<Instruction>(V)) {
|
|
valueNumbering[V] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
|
|
Instruction* I = cast<Instruction>(V);
|
|
Expression exp;
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Call:
|
|
return lookupOrAddCall(cast<CallInst>(I));
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::BitCast:
|
|
case Instruction::Select:
|
|
case Instruction::ExtractElement:
|
|
case Instruction::InsertElement:
|
|
case Instruction::ShuffleVector:
|
|
case Instruction::InsertValue:
|
|
case Instruction::GetElementPtr:
|
|
exp = createExpr(I);
|
|
break;
|
|
case Instruction::ExtractValue:
|
|
exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
|
|
break;
|
|
case Instruction::PHI:
|
|
valueNumbering[V] = nextValueNumber;
|
|
NumberingPhi[nextValueNumber] = cast<PHINode>(V);
|
|
return nextValueNumber++;
|
|
default:
|
|
valueNumbering[V] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
|
|
uint32_t e = assignExpNewValueNum(exp).first;
|
|
valueNumbering[V] = e;
|
|
return e;
|
|
}
|
|
|
|
/// Returns the value number of the specified value. Fails if
|
|
/// the value has not yet been numbered.
|
|
uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
|
|
DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
|
|
if (Verify) {
|
|
assert(VI != valueNumbering.end() && "Value not numbered?");
|
|
return VI->second;
|
|
}
|
|
return (VI != valueNumbering.end()) ? VI->second : 0;
|
|
}
|
|
|
|
/// Returns the value number of the given comparison,
|
|
/// assigning it a new number if it did not have one before. Useful when
|
|
/// we deduced the result of a comparison, but don't immediately have an
|
|
/// instruction realizing that comparison to hand.
|
|
uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
|
|
CmpInst::Predicate Predicate,
|
|
Value *LHS, Value *RHS) {
|
|
Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
|
|
return assignExpNewValueNum(exp).first;
|
|
}
|
|
|
|
/// Remove all entries from the ValueTable.
|
|
void GVN::ValueTable::clear() {
|
|
valueNumbering.clear();
|
|
expressionNumbering.clear();
|
|
NumberingPhi.clear();
|
|
PhiTranslateTable.clear();
|
|
nextValueNumber = 1;
|
|
Expressions.clear();
|
|
ExprIdx.clear();
|
|
nextExprNumber = 0;
|
|
}
|
|
|
|
/// Remove a value from the value numbering.
|
|
void GVN::ValueTable::erase(Value *V) {
|
|
uint32_t Num = valueNumbering.lookup(V);
|
|
valueNumbering.erase(V);
|
|
// If V is PHINode, V <--> value number is an one-to-one mapping.
|
|
if (isa<PHINode>(V))
|
|
NumberingPhi.erase(Num);
|
|
}
|
|
|
|
/// verifyRemoved - Verify that the value is removed from all internal data
|
|
/// structures.
|
|
void GVN::ValueTable::verifyRemoved(const Value *V) const {
|
|
for (DenseMap<Value*, uint32_t>::const_iterator
|
|
I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
|
|
assert(I->first != V && "Inst still occurs in value numbering map!");
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GVN Pass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
|
|
// FIXME: The order of evaluation of these 'getResult' calls is very
|
|
// significant! Re-ordering these variables will cause GVN when run alone to
|
|
// be less effective! We should fix memdep and basic-aa to not exhibit this
|
|
// behavior, but until then don't change the order here.
|
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto &AA = AM.getResult<AAManager>(F);
|
|
auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
|
|
auto *LI = AM.getCachedResult<LoopAnalysis>(F);
|
|
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE);
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
PA.preserve<GlobalsAA>();
|
|
PA.preserve<TargetLibraryAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
|
|
errs() << "{\n";
|
|
for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
|
|
E = d.end(); I != E; ++I) {
|
|
errs() << I->first << "\n";
|
|
I->second->dump();
|
|
}
|
|
errs() << "}\n";
|
|
}
|
|
#endif
|
|
|
|
/// Return true if we can prove that the value
|
|
/// we're analyzing is fully available in the specified block. As we go, keep
|
|
/// track of which blocks we know are fully alive in FullyAvailableBlocks. This
|
|
/// map is actually a tri-state map with the following values:
|
|
/// 0) we know the block *is not* fully available.
|
|
/// 1) we know the block *is* fully available.
|
|
/// 2) we do not know whether the block is fully available or not, but we are
|
|
/// currently speculating that it will be.
|
|
/// 3) we are speculating for this block and have used that to speculate for
|
|
/// other blocks.
|
|
static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
|
|
DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
|
|
uint32_t RecurseDepth) {
|
|
if (RecurseDepth > MaxRecurseDepth)
|
|
return false;
|
|
|
|
// Optimistically assume that the block is fully available and check to see
|
|
// if we already know about this block in one lookup.
|
|
std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV =
|
|
FullyAvailableBlocks.insert(std::make_pair(BB, 2));
|
|
|
|
// If the entry already existed for this block, return the precomputed value.
|
|
if (!IV.second) {
|
|
// If this is a speculative "available" value, mark it as being used for
|
|
// speculation of other blocks.
|
|
if (IV.first->second == 2)
|
|
IV.first->second = 3;
|
|
return IV.first->second != 0;
|
|
}
|
|
|
|
// Otherwise, see if it is fully available in all predecessors.
|
|
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
|
|
// If this block has no predecessors, it isn't live-in here.
|
|
if (PI == PE)
|
|
goto SpeculationFailure;
|
|
|
|
for (; PI != PE; ++PI)
|
|
// If the value isn't fully available in one of our predecessors, then it
|
|
// isn't fully available in this block either. Undo our previous
|
|
// optimistic assumption and bail out.
|
|
if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
|
|
goto SpeculationFailure;
|
|
|
|
return true;
|
|
|
|
// If we get here, we found out that this is not, after
|
|
// all, a fully-available block. We have a problem if we speculated on this and
|
|
// used the speculation to mark other blocks as available.
|
|
SpeculationFailure:
|
|
char &BBVal = FullyAvailableBlocks[BB];
|
|
|
|
// If we didn't speculate on this, just return with it set to false.
|
|
if (BBVal == 2) {
|
|
BBVal = 0;
|
|
return false;
|
|
}
|
|
|
|
// If we did speculate on this value, we could have blocks set to 1 that are
|
|
// incorrect. Walk the (transitive) successors of this block and mark them as
|
|
// 0 if set to one.
|
|
SmallVector<BasicBlock*, 32> BBWorklist;
|
|
BBWorklist.push_back(BB);
|
|
|
|
do {
|
|
BasicBlock *Entry = BBWorklist.pop_back_val();
|
|
// Note that this sets blocks to 0 (unavailable) if they happen to not
|
|
// already be in FullyAvailableBlocks. This is safe.
|
|
char &EntryVal = FullyAvailableBlocks[Entry];
|
|
if (EntryVal == 0) continue; // Already unavailable.
|
|
|
|
// Mark as unavailable.
|
|
EntryVal = 0;
|
|
|
|
BBWorklist.append(succ_begin(Entry), succ_end(Entry));
|
|
} while (!BBWorklist.empty());
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Given a set of loads specified by ValuesPerBlock,
|
|
/// construct SSA form, allowing us to eliminate LI. This returns the value
|
|
/// that should be used at LI's definition site.
|
|
static Value *ConstructSSAForLoadSet(LoadInst *LI,
|
|
SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
|
|
GVN &gvn) {
|
|
// Check for the fully redundant, dominating load case. In this case, we can
|
|
// just use the dominating value directly.
|
|
if (ValuesPerBlock.size() == 1 &&
|
|
gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
|
|
LI->getParent())) {
|
|
assert(!ValuesPerBlock[0].AV.isUndefValue() &&
|
|
"Dead BB dominate this block");
|
|
return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
|
|
}
|
|
|
|
// Otherwise, we have to construct SSA form.
|
|
SmallVector<PHINode*, 8> NewPHIs;
|
|
SSAUpdater SSAUpdate(&NewPHIs);
|
|
SSAUpdate.Initialize(LI->getType(), LI->getName());
|
|
|
|
for (const AvailableValueInBlock &AV : ValuesPerBlock) {
|
|
BasicBlock *BB = AV.BB;
|
|
|
|
if (SSAUpdate.HasValueForBlock(BB))
|
|
continue;
|
|
|
|
// If the value is the load that we will be eliminating, and the block it's
|
|
// available in is the block that the load is in, then don't add it as
|
|
// SSAUpdater will resolve the value to the relevant phi which may let it
|
|
// avoid phi construction entirely if there's actually only one value.
|
|
if (BB == LI->getParent() &&
|
|
((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) ||
|
|
(AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI)))
|
|
continue;
|
|
|
|
SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
|
|
}
|
|
|
|
// Perform PHI construction.
|
|
return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
|
|
}
|
|
|
|
Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
|
|
Instruction *InsertPt,
|
|
GVN &gvn) const {
|
|
Value *Res;
|
|
Type *LoadTy = LI->getType();
|
|
const DataLayout &DL = LI->getModule()->getDataLayout();
|
|
if (isSimpleValue()) {
|
|
Res = getSimpleValue();
|
|
if (Res->getType() != LoadTy) {
|
|
Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
|
|
|
|
LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
|
|
<< " " << *getSimpleValue() << '\n'
|
|
<< *Res << '\n'
|
|
<< "\n\n\n");
|
|
}
|
|
} else if (isCoercedLoadValue()) {
|
|
LoadInst *Load = getCoercedLoadValue();
|
|
if (Load->getType() == LoadTy && Offset == 0) {
|
|
Res = Load;
|
|
} else {
|
|
Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL);
|
|
// We would like to use gvn.markInstructionForDeletion here, but we can't
|
|
// because the load is already memoized into the leader map table that GVN
|
|
// tracks. It is potentially possible to remove the load from the table,
|
|
// but then there all of the operations based on it would need to be
|
|
// rehashed. Just leave the dead load around.
|
|
gvn.getMemDep().removeInstruction(Load);
|
|
LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
|
|
<< " " << *getCoercedLoadValue() << '\n'
|
|
<< *Res << '\n'
|
|
<< "\n\n\n");
|
|
}
|
|
} else if (isMemIntrinValue()) {
|
|
Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
|
|
InsertPt, DL);
|
|
LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
|
|
<< " " << *getMemIntrinValue() << '\n'
|
|
<< *Res << '\n'
|
|
<< "\n\n\n");
|
|
} else {
|
|
assert(isUndefValue() && "Should be UndefVal");
|
|
LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
|
|
return UndefValue::get(LoadTy);
|
|
}
|
|
assert(Res && "failed to materialize?");
|
|
return Res;
|
|
}
|
|
|
|
static bool isLifetimeStart(const Instruction *Inst) {
|
|
if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
|
|
return II->getIntrinsicID() == Intrinsic::lifetime_start;
|
|
return false;
|
|
}
|
|
|
|
/// Try to locate the three instruction involved in a missed
|
|
/// load-elimination case that is due to an intervening store.
|
|
static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo,
|
|
DominatorTree *DT,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
using namespace ore;
|
|
|
|
User *OtherAccess = nullptr;
|
|
|
|
OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI);
|
|
R << "load of type " << NV("Type", LI->getType()) << " not eliminated"
|
|
<< setExtraArgs();
|
|
|
|
for (auto *U : LI->getPointerOperand()->users())
|
|
if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
|
|
DT->dominates(cast<Instruction>(U), LI)) {
|
|
// FIXME: for now give up if there are multiple memory accesses that
|
|
// dominate the load. We need further analysis to decide which one is
|
|
// that we're forwarding from.
|
|
if (OtherAccess)
|
|
OtherAccess = nullptr;
|
|
else
|
|
OtherAccess = U;
|
|
}
|
|
|
|
if (OtherAccess)
|
|
R << " in favor of " << NV("OtherAccess", OtherAccess);
|
|
|
|
R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
|
|
|
|
ORE->emit(R);
|
|
}
|
|
|
|
bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
|
|
Value *Address, AvailableValue &Res) {
|
|
assert((DepInfo.isDef() || DepInfo.isClobber()) &&
|
|
"expected a local dependence");
|
|
assert(LI->isUnordered() && "rules below are incorrect for ordered access");
|
|
|
|
const DataLayout &DL = LI->getModule()->getDataLayout();
|
|
|
|
if (DepInfo.isClobber()) {
|
|
// If the dependence is to a store that writes to a superset of the bits
|
|
// read by the load, we can extract the bits we need for the load from the
|
|
// stored value.
|
|
if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
|
|
// Can't forward from non-atomic to atomic without violating memory model.
|
|
if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
|
|
int Offset =
|
|
analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL);
|
|
if (Offset != -1) {
|
|
Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check to see if we have something like this:
|
|
// load i32* P
|
|
// load i8* (P+1)
|
|
// if we have this, replace the later with an extraction from the former.
|
|
if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
|
|
// If this is a clobber and L is the first instruction in its block, then
|
|
// we have the first instruction in the entry block.
|
|
// Can't forward from non-atomic to atomic without violating memory model.
|
|
if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
|
|
int Offset =
|
|
analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
|
|
|
|
if (Offset != -1) {
|
|
Res = AvailableValue::getLoad(DepLI, Offset);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the clobbering value is a memset/memcpy/memmove, see if we can
|
|
// forward a value on from it.
|
|
if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
|
|
if (Address && !LI->isAtomic()) {
|
|
int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
|
|
DepMI, DL);
|
|
if (Offset != -1) {
|
|
Res = AvailableValue::getMI(DepMI, Offset);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
// Nothing known about this clobber, have to be conservative
|
|
LLVM_DEBUG(
|
|
// fast print dep, using operator<< on instruction is too slow.
|
|
dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
|
|
Instruction *I = DepInfo.getInst();
|
|
dbgs() << " is clobbered by " << *I << '\n';);
|
|
if (ORE->allowExtraAnalysis(DEBUG_TYPE))
|
|
reportMayClobberedLoad(LI, DepInfo, DT, ORE);
|
|
|
|
return false;
|
|
}
|
|
assert(DepInfo.isDef() && "follows from above");
|
|
|
|
Instruction *DepInst = DepInfo.getInst();
|
|
|
|
// Loading the allocation -> undef.
|
|
if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
|
|
// Loading immediately after lifetime begin -> undef.
|
|
isLifetimeStart(DepInst)) {
|
|
Res = AvailableValue::get(UndefValue::get(LI->getType()));
|
|
return true;
|
|
}
|
|
|
|
// Loading from calloc (which zero initializes memory) -> zero
|
|
if (isCallocLikeFn(DepInst, TLI)) {
|
|
Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
|
|
return true;
|
|
}
|
|
|
|
if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
|
|
// Reject loads and stores that are to the same address but are of
|
|
// different types if we have to. If the stored value is larger or equal to
|
|
// the loaded value, we can reuse it.
|
|
if (S->getValueOperand()->getType() != LI->getType() &&
|
|
!canCoerceMustAliasedValueToLoad(S->getValueOperand(),
|
|
LI->getType(), DL))
|
|
return false;
|
|
|
|
// Can't forward from non-atomic to atomic without violating memory model.
|
|
if (S->isAtomic() < LI->isAtomic())
|
|
return false;
|
|
|
|
Res = AvailableValue::get(S->getValueOperand());
|
|
return true;
|
|
}
|
|
|
|
if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
|
|
// If the types mismatch and we can't handle it, reject reuse of the load.
|
|
// If the stored value is larger or equal to the loaded value, we can reuse
|
|
// it.
|
|
if (LD->getType() != LI->getType() &&
|
|
!canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
|
|
return false;
|
|
|
|
// Can't forward from non-atomic to atomic without violating memory model.
|
|
if (LD->isAtomic() < LI->isAtomic())
|
|
return false;
|
|
|
|
Res = AvailableValue::getLoad(LD);
|
|
return true;
|
|
}
|
|
|
|
// Unknown def - must be conservative
|
|
LLVM_DEBUG(
|
|
// fast print dep, using operator<< on instruction is too slow.
|
|
dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
|
|
dbgs() << " has unknown def " << *DepInst << '\n';);
|
|
return false;
|
|
}
|
|
|
|
void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
|
|
AvailValInBlkVect &ValuesPerBlock,
|
|
UnavailBlkVect &UnavailableBlocks) {
|
|
// Filter out useless results (non-locals, etc). Keep track of the blocks
|
|
// where we have a value available in repl, also keep track of whether we see
|
|
// dependencies that produce an unknown value for the load (such as a call
|
|
// that could potentially clobber the load).
|
|
unsigned NumDeps = Deps.size();
|
|
for (unsigned i = 0, e = NumDeps; i != e; ++i) {
|
|
BasicBlock *DepBB = Deps[i].getBB();
|
|
MemDepResult DepInfo = Deps[i].getResult();
|
|
|
|
if (DeadBlocks.count(DepBB)) {
|
|
// Dead dependent mem-op disguise as a load evaluating the same value
|
|
// as the load in question.
|
|
ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
|
|
continue;
|
|
}
|
|
|
|
if (!DepInfo.isDef() && !DepInfo.isClobber()) {
|
|
UnavailableBlocks.push_back(DepBB);
|
|
continue;
|
|
}
|
|
|
|
// The address being loaded in this non-local block may not be the same as
|
|
// the pointer operand of the load if PHI translation occurs. Make sure
|
|
// to consider the right address.
|
|
Value *Address = Deps[i].getAddress();
|
|
|
|
AvailableValue AV;
|
|
if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
|
|
// subtlety: because we know this was a non-local dependency, we know
|
|
// it's safe to materialize anywhere between the instruction within
|
|
// DepInfo and the end of it's block.
|
|
ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
|
|
std::move(AV)));
|
|
} else {
|
|
UnavailableBlocks.push_back(DepBB);
|
|
}
|
|
}
|
|
|
|
assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
|
|
"post condition violation");
|
|
}
|
|
|
|
bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
|
|
UnavailBlkVect &UnavailableBlocks) {
|
|
// Okay, we have *some* definitions of the value. This means that the value
|
|
// is available in some of our (transitive) predecessors. Lets think about
|
|
// doing PRE of this load. This will involve inserting a new load into the
|
|
// predecessor when it's not available. We could do this in general, but
|
|
// prefer to not increase code size. As such, we only do this when we know
|
|
// that we only have to insert *one* load (which means we're basically moving
|
|
// the load, not inserting a new one).
|
|
|
|
SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
|
|
UnavailableBlocks.end());
|
|
|
|
// Let's find the first basic block with more than one predecessor. Walk
|
|
// backwards through predecessors if needed.
|
|
BasicBlock *LoadBB = LI->getParent();
|
|
BasicBlock *TmpBB = LoadBB;
|
|
bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI);
|
|
|
|
// Check that there is no implicit control flow instructions above our load in
|
|
// its block. If there is an instruction that doesn't always pass the
|
|
// execution to the following instruction, then moving through it may become
|
|
// invalid. For example:
|
|
//
|
|
// int arr[LEN];
|
|
// int index = ???;
|
|
// ...
|
|
// guard(0 <= index && index < LEN);
|
|
// use(arr[index]);
|
|
//
|
|
// It is illegal to move the array access to any point above the guard,
|
|
// because if the index is out of bounds we should deoptimize rather than
|
|
// access the array.
|
|
// Check that there is no guard in this block above our instruction.
|
|
if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI))
|
|
return false;
|
|
while (TmpBB->getSinglePredecessor()) {
|
|
TmpBB = TmpBB->getSinglePredecessor();
|
|
if (TmpBB == LoadBB) // Infinite (unreachable) loop.
|
|
return false;
|
|
if (Blockers.count(TmpBB))
|
|
return false;
|
|
|
|
// If any of these blocks has more than one successor (i.e. if the edge we
|
|
// just traversed was critical), then there are other paths through this
|
|
// block along which the load may not be anticipated. Hoisting the load
|
|
// above this block would be adding the load to execution paths along
|
|
// which it was not previously executed.
|
|
if (TmpBB->getTerminator()->getNumSuccessors() != 1)
|
|
return false;
|
|
|
|
// Check that there is no implicit control flow in a block above.
|
|
if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB))
|
|
return false;
|
|
}
|
|
|
|
assert(TmpBB);
|
|
LoadBB = TmpBB;
|
|
|
|
// Check to see how many predecessors have the loaded value fully
|
|
// available.
|
|
MapVector<BasicBlock *, Value *> PredLoads;
|
|
DenseMap<BasicBlock*, char> FullyAvailableBlocks;
|
|
for (const AvailableValueInBlock &AV : ValuesPerBlock)
|
|
FullyAvailableBlocks[AV.BB] = true;
|
|
for (BasicBlock *UnavailableBB : UnavailableBlocks)
|
|
FullyAvailableBlocks[UnavailableBB] = false;
|
|
|
|
SmallVector<BasicBlock *, 4> CriticalEdgePred;
|
|
for (BasicBlock *Pred : predecessors(LoadBB)) {
|
|
// If any predecessor block is an EH pad that does not allow non-PHI
|
|
// instructions before the terminator, we can't PRE the load.
|
|
if (Pred->getTerminator()->isEHPad()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
|
|
<< Pred->getName() << "': " << *LI << '\n');
|
|
return false;
|
|
}
|
|
|
|
if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
|
|
continue;
|
|
}
|
|
|
|
if (Pred->getTerminator()->getNumSuccessors() != 1) {
|
|
if (isa<IndirectBrInst>(Pred->getTerminator())) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
|
|
<< Pred->getName() << "': " << *LI << '\n');
|
|
return false;
|
|
}
|
|
|
|
if (LoadBB->isEHPad()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
|
|
<< Pred->getName() << "': " << *LI << '\n');
|
|
return false;
|
|
}
|
|
|
|
CriticalEdgePred.push_back(Pred);
|
|
} else {
|
|
// Only add the predecessors that will not be split for now.
|
|
PredLoads[Pred] = nullptr;
|
|
}
|
|
}
|
|
|
|
// Decide whether PRE is profitable for this load.
|
|
unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
|
|
assert(NumUnavailablePreds != 0 &&
|
|
"Fully available value should already be eliminated!");
|
|
|
|
// If this load is unavailable in multiple predecessors, reject it.
|
|
// FIXME: If we could restructure the CFG, we could make a common pred with
|
|
// all the preds that don't have an available LI and insert a new load into
|
|
// that one block.
|
|
if (NumUnavailablePreds != 1)
|
|
return false;
|
|
|
|
// Split critical edges, and update the unavailable predecessors accordingly.
|
|
for (BasicBlock *OrigPred : CriticalEdgePred) {
|
|
BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
|
|
assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
|
|
PredLoads[NewPred] = nullptr;
|
|
LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
|
|
<< LoadBB->getName() << '\n');
|
|
}
|
|
|
|
// Check if the load can safely be moved to all the unavailable predecessors.
|
|
bool CanDoPRE = true;
|
|
const DataLayout &DL = LI->getModule()->getDataLayout();
|
|
SmallVector<Instruction*, 8> NewInsts;
|
|
for (auto &PredLoad : PredLoads) {
|
|
BasicBlock *UnavailablePred = PredLoad.first;
|
|
|
|
// Do PHI translation to get its value in the predecessor if necessary. The
|
|
// returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
|
|
|
|
// If all preds have a single successor, then we know it is safe to insert
|
|
// the load on the pred (?!?), so we can insert code to materialize the
|
|
// pointer if it is not available.
|
|
PHITransAddr Address(LI->getPointerOperand(), DL, AC);
|
|
Value *LoadPtr = nullptr;
|
|
LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
|
|
*DT, NewInsts);
|
|
|
|
// If we couldn't find or insert a computation of this phi translated value,
|
|
// we fail PRE.
|
|
if (!LoadPtr) {
|
|
LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
|
|
<< *LI->getPointerOperand() << "\n");
|
|
CanDoPRE = false;
|
|
break;
|
|
}
|
|
|
|
PredLoad.second = LoadPtr;
|
|
}
|
|
|
|
if (!CanDoPRE) {
|
|
while (!NewInsts.empty()) {
|
|
Instruction *I = NewInsts.pop_back_val();
|
|
markInstructionForDeletion(I);
|
|
}
|
|
// HINT: Don't revert the edge-splitting as following transformation may
|
|
// also need to split these critical edges.
|
|
return !CriticalEdgePred.empty();
|
|
}
|
|
|
|
// Okay, we can eliminate this load by inserting a reload in the predecessor
|
|
// and using PHI construction to get the value in the other predecessors, do
|
|
// it.
|
|
LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
|
|
LLVM_DEBUG(if (!NewInsts.empty()) dbgs()
|
|
<< "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back()
|
|
<< '\n');
|
|
|
|
// Assign value numbers to the new instructions.
|
|
for (Instruction *I : NewInsts) {
|
|
// Instructions that have been inserted in predecessor(s) to materialize
|
|
// the load address do not retain their original debug locations. Doing
|
|
// so could lead to confusing (but correct) source attributions.
|
|
// FIXME: How do we retain source locations without causing poor debugging
|
|
// behavior?
|
|
I->setDebugLoc(DebugLoc());
|
|
|
|
// FIXME: We really _ought_ to insert these value numbers into their
|
|
// parent's availability map. However, in doing so, we risk getting into
|
|
// ordering issues. If a block hasn't been processed yet, we would be
|
|
// marking a value as AVAIL-IN, which isn't what we intend.
|
|
VN.lookupOrAdd(I);
|
|
}
|
|
|
|
for (const auto &PredLoad : PredLoads) {
|
|
BasicBlock *UnavailablePred = PredLoad.first;
|
|
Value *LoadPtr = PredLoad.second;
|
|
|
|
auto *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre",
|
|
LI->isVolatile(), LI->getAlignment(),
|
|
LI->getOrdering(), LI->getSyncScopeID(),
|
|
UnavailablePred->getTerminator());
|
|
NewLoad->setDebugLoc(LI->getDebugLoc());
|
|
|
|
// Transfer the old load's AA tags to the new load.
|
|
AAMDNodes Tags;
|
|
LI->getAAMetadata(Tags);
|
|
if (Tags)
|
|
NewLoad->setAAMetadata(Tags);
|
|
|
|
if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
|
|
NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
|
|
if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
|
|
NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
|
|
if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
|
|
NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
|
|
|
|
// We do not propagate the old load's debug location, because the new
|
|
// load now lives in a different BB, and we want to avoid a jumpy line
|
|
// table.
|
|
// FIXME: How do we retain source locations without causing poor debugging
|
|
// behavior?
|
|
|
|
// Add the newly created load.
|
|
ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
|
|
NewLoad));
|
|
MD->invalidateCachedPointerInfo(LoadPtr);
|
|
LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
|
|
}
|
|
|
|
// Perform PHI construction.
|
|
Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
|
|
LI->replaceAllUsesWith(V);
|
|
if (isa<PHINode>(V))
|
|
V->takeName(LI);
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
I->setDebugLoc(LI->getDebugLoc());
|
|
if (V->getType()->isPtrOrPtrVectorTy())
|
|
MD->invalidateCachedPointerInfo(V);
|
|
markInstructionForDeletion(LI);
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI)
|
|
<< "load eliminated by PRE";
|
|
});
|
|
++NumPRELoad;
|
|
return true;
|
|
}
|
|
|
|
static void reportLoadElim(LoadInst *LI, Value *AvailableValue,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
using namespace ore;
|
|
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI)
|
|
<< "load of type " << NV("Type", LI->getType()) << " eliminated"
|
|
<< setExtraArgs() << " in favor of "
|
|
<< NV("InfavorOfValue", AvailableValue);
|
|
});
|
|
}
|
|
|
|
/// Attempt to eliminate a load whose dependencies are
|
|
/// non-local by performing PHI construction.
|
|
bool GVN::processNonLocalLoad(LoadInst *LI) {
|
|
// non-local speculations are not allowed under asan.
|
|
if (LI->getParent()->getParent()->hasFnAttribute(
|
|
Attribute::SanitizeAddress) ||
|
|
LI->getParent()->getParent()->hasFnAttribute(
|
|
Attribute::SanitizeHWAddress))
|
|
return false;
|
|
|
|
// Step 1: Find the non-local dependencies of the load.
|
|
LoadDepVect Deps;
|
|
MD->getNonLocalPointerDependency(LI, Deps);
|
|
|
|
// If we had to process more than one hundred blocks to find the
|
|
// dependencies, this load isn't worth worrying about. Optimizing
|
|
// it will be too expensive.
|
|
unsigned NumDeps = Deps.size();
|
|
if (NumDeps > MaxNumDeps)
|
|
return false;
|
|
|
|
// If we had a phi translation failure, we'll have a single entry which is a
|
|
// clobber in the current block. Reject this early.
|
|
if (NumDeps == 1 &&
|
|
!Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
|
|
LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs());
|
|
dbgs() << " has unknown dependencies\n";);
|
|
return false;
|
|
}
|
|
|
|
// If this load follows a GEP, see if we can PRE the indices before analyzing.
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
|
|
for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
|
|
OE = GEP->idx_end();
|
|
OI != OE; ++OI)
|
|
if (Instruction *I = dyn_cast<Instruction>(OI->get()))
|
|
performScalarPRE(I);
|
|
}
|
|
|
|
// Step 2: Analyze the availability of the load
|
|
AvailValInBlkVect ValuesPerBlock;
|
|
UnavailBlkVect UnavailableBlocks;
|
|
AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
|
|
|
|
// If we have no predecessors that produce a known value for this load, exit
|
|
// early.
|
|
if (ValuesPerBlock.empty())
|
|
return false;
|
|
|
|
// Step 3: Eliminate fully redundancy.
|
|
//
|
|
// If all of the instructions we depend on produce a known value for this
|
|
// load, then it is fully redundant and we can use PHI insertion to compute
|
|
// its value. Insert PHIs and remove the fully redundant value now.
|
|
if (UnavailableBlocks.empty()) {
|
|
LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
|
|
|
|
// Perform PHI construction.
|
|
Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
|
|
LI->replaceAllUsesWith(V);
|
|
|
|
if (isa<PHINode>(V))
|
|
V->takeName(LI);
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
// If instruction I has debug info, then we should not update it.
|
|
// Also, if I has a null DebugLoc, then it is still potentially incorrect
|
|
// to propagate LI's DebugLoc because LI may not post-dominate I.
|
|
if (LI->getDebugLoc() && LI->getParent() == I->getParent())
|
|
I->setDebugLoc(LI->getDebugLoc());
|
|
if (V->getType()->isPtrOrPtrVectorTy())
|
|
MD->invalidateCachedPointerInfo(V);
|
|
markInstructionForDeletion(LI);
|
|
++NumGVNLoad;
|
|
reportLoadElim(LI, V, ORE);
|
|
return true;
|
|
}
|
|
|
|
// Step 4: Eliminate partial redundancy.
|
|
if (!EnablePRE || !EnableLoadPRE)
|
|
return false;
|
|
|
|
return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
|
|
}
|
|
|
|
bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
|
|
assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
|
|
"This function can only be called with llvm.assume intrinsic");
|
|
Value *V = IntrinsicI->getArgOperand(0);
|
|
|
|
if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
|
|
if (Cond->isZero()) {
|
|
Type *Int8Ty = Type::getInt8Ty(V->getContext());
|
|
// Insert a new store to null instruction before the load to indicate that
|
|
// this code is not reachable. FIXME: We could insert unreachable
|
|
// instruction directly because we can modify the CFG.
|
|
new StoreInst(UndefValue::get(Int8Ty),
|
|
Constant::getNullValue(Int8Ty->getPointerTo()),
|
|
IntrinsicI);
|
|
}
|
|
markInstructionForDeletion(IntrinsicI);
|
|
return false;
|
|
} else if (isa<Constant>(V)) {
|
|
// If it's not false, and constant, it must evaluate to true. This means our
|
|
// assume is assume(true), and thus, pointless, and we don't want to do
|
|
// anything more here.
|
|
return false;
|
|
}
|
|
|
|
Constant *True = ConstantInt::getTrue(V->getContext());
|
|
bool Changed = false;
|
|
|
|
for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
|
|
BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
|
|
|
|
// This property is only true in dominated successors, propagateEquality
|
|
// will check dominance for us.
|
|
Changed |= propagateEquality(V, True, Edge, false);
|
|
}
|
|
|
|
// We can replace assume value with true, which covers cases like this:
|
|
// call void @llvm.assume(i1 %cmp)
|
|
// br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
|
|
ReplaceWithConstMap[V] = True;
|
|
|
|
// If one of *cmp *eq operand is const, adding it to map will cover this:
|
|
// %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
|
|
// call void @llvm.assume(i1 %cmp)
|
|
// ret float %0 ; will change it to ret float 3.000000e+00
|
|
if (auto *CmpI = dyn_cast<CmpInst>(V)) {
|
|
if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
|
|
CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
|
|
(CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
|
|
CmpI->getFastMathFlags().noNaNs())) {
|
|
Value *CmpLHS = CmpI->getOperand(0);
|
|
Value *CmpRHS = CmpI->getOperand(1);
|
|
if (isa<Constant>(CmpLHS))
|
|
std::swap(CmpLHS, CmpRHS);
|
|
auto *RHSConst = dyn_cast<Constant>(CmpRHS);
|
|
|
|
// If only one operand is constant.
|
|
if (RHSConst != nullptr && !isa<Constant>(CmpLHS))
|
|
ReplaceWithConstMap[CmpLHS] = RHSConst;
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
|
|
patchReplacementInstruction(I, Repl);
|
|
I->replaceAllUsesWith(Repl);
|
|
}
|
|
|
|
/// Attempt to eliminate a load, first by eliminating it
|
|
/// locally, and then attempting non-local elimination if that fails.
|
|
bool GVN::processLoad(LoadInst *L) {
|
|
if (!MD)
|
|
return false;
|
|
|
|
// This code hasn't been audited for ordered or volatile memory access
|
|
if (!L->isUnordered())
|
|
return false;
|
|
|
|
if (L->use_empty()) {
|
|
markInstructionForDeletion(L);
|
|
return true;
|
|
}
|
|
|
|
// ... to a pointer that has been loaded from before...
|
|
MemDepResult Dep = MD->getDependency(L);
|
|
|
|
// If it is defined in another block, try harder.
|
|
if (Dep.isNonLocal())
|
|
return processNonLocalLoad(L);
|
|
|
|
// Only handle the local case below
|
|
if (!Dep.isDef() && !Dep.isClobber()) {
|
|
// This might be a NonFuncLocal or an Unknown
|
|
LLVM_DEBUG(
|
|
// fast print dep, using operator<< on instruction is too slow.
|
|
dbgs() << "GVN: load "; L->printAsOperand(dbgs());
|
|
dbgs() << " has unknown dependence\n";);
|
|
return false;
|
|
}
|
|
|
|
AvailableValue AV;
|
|
if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
|
|
Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
|
|
|
|
// Replace the load!
|
|
patchAndReplaceAllUsesWith(L, AvailableValue);
|
|
markInstructionForDeletion(L);
|
|
++NumGVNLoad;
|
|
reportLoadElim(L, AvailableValue, ORE);
|
|
// Tell MDA to rexamine the reused pointer since we might have more
|
|
// information after forwarding it.
|
|
if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
|
|
MD->invalidateCachedPointerInfo(AvailableValue);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Return a pair the first field showing the value number of \p Exp and the
|
|
/// second field showing whether it is a value number newly created.
|
|
std::pair<uint32_t, bool>
|
|
GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
|
|
uint32_t &e = expressionNumbering[Exp];
|
|
bool CreateNewValNum = !e;
|
|
if (CreateNewValNum) {
|
|
Expressions.push_back(Exp);
|
|
if (ExprIdx.size() < nextValueNumber + 1)
|
|
ExprIdx.resize(nextValueNumber * 2);
|
|
e = nextValueNumber;
|
|
ExprIdx[nextValueNumber++] = nextExprNumber++;
|
|
}
|
|
return {e, CreateNewValNum};
|
|
}
|
|
|
|
/// Return whether all the values related with the same \p num are
|
|
/// defined in \p BB.
|
|
bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
|
|
GVN &Gvn) {
|
|
LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
|
|
while (Vals && Vals->BB == BB)
|
|
Vals = Vals->Next;
|
|
return !Vals;
|
|
}
|
|
|
|
/// Wrap phiTranslateImpl to provide caching functionality.
|
|
uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
|
|
const BasicBlock *PhiBlock, uint32_t Num,
|
|
GVN &Gvn) {
|
|
auto FindRes = PhiTranslateTable.find({Num, Pred});
|
|
if (FindRes != PhiTranslateTable.end())
|
|
return FindRes->second;
|
|
uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
|
|
PhiTranslateTable.insert({{Num, Pred}, NewNum});
|
|
return NewNum;
|
|
}
|
|
|
|
/// Translate value number \p Num using phis, so that it has the values of
|
|
/// the phis in BB.
|
|
uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
|
|
const BasicBlock *PhiBlock,
|
|
uint32_t Num, GVN &Gvn) {
|
|
if (PHINode *PN = NumberingPhi[Num]) {
|
|
for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
|
|
if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
|
|
if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
|
|
return TransVal;
|
|
}
|
|
return Num;
|
|
}
|
|
|
|
// If there is any value related with Num is defined in a BB other than
|
|
// PhiBlock, it cannot depend on a phi in PhiBlock without going through
|
|
// a backedge. We can do an early exit in that case to save compile time.
|
|
if (!areAllValsInBB(Num, PhiBlock, Gvn))
|
|
return Num;
|
|
|
|
if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
|
|
return Num;
|
|
Expression Exp = Expressions[ExprIdx[Num]];
|
|
|
|
for (unsigned i = 0; i < Exp.varargs.size(); i++) {
|
|
// For InsertValue and ExtractValue, some varargs are index numbers
|
|
// instead of value numbers. Those index numbers should not be
|
|
// translated.
|
|
if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
|
|
(i > 0 && Exp.opcode == Instruction::ExtractValue))
|
|
continue;
|
|
Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
|
|
}
|
|
|
|
if (Exp.commutative) {
|
|
assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!");
|
|
if (Exp.varargs[0] > Exp.varargs[1]) {
|
|
std::swap(Exp.varargs[0], Exp.varargs[1]);
|
|
uint32_t Opcode = Exp.opcode >> 8;
|
|
if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
|
|
Exp.opcode = (Opcode << 8) |
|
|
CmpInst::getSwappedPredicate(
|
|
static_cast<CmpInst::Predicate>(Exp.opcode & 255));
|
|
}
|
|
}
|
|
|
|
if (uint32_t NewNum = expressionNumbering[Exp])
|
|
return NewNum;
|
|
return Num;
|
|
}
|
|
|
|
/// Erase stale entry from phiTranslate cache so phiTranslate can be computed
|
|
/// again.
|
|
void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
|
|
const BasicBlock &CurrBlock) {
|
|
for (const BasicBlock *Pred : predecessors(&CurrBlock)) {
|
|
auto FindRes = PhiTranslateTable.find({Num, Pred});
|
|
if (FindRes != PhiTranslateTable.end())
|
|
PhiTranslateTable.erase(FindRes);
|
|
}
|
|
}
|
|
|
|
// In order to find a leader for a given value number at a
|
|
// specific basic block, we first obtain the list of all Values for that number,
|
|
// and then scan the list to find one whose block dominates the block in
|
|
// question. This is fast because dominator tree queries consist of only
|
|
// a few comparisons of DFS numbers.
|
|
Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
|
|
LeaderTableEntry Vals = LeaderTable[num];
|
|
if (!Vals.Val) return nullptr;
|
|
|
|
Value *Val = nullptr;
|
|
if (DT->dominates(Vals.BB, BB)) {
|
|
Val = Vals.Val;
|
|
if (isa<Constant>(Val)) return Val;
|
|
}
|
|
|
|
LeaderTableEntry* Next = Vals.Next;
|
|
while (Next) {
|
|
if (DT->dominates(Next->BB, BB)) {
|
|
if (isa<Constant>(Next->Val)) return Next->Val;
|
|
if (!Val) Val = Next->Val;
|
|
}
|
|
|
|
Next = Next->Next;
|
|
}
|
|
|
|
return Val;
|
|
}
|
|
|
|
/// There is an edge from 'Src' to 'Dst'. Return
|
|
/// true if every path from the entry block to 'Dst' passes via this edge. In
|
|
/// particular 'Dst' must not be reachable via another edge from 'Src'.
|
|
static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
|
|
DominatorTree *DT) {
|
|
// While in theory it is interesting to consider the case in which Dst has
|
|
// more than one predecessor, because Dst might be part of a loop which is
|
|
// only reachable from Src, in practice it is pointless since at the time
|
|
// GVN runs all such loops have preheaders, which means that Dst will have
|
|
// been changed to have only one predecessor, namely Src.
|
|
const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
|
|
assert((!Pred || Pred == E.getStart()) &&
|
|
"No edge between these basic blocks!");
|
|
return Pred != nullptr;
|
|
}
|
|
|
|
void GVN::assignBlockRPONumber(Function &F) {
|
|
BlockRPONumber.clear();
|
|
uint32_t NextBlockNumber = 1;
|
|
ReversePostOrderTraversal<Function *> RPOT(&F);
|
|
for (BasicBlock *BB : RPOT)
|
|
BlockRPONumber[BB] = NextBlockNumber++;
|
|
InvalidBlockRPONumbers = false;
|
|
}
|
|
|
|
// Tries to replace instruction with const, using information from
|
|
// ReplaceWithConstMap.
|
|
bool GVN::replaceOperandsWithConsts(Instruction *Instr) const {
|
|
bool Changed = false;
|
|
for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
|
|
Value *Operand = Instr->getOperand(OpNum);
|
|
auto it = ReplaceWithConstMap.find(Operand);
|
|
if (it != ReplaceWithConstMap.end()) {
|
|
assert(!isa<Constant>(Operand) &&
|
|
"Replacing constants with constants is invalid");
|
|
LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
|
|
<< *it->second << " in instruction " << *Instr << '\n');
|
|
Instr->setOperand(OpNum, it->second);
|
|
Changed = true;
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// The given values are known to be equal in every block
|
|
/// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
|
|
/// 'RHS' everywhere in the scope. Returns whether a change was made.
|
|
/// If DominatesByEdge is false, then it means that we will propagate the RHS
|
|
/// value starting from the end of Root.Start.
|
|
bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
|
|
bool DominatesByEdge) {
|
|
SmallVector<std::pair<Value*, Value*>, 4> Worklist;
|
|
Worklist.push_back(std::make_pair(LHS, RHS));
|
|
bool Changed = false;
|
|
// For speed, compute a conservative fast approximation to
|
|
// DT->dominates(Root, Root.getEnd());
|
|
const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
|
|
|
|
while (!Worklist.empty()) {
|
|
std::pair<Value*, Value*> Item = Worklist.pop_back_val();
|
|
LHS = Item.first; RHS = Item.second;
|
|
|
|
if (LHS == RHS)
|
|
continue;
|
|
assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
|
|
|
|
// Don't try to propagate equalities between constants.
|
|
if (isa<Constant>(LHS) && isa<Constant>(RHS))
|
|
continue;
|
|
|
|
// Prefer a constant on the right-hand side, or an Argument if no constants.
|
|
if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
|
|
std::swap(LHS, RHS);
|
|
assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
|
|
|
|
// If there is no obvious reason to prefer the left-hand side over the
|
|
// right-hand side, ensure the longest lived term is on the right-hand side,
|
|
// so the shortest lived term will be replaced by the longest lived.
|
|
// This tends to expose more simplifications.
|
|
uint32_t LVN = VN.lookupOrAdd(LHS);
|
|
if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
|
|
(isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
|
|
// Move the 'oldest' value to the right-hand side, using the value number
|
|
// as a proxy for age.
|
|
uint32_t RVN = VN.lookupOrAdd(RHS);
|
|
if (LVN < RVN) {
|
|
std::swap(LHS, RHS);
|
|
LVN = RVN;
|
|
}
|
|
}
|
|
|
|
// If value numbering later sees that an instruction in the scope is equal
|
|
// to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
|
|
// the invariant that instructions only occur in the leader table for their
|
|
// own value number (this is used by removeFromLeaderTable), do not do this
|
|
// if RHS is an instruction (if an instruction in the scope is morphed into
|
|
// LHS then it will be turned into RHS by the next GVN iteration anyway, so
|
|
// using the leader table is about compiling faster, not optimizing better).
|
|
// The leader table only tracks basic blocks, not edges. Only add to if we
|
|
// have the simple case where the edge dominates the end.
|
|
if (RootDominatesEnd && !isa<Instruction>(RHS))
|
|
addToLeaderTable(LVN, RHS, Root.getEnd());
|
|
|
|
// Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
|
|
// LHS always has at least one use that is not dominated by Root, this will
|
|
// never do anything if LHS has only one use.
|
|
if (!LHS->hasOneUse()) {
|
|
unsigned NumReplacements =
|
|
DominatesByEdge
|
|
? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
|
|
: replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
|
|
|
|
Changed |= NumReplacements > 0;
|
|
NumGVNEqProp += NumReplacements;
|
|
// Cached information for anything that uses LHS will be invalid.
|
|
if (MD)
|
|
MD->invalidateCachedPointerInfo(LHS);
|
|
}
|
|
|
|
// Now try to deduce additional equalities from this one. For example, if
|
|
// the known equality was "(A != B)" == "false" then it follows that A and B
|
|
// are equal in the scope. Only boolean equalities with an explicit true or
|
|
// false RHS are currently supported.
|
|
if (!RHS->getType()->isIntegerTy(1))
|
|
// Not a boolean equality - bail out.
|
|
continue;
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
|
|
if (!CI)
|
|
// RHS neither 'true' nor 'false' - bail out.
|
|
continue;
|
|
// Whether RHS equals 'true'. Otherwise it equals 'false'.
|
|
bool isKnownTrue = CI->isMinusOne();
|
|
bool isKnownFalse = !isKnownTrue;
|
|
|
|
// If "A && B" is known true then both A and B are known true. If "A || B"
|
|
// is known false then both A and B are known false.
|
|
Value *A, *B;
|
|
if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
|
|
(isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
|
|
Worklist.push_back(std::make_pair(A, RHS));
|
|
Worklist.push_back(std::make_pair(B, RHS));
|
|
continue;
|
|
}
|
|
|
|
// If we are propagating an equality like "(A == B)" == "true" then also
|
|
// propagate the equality A == B. When propagating a comparison such as
|
|
// "(A >= B)" == "true", replace all instances of "A < B" with "false".
|
|
if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
|
|
Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
|
|
|
|
// If "A == B" is known true, or "A != B" is known false, then replace
|
|
// A with B everywhere in the scope.
|
|
if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
|
|
(isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
|
|
Worklist.push_back(std::make_pair(Op0, Op1));
|
|
|
|
// Handle the floating point versions of equality comparisons too.
|
|
if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
|
|
(isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
|
|
|
|
// Floating point -0.0 and 0.0 compare equal, so we can only
|
|
// propagate values if we know that we have a constant and that
|
|
// its value is non-zero.
|
|
|
|
// FIXME: We should do this optimization if 'no signed zeros' is
|
|
// applicable via an instruction-level fast-math-flag or some other
|
|
// indicator that relaxed FP semantics are being used.
|
|
|
|
if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
|
|
Worklist.push_back(std::make_pair(Op0, Op1));
|
|
}
|
|
|
|
// If "A >= B" is known true, replace "A < B" with false everywhere.
|
|
CmpInst::Predicate NotPred = Cmp->getInversePredicate();
|
|
Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
|
|
// Since we don't have the instruction "A < B" immediately to hand, work
|
|
// out the value number that it would have and use that to find an
|
|
// appropriate instruction (if any).
|
|
uint32_t NextNum = VN.getNextUnusedValueNumber();
|
|
uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
|
|
// If the number we were assigned was brand new then there is no point in
|
|
// looking for an instruction realizing it: there cannot be one!
|
|
if (Num < NextNum) {
|
|
Value *NotCmp = findLeader(Root.getEnd(), Num);
|
|
if (NotCmp && isa<Instruction>(NotCmp)) {
|
|
unsigned NumReplacements =
|
|
DominatesByEdge
|
|
? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
|
|
: replaceDominatedUsesWith(NotCmp, NotVal, *DT,
|
|
Root.getStart());
|
|
Changed |= NumReplacements > 0;
|
|
NumGVNEqProp += NumReplacements;
|
|
// Cached information for anything that uses NotCmp will be invalid.
|
|
if (MD)
|
|
MD->invalidateCachedPointerInfo(NotCmp);
|
|
}
|
|
}
|
|
// Ensure that any instruction in scope that gets the "A < B" value number
|
|
// is replaced with false.
|
|
// The leader table only tracks basic blocks, not edges. Only add to if we
|
|
// have the simple case where the edge dominates the end.
|
|
if (RootDominatesEnd)
|
|
addToLeaderTable(Num, NotVal, Root.getEnd());
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// When calculating availability, handle an instruction
|
|
/// by inserting it into the appropriate sets
|
|
bool GVN::processInstruction(Instruction *I) {
|
|
// Ignore dbg info intrinsics.
|
|
if (isa<DbgInfoIntrinsic>(I))
|
|
return false;
|
|
|
|
// If the instruction can be easily simplified then do so now in preference
|
|
// to value numbering it. Value numbering often exposes redundancies, for
|
|
// example if it determines that %y is equal to %x then the instruction
|
|
// "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
|
|
const DataLayout &DL = I->getModule()->getDataLayout();
|
|
if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
|
|
bool Changed = false;
|
|
if (!I->use_empty()) {
|
|
I->replaceAllUsesWith(V);
|
|
Changed = true;
|
|
}
|
|
if (isInstructionTriviallyDead(I, TLI)) {
|
|
markInstructionForDeletion(I);
|
|
Changed = true;
|
|
}
|
|
if (Changed) {
|
|
if (MD && V->getType()->isPtrOrPtrVectorTy())
|
|
MD->invalidateCachedPointerInfo(V);
|
|
++NumGVNSimpl;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
|
|
if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
|
|
return processAssumeIntrinsic(IntrinsicI);
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
if (processLoad(LI))
|
|
return true;
|
|
|
|
unsigned Num = VN.lookupOrAdd(LI);
|
|
addToLeaderTable(Num, LI, LI->getParent());
|
|
return false;
|
|
}
|
|
|
|
// For conditional branches, we can perform simple conditional propagation on
|
|
// the condition value itself.
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
|
|
if (!BI->isConditional())
|
|
return false;
|
|
|
|
if (isa<Constant>(BI->getCondition()))
|
|
return processFoldableCondBr(BI);
|
|
|
|
Value *BranchCond = BI->getCondition();
|
|
BasicBlock *TrueSucc = BI->getSuccessor(0);
|
|
BasicBlock *FalseSucc = BI->getSuccessor(1);
|
|
// Avoid multiple edges early.
|
|
if (TrueSucc == FalseSucc)
|
|
return false;
|
|
|
|
BasicBlock *Parent = BI->getParent();
|
|
bool Changed = false;
|
|
|
|
Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
|
|
BasicBlockEdge TrueE(Parent, TrueSucc);
|
|
Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
|
|
|
|
Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
|
|
BasicBlockEdge FalseE(Parent, FalseSucc);
|
|
Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// For switches, propagate the case values into the case destinations.
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
|
|
Value *SwitchCond = SI->getCondition();
|
|
BasicBlock *Parent = SI->getParent();
|
|
bool Changed = false;
|
|
|
|
// Remember how many outgoing edges there are to every successor.
|
|
SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
|
|
for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
|
|
++SwitchEdges[SI->getSuccessor(i)];
|
|
|
|
for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
|
|
i != e; ++i) {
|
|
BasicBlock *Dst = i->getCaseSuccessor();
|
|
// If there is only a single edge, propagate the case value into it.
|
|
if (SwitchEdges.lookup(Dst) == 1) {
|
|
BasicBlockEdge E(Parent, Dst);
|
|
Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
// Instructions with void type don't return a value, so there's
|
|
// no point in trying to find redundancies in them.
|
|
if (I->getType()->isVoidTy())
|
|
return false;
|
|
|
|
uint32_t NextNum = VN.getNextUnusedValueNumber();
|
|
unsigned Num = VN.lookupOrAdd(I);
|
|
|
|
// Allocations are always uniquely numbered, so we can save time and memory
|
|
// by fast failing them.
|
|
if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
|
|
addToLeaderTable(Num, I, I->getParent());
|
|
return false;
|
|
}
|
|
|
|
// If the number we were assigned was a brand new VN, then we don't
|
|
// need to do a lookup to see if the number already exists
|
|
// somewhere in the domtree: it can't!
|
|
if (Num >= NextNum) {
|
|
addToLeaderTable(Num, I, I->getParent());
|
|
return false;
|
|
}
|
|
|
|
// Perform fast-path value-number based elimination of values inherited from
|
|
// dominators.
|
|
Value *Repl = findLeader(I->getParent(), Num);
|
|
if (!Repl) {
|
|
// Failure, just remember this instance for future use.
|
|
addToLeaderTable(Num, I, I->getParent());
|
|
return false;
|
|
} else if (Repl == I) {
|
|
// If I was the result of a shortcut PRE, it might already be in the table
|
|
// and the best replacement for itself. Nothing to do.
|
|
return false;
|
|
}
|
|
|
|
// Remove it!
|
|
patchAndReplaceAllUsesWith(I, Repl);
|
|
if (MD && Repl->getType()->isPtrOrPtrVectorTy())
|
|
MD->invalidateCachedPointerInfo(Repl);
|
|
markInstructionForDeletion(I);
|
|
return true;
|
|
}
|
|
|
|
/// runOnFunction - This is the main transformation entry point for a function.
|
|
bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
|
|
const TargetLibraryInfo &RunTLI, AAResults &RunAA,
|
|
MemoryDependenceResults *RunMD, LoopInfo *LI,
|
|
OptimizationRemarkEmitter *RunORE) {
|
|
AC = &RunAC;
|
|
DT = &RunDT;
|
|
VN.setDomTree(DT);
|
|
TLI = &RunTLI;
|
|
VN.setAliasAnalysis(&RunAA);
|
|
MD = RunMD;
|
|
ImplicitControlFlowTracking ImplicitCFT(DT);
|
|
ICF = &ImplicitCFT;
|
|
VN.setMemDep(MD);
|
|
ORE = RunORE;
|
|
InvalidBlockRPONumbers = true;
|
|
|
|
bool Changed = false;
|
|
bool ShouldContinue = true;
|
|
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
// Merge unconditional branches, allowing PRE to catch more
|
|
// optimization opportunities.
|
|
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
|
|
BasicBlock *BB = &*FI++;
|
|
|
|
bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD);
|
|
if (removedBlock)
|
|
++NumGVNBlocks;
|
|
|
|
Changed |= removedBlock;
|
|
}
|
|
|
|
unsigned Iteration = 0;
|
|
while (ShouldContinue) {
|
|
LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
|
|
ShouldContinue = iterateOnFunction(F);
|
|
Changed |= ShouldContinue;
|
|
++Iteration;
|
|
}
|
|
|
|
if (EnablePRE) {
|
|
// Fabricate val-num for dead-code in order to suppress assertion in
|
|
// performPRE().
|
|
assignValNumForDeadCode();
|
|
bool PREChanged = true;
|
|
while (PREChanged) {
|
|
PREChanged = performPRE(F);
|
|
Changed |= PREChanged;
|
|
}
|
|
}
|
|
|
|
// FIXME: Should perform GVN again after PRE does something. PRE can move
|
|
// computations into blocks where they become fully redundant. Note that
|
|
// we can't do this until PRE's critical edge splitting updates memdep.
|
|
// Actually, when this happens, we should just fully integrate PRE into GVN.
|
|
|
|
cleanupGlobalSets();
|
|
// Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
|
|
// iteration.
|
|
DeadBlocks.clear();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool GVN::processBlock(BasicBlock *BB) {
|
|
// FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
|
|
// (and incrementing BI before processing an instruction).
|
|
assert(InstrsToErase.empty() &&
|
|
"We expect InstrsToErase to be empty across iterations");
|
|
if (DeadBlocks.count(BB))
|
|
return false;
|
|
|
|
// Clearing map before every BB because it can be used only for single BB.
|
|
ReplaceWithConstMap.clear();
|
|
bool ChangedFunction = false;
|
|
|
|
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
|
|
BI != BE;) {
|
|
if (!ReplaceWithConstMap.empty())
|
|
ChangedFunction |= replaceOperandsWithConsts(&*BI);
|
|
ChangedFunction |= processInstruction(&*BI);
|
|
|
|
if (InstrsToErase.empty()) {
|
|
++BI;
|
|
continue;
|
|
}
|
|
|
|
// If we need some instructions deleted, do it now.
|
|
NumGVNInstr += InstrsToErase.size();
|
|
|
|
// Avoid iterator invalidation.
|
|
bool AtStart = BI == BB->begin();
|
|
if (!AtStart)
|
|
--BI;
|
|
|
|
for (auto *I : InstrsToErase) {
|
|
assert(I->getParent() == BB && "Removing instruction from wrong block?");
|
|
LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
|
|
salvageDebugInfo(*I);
|
|
if (MD) MD->removeInstruction(I);
|
|
LLVM_DEBUG(verifyRemoved(I));
|
|
ICF->removeInstruction(I);
|
|
I->eraseFromParent();
|
|
}
|
|
InstrsToErase.clear();
|
|
|
|
if (AtStart)
|
|
BI = BB->begin();
|
|
else
|
|
++BI;
|
|
}
|
|
|
|
return ChangedFunction;
|
|
}
|
|
|
|
// Instantiate an expression in a predecessor that lacked it.
|
|
bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
|
|
BasicBlock *Curr, unsigned int ValNo) {
|
|
// Because we are going top-down through the block, all value numbers
|
|
// will be available in the predecessor by the time we need them. Any
|
|
// that weren't originally present will have been instantiated earlier
|
|
// in this loop.
|
|
bool success = true;
|
|
for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
|
|
Value *Op = Instr->getOperand(i);
|
|
if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
|
|
continue;
|
|
// This could be a newly inserted instruction, in which case, we won't
|
|
// find a value number, and should give up before we hurt ourselves.
|
|
// FIXME: Rewrite the infrastructure to let it easier to value number
|
|
// and process newly inserted instructions.
|
|
if (!VN.exists(Op)) {
|
|
success = false;
|
|
break;
|
|
}
|
|
uint32_t TValNo =
|
|
VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
|
|
if (Value *V = findLeader(Pred, TValNo)) {
|
|
Instr->setOperand(i, V);
|
|
} else {
|
|
success = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Fail out if we encounter an operand that is not available in
|
|
// the PRE predecessor. This is typically because of loads which
|
|
// are not value numbered precisely.
|
|
if (!success)
|
|
return false;
|
|
|
|
Instr->insertBefore(Pred->getTerminator());
|
|
Instr->setName(Instr->getName() + ".pre");
|
|
Instr->setDebugLoc(Instr->getDebugLoc());
|
|
|
|
unsigned Num = VN.lookupOrAdd(Instr);
|
|
VN.add(Instr, Num);
|
|
|
|
// Update the availability map to include the new instruction.
|
|
addToLeaderTable(Num, Instr, Pred);
|
|
return true;
|
|
}
|
|
|
|
bool GVN::performScalarPRE(Instruction *CurInst) {
|
|
if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
|
|
isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
|
|
CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
|
|
isa<DbgInfoIntrinsic>(CurInst))
|
|
return false;
|
|
|
|
// Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
|
|
// sinking the compare again, and it would force the code generator to
|
|
// move the i1 from processor flags or predicate registers into a general
|
|
// purpose register.
|
|
if (isa<CmpInst>(CurInst))
|
|
return false;
|
|
|
|
// Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
|
|
// sinking the addressing mode computation back to its uses. Extending the
|
|
// GEP's live range increases the register pressure, and therefore it can
|
|
// introduce unnecessary spills.
|
|
//
|
|
// This doesn't prevent Load PRE. PHI translation will make the GEP available
|
|
// to the load by moving it to the predecessor block if necessary.
|
|
if (isa<GetElementPtrInst>(CurInst))
|
|
return false;
|
|
|
|
// We don't currently value number ANY inline asm calls.
|
|
if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
|
|
if (CallI->isInlineAsm())
|
|
return false;
|
|
|
|
uint32_t ValNo = VN.lookup(CurInst);
|
|
|
|
// Look for the predecessors for PRE opportunities. We're
|
|
// only trying to solve the basic diamond case, where
|
|
// a value is computed in the successor and one predecessor,
|
|
// but not the other. We also explicitly disallow cases
|
|
// where the successor is its own predecessor, because they're
|
|
// more complicated to get right.
|
|
unsigned NumWith = 0;
|
|
unsigned NumWithout = 0;
|
|
BasicBlock *PREPred = nullptr;
|
|
BasicBlock *CurrentBlock = CurInst->getParent();
|
|
|
|
// Update the RPO numbers for this function.
|
|
if (InvalidBlockRPONumbers)
|
|
assignBlockRPONumber(*CurrentBlock->getParent());
|
|
|
|
SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
|
|
for (BasicBlock *P : predecessors(CurrentBlock)) {
|
|
// We're not interested in PRE where blocks with predecessors that are
|
|
// not reachable.
|
|
if (!DT->isReachableFromEntry(P)) {
|
|
NumWithout = 2;
|
|
break;
|
|
}
|
|
// It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
|
|
// when CurInst has operand defined in CurrentBlock (so it may be defined
|
|
// by phi in the loop header).
|
|
assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
|
|
"Invalid BlockRPONumber map.");
|
|
if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
|
|
llvm::any_of(CurInst->operands(), [&](const Use &U) {
|
|
if (auto *Inst = dyn_cast<Instruction>(U.get()))
|
|
return Inst->getParent() == CurrentBlock;
|
|
return false;
|
|
})) {
|
|
NumWithout = 2;
|
|
break;
|
|
}
|
|
|
|
uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
|
|
Value *predV = findLeader(P, TValNo);
|
|
if (!predV) {
|
|
predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
|
|
PREPred = P;
|
|
++NumWithout;
|
|
} else if (predV == CurInst) {
|
|
/* CurInst dominates this predecessor. */
|
|
NumWithout = 2;
|
|
break;
|
|
} else {
|
|
predMap.push_back(std::make_pair(predV, P));
|
|
++NumWith;
|
|
}
|
|
}
|
|
|
|
// Don't do PRE when it might increase code size, i.e. when
|
|
// we would need to insert instructions in more than one pred.
|
|
if (NumWithout > 1 || NumWith == 0)
|
|
return false;
|
|
|
|
// We may have a case where all predecessors have the instruction,
|
|
// and we just need to insert a phi node. Otherwise, perform
|
|
// insertion.
|
|
Instruction *PREInstr = nullptr;
|
|
|
|
if (NumWithout != 0) {
|
|
if (!isSafeToSpeculativelyExecute(CurInst)) {
|
|
// It is only valid to insert a new instruction if the current instruction
|
|
// is always executed. An instruction with implicit control flow could
|
|
// prevent us from doing it. If we cannot speculate the execution, then
|
|
// PRE should be prohibited.
|
|
if (ICF->isDominatedByICFIFromSameBlock(CurInst))
|
|
return false;
|
|
}
|
|
|
|
// Don't do PRE across indirect branch.
|
|
if (isa<IndirectBrInst>(PREPred->getTerminator()))
|
|
return false;
|
|
|
|
// We can't do PRE safely on a critical edge, so instead we schedule
|
|
// the edge to be split and perform the PRE the next time we iterate
|
|
// on the function.
|
|
unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
|
|
if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
|
|
toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
|
|
return false;
|
|
}
|
|
// We need to insert somewhere, so let's give it a shot
|
|
PREInstr = CurInst->clone();
|
|
if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
|
|
// If we failed insertion, make sure we remove the instruction.
|
|
LLVM_DEBUG(verifyRemoved(PREInstr));
|
|
PREInstr->deleteValue();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Either we should have filled in the PRE instruction, or we should
|
|
// not have needed insertions.
|
|
assert(PREInstr != nullptr || NumWithout == 0);
|
|
|
|
++NumGVNPRE;
|
|
|
|
// Create a PHI to make the value available in this block.
|
|
PHINode *Phi =
|
|
PHINode::Create(CurInst->getType(), predMap.size(),
|
|
CurInst->getName() + ".pre-phi", &CurrentBlock->front());
|
|
for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
|
|
if (Value *V = predMap[i].first) {
|
|
// If we use an existing value in this phi, we have to patch the original
|
|
// value because the phi will be used to replace a later value.
|
|
patchReplacementInstruction(CurInst, V);
|
|
Phi->addIncoming(V, predMap[i].second);
|
|
} else
|
|
Phi->addIncoming(PREInstr, PREPred);
|
|
}
|
|
|
|
VN.add(Phi, ValNo);
|
|
// After creating a new PHI for ValNo, the phi translate result for ValNo will
|
|
// be changed, so erase the related stale entries in phi translate cache.
|
|
VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
|
|
addToLeaderTable(ValNo, Phi, CurrentBlock);
|
|
Phi->setDebugLoc(CurInst->getDebugLoc());
|
|
CurInst->replaceAllUsesWith(Phi);
|
|
if (MD && Phi->getType()->isPtrOrPtrVectorTy())
|
|
MD->invalidateCachedPointerInfo(Phi);
|
|
VN.erase(CurInst);
|
|
removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
|
|
|
|
LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
|
|
if (MD)
|
|
MD->removeInstruction(CurInst);
|
|
LLVM_DEBUG(verifyRemoved(CurInst));
|
|
// FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
|
|
// some assertion failures.
|
|
ICF->removeInstruction(CurInst);
|
|
CurInst->eraseFromParent();
|
|
++NumGVNInstr;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Perform a purely local form of PRE that looks for diamond
|
|
/// control flow patterns and attempts to perform simple PRE at the join point.
|
|
bool GVN::performPRE(Function &F) {
|
|
bool Changed = false;
|
|
for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
|
|
// Nothing to PRE in the entry block.
|
|
if (CurrentBlock == &F.getEntryBlock())
|
|
continue;
|
|
|
|
// Don't perform PRE on an EH pad.
|
|
if (CurrentBlock->isEHPad())
|
|
continue;
|
|
|
|
for (BasicBlock::iterator BI = CurrentBlock->begin(),
|
|
BE = CurrentBlock->end();
|
|
BI != BE;) {
|
|
Instruction *CurInst = &*BI++;
|
|
Changed |= performScalarPRE(CurInst);
|
|
}
|
|
}
|
|
|
|
if (splitCriticalEdges())
|
|
Changed = true;
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Split the critical edge connecting the given two blocks, and return
|
|
/// the block inserted to the critical edge.
|
|
BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
|
|
BasicBlock *BB =
|
|
SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT));
|
|
if (MD)
|
|
MD->invalidateCachedPredecessors();
|
|
InvalidBlockRPONumbers = true;
|
|
return BB;
|
|
}
|
|
|
|
/// Split critical edges found during the previous
|
|
/// iteration that may enable further optimization.
|
|
bool GVN::splitCriticalEdges() {
|
|
if (toSplit.empty())
|
|
return false;
|
|
do {
|
|
std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
|
|
SplitCriticalEdge(Edge.first, Edge.second,
|
|
CriticalEdgeSplittingOptions(DT));
|
|
} while (!toSplit.empty());
|
|
if (MD) MD->invalidateCachedPredecessors();
|
|
InvalidBlockRPONumbers = true;
|
|
return true;
|
|
}
|
|
|
|
/// Executes one iteration of GVN
|
|
bool GVN::iterateOnFunction(Function &F) {
|
|
cleanupGlobalSets();
|
|
|
|
// Top-down walk of the dominator tree
|
|
bool Changed = false;
|
|
// Needed for value numbering with phi construction to work.
|
|
// RPOT walks the graph in its constructor and will not be invalidated during
|
|
// processBlock.
|
|
ReversePostOrderTraversal<Function *> RPOT(&F);
|
|
|
|
for (BasicBlock *BB : RPOT)
|
|
Changed |= processBlock(BB);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void GVN::cleanupGlobalSets() {
|
|
VN.clear();
|
|
LeaderTable.clear();
|
|
BlockRPONumber.clear();
|
|
TableAllocator.Reset();
|
|
ICF->clear();
|
|
InvalidBlockRPONumbers = true;
|
|
}
|
|
|
|
/// Verify that the specified instruction does not occur in our
|
|
/// internal data structures.
|
|
void GVN::verifyRemoved(const Instruction *Inst) const {
|
|
VN.verifyRemoved(Inst);
|
|
|
|
// Walk through the value number scope to make sure the instruction isn't
|
|
// ferreted away in it.
|
|
for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
|
|
I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
|
|
const LeaderTableEntry *Node = &I->second;
|
|
assert(Node->Val != Inst && "Inst still in value numbering scope!");
|
|
|
|
while (Node->Next) {
|
|
Node = Node->Next;
|
|
assert(Node->Val != Inst && "Inst still in value numbering scope!");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// BB is declared dead, which implied other blocks become dead as well. This
|
|
/// function is to add all these blocks to "DeadBlocks". For the dead blocks'
|
|
/// live successors, update their phi nodes by replacing the operands
|
|
/// corresponding to dead blocks with UndefVal.
|
|
void GVN::addDeadBlock(BasicBlock *BB) {
|
|
SmallVector<BasicBlock *, 4> NewDead;
|
|
SmallSetVector<BasicBlock *, 4> DF;
|
|
|
|
NewDead.push_back(BB);
|
|
while (!NewDead.empty()) {
|
|
BasicBlock *D = NewDead.pop_back_val();
|
|
if (DeadBlocks.count(D))
|
|
continue;
|
|
|
|
// All blocks dominated by D are dead.
|
|
SmallVector<BasicBlock *, 8> Dom;
|
|
DT->getDescendants(D, Dom);
|
|
DeadBlocks.insert(Dom.begin(), Dom.end());
|
|
|
|
// Figure out the dominance-frontier(D).
|
|
for (BasicBlock *B : Dom) {
|
|
for (BasicBlock *S : successors(B)) {
|
|
if (DeadBlocks.count(S))
|
|
continue;
|
|
|
|
bool AllPredDead = true;
|
|
for (BasicBlock *P : predecessors(S))
|
|
if (!DeadBlocks.count(P)) {
|
|
AllPredDead = false;
|
|
break;
|
|
}
|
|
|
|
if (!AllPredDead) {
|
|
// S could be proved dead later on. That is why we don't update phi
|
|
// operands at this moment.
|
|
DF.insert(S);
|
|
} else {
|
|
// While S is not dominated by D, it is dead by now. This could take
|
|
// place if S already have a dead predecessor before D is declared
|
|
// dead.
|
|
NewDead.push_back(S);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// For the dead blocks' live successors, update their phi nodes by replacing
|
|
// the operands corresponding to dead blocks with UndefVal.
|
|
for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
|
|
I != E; I++) {
|
|
BasicBlock *B = *I;
|
|
if (DeadBlocks.count(B))
|
|
continue;
|
|
|
|
SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
|
|
for (BasicBlock *P : Preds) {
|
|
if (!DeadBlocks.count(P))
|
|
continue;
|
|
|
|
if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
|
|
if (BasicBlock *S = splitCriticalEdges(P, B))
|
|
DeadBlocks.insert(P = S);
|
|
}
|
|
|
|
for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
|
|
PHINode &Phi = cast<PHINode>(*II);
|
|
Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
|
|
UndefValue::get(Phi.getType()));
|
|
if (MD)
|
|
MD->invalidateCachedPointerInfo(&Phi);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the given branch is recognized as a foldable branch (i.e. conditional
|
|
// branch with constant condition), it will perform following analyses and
|
|
// transformation.
|
|
// 1) If the dead out-coming edge is a critical-edge, split it. Let
|
|
// R be the target of the dead out-coming edge.
|
|
// 1) Identify the set of dead blocks implied by the branch's dead outcoming
|
|
// edge. The result of this step will be {X| X is dominated by R}
|
|
// 2) Identify those blocks which haves at least one dead predecessor. The
|
|
// result of this step will be dominance-frontier(R).
|
|
// 3) Update the PHIs in DF(R) by replacing the operands corresponding to
|
|
// dead blocks with "UndefVal" in an hope these PHIs will optimized away.
|
|
//
|
|
// Return true iff *NEW* dead code are found.
|
|
bool GVN::processFoldableCondBr(BranchInst *BI) {
|
|
if (!BI || BI->isUnconditional())
|
|
return false;
|
|
|
|
// If a branch has two identical successors, we cannot declare either dead.
|
|
if (BI->getSuccessor(0) == BI->getSuccessor(1))
|
|
return false;
|
|
|
|
ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
|
|
if (!Cond)
|
|
return false;
|
|
|
|
BasicBlock *DeadRoot =
|
|
Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
|
|
if (DeadBlocks.count(DeadRoot))
|
|
return false;
|
|
|
|
if (!DeadRoot->getSinglePredecessor())
|
|
DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
|
|
|
|
addDeadBlock(DeadRoot);
|
|
return true;
|
|
}
|
|
|
|
// performPRE() will trigger assert if it comes across an instruction without
|
|
// associated val-num. As it normally has far more live instructions than dead
|
|
// instructions, it makes more sense just to "fabricate" a val-number for the
|
|
// dead code than checking if instruction involved is dead or not.
|
|
void GVN::assignValNumForDeadCode() {
|
|
for (BasicBlock *BB : DeadBlocks) {
|
|
for (Instruction &Inst : *BB) {
|
|
unsigned ValNum = VN.lookupOrAdd(&Inst);
|
|
addToLeaderTable(ValNum, &Inst, BB);
|
|
}
|
|
}
|
|
}
|
|
|
|
class llvm::gvn::GVNLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
explicit GVNLegacyPass(bool NoMemDepAnalysis = !EnableMemDep)
|
|
: FunctionPass(ID), NoMemDepAnalysis(NoMemDepAnalysis) {
|
|
initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
|
|
|
|
return Impl.runImpl(
|
|
F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
|
|
getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
|
|
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
|
|
getAnalysis<AAResultsWrapperPass>().getAAResults(),
|
|
NoMemDepAnalysis ? nullptr
|
|
: &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(),
|
|
LIWP ? &LIWP->getLoopInfo() : nullptr,
|
|
&getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
if (!NoMemDepAnalysis)
|
|
AU.addRequired<MemoryDependenceWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
|
|
}
|
|
|
|
private:
|
|
bool NoMemDepAnalysis;
|
|
GVN Impl;
|
|
};
|
|
|
|
char GVNLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
|
|
INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
|
|
|
|
// The public interface to this file...
|
|
FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
|
|
return new GVNLegacyPass(NoMemDepAnalysis);
|
|
}
|