forked from OSchip/llvm-project
370 lines
14 KiB
C++
370 lines
14 KiB
C++
//===-- runtime/time-intrinsic.cpp ----------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Implements time-related intrinsic subroutines.
|
|
|
|
#include "flang/Runtime/time-intrinsic.h"
|
|
#include "terminator.h"
|
|
#include "tools.h"
|
|
#include "flang/Runtime/cpp-type.h"
|
|
#include "flang/Runtime/descriptor.h"
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#ifndef _WIN32
|
|
#include <sys/time.h> // gettimeofday
|
|
#endif
|
|
|
|
// CPU_TIME (Fortran 2018 16.9.57)
|
|
// SYSTEM_CLOCK (Fortran 2018 16.9.168)
|
|
//
|
|
// We can use std::clock() from the <ctime> header as a fallback implementation
|
|
// that should be available everywhere. This may not provide the best resolution
|
|
// and is particularly troublesome on (some?) POSIX systems where CLOCKS_PER_SEC
|
|
// is defined as 10^6 regardless of the actual precision of std::clock().
|
|
// Therefore, we will usually prefer platform-specific alternatives when they
|
|
// are available.
|
|
//
|
|
// We can use SFINAE to choose a platform-specific alternative. To do so, we
|
|
// introduce a helper function template, whose overload set will contain only
|
|
// implementations relying on interfaces which are actually available. Each
|
|
// overload will have a dummy parameter whose type indicates whether or not it
|
|
// should be preferred. Any other parameters required for SFINAE should have
|
|
// default values provided.
|
|
namespace {
|
|
// Types for the dummy parameter indicating the priority of a given overload.
|
|
// We will invoke our helper with an integer literal argument, so the overload
|
|
// with the highest priority should have the type int.
|
|
using fallback_implementation = double;
|
|
using preferred_implementation = int;
|
|
|
|
// This is the fallback implementation, which should work everywhere.
|
|
template <typename Unused = void> double GetCpuTime(fallback_implementation) {
|
|
std::clock_t timestamp{std::clock()};
|
|
if (timestamp != static_cast<std::clock_t>(-1)) {
|
|
return static_cast<double>(timestamp) / CLOCKS_PER_SEC;
|
|
}
|
|
// Return some negative value to represent failure.
|
|
return -1.0;
|
|
}
|
|
|
|
#if defined CLOCK_PROCESS_CPUTIME_ID
|
|
#define CLOCKID CLOCK_PROCESS_CPUTIME_ID
|
|
#elif defined CLOCK_THREAD_CPUTIME_ID
|
|
#define CLOCKID CLOCK_THREAD_CPUTIME_ID
|
|
#elif defined CLOCK_MONOTONIC
|
|
#define CLOCKID CLOCK_MONOTONIC
|
|
#elif defined CLOCK_REALTIME
|
|
#define CLOCKID CLOCK_REALTIME
|
|
#else
|
|
#undef CLOCKID
|
|
#endif
|
|
|
|
#ifdef CLOCKID
|
|
// POSIX implementation using clock_gettime. This is only enabled where
|
|
// clock_gettime is available.
|
|
template <typename T = int, typename U = struct timespec>
|
|
double GetCpuTime(preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
struct timespec tspec;
|
|
if (clock_gettime(CLOCKID, &tspec) == 0) {
|
|
return tspec.tv_nsec * 1.0e-9 + tspec.tv_sec;
|
|
}
|
|
// Return some negative value to represent failure.
|
|
return -1.0;
|
|
}
|
|
#endif
|
|
|
|
using count_t = std::int64_t;
|
|
using unsigned_count_t = std::uint64_t;
|
|
|
|
// Computes HUGE(INT(0,kind)) as an unsigned integer value.
|
|
static constexpr inline unsigned_count_t GetHUGE(int kind) {
|
|
if (kind > 8) {
|
|
kind = 8;
|
|
}
|
|
return (unsigned_count_t{1} << ((8 * kind) - 1)) - 1;
|
|
}
|
|
|
|
// This is the fallback implementation, which should work everywhere. Note that
|
|
// in general we can't recover after std::clock has reached its maximum value.
|
|
template <typename Unused = void>
|
|
count_t GetSystemClockCount(int kind, fallback_implementation) {
|
|
std::clock_t timestamp{std::clock()};
|
|
if (timestamp == static_cast<std::clock_t>(-1)) {
|
|
// Return -HUGE(COUNT) to represent failure.
|
|
return -static_cast<count_t>(GetHUGE(kind));
|
|
}
|
|
// Convert the timestamp to std::uint64_t with wrap-around. The timestamp is
|
|
// most likely a floating-point value (since C'11), so compute the modulus
|
|
// carefully when one is required.
|
|
constexpr auto maxUnsignedCount{std::numeric_limits<unsigned_count_t>::max()};
|
|
if constexpr (std::numeric_limits<std::clock_t>::max() > maxUnsignedCount) {
|
|
timestamp -= maxUnsignedCount * std::floor(timestamp / maxUnsignedCount);
|
|
}
|
|
unsigned_count_t unsignedCount{static_cast<unsigned_count_t>(timestamp)};
|
|
// Return the modulus of the unsigned integral count with HUGE(COUNT)+1.
|
|
// The result is a signed integer but never negative.
|
|
return static_cast<count_t>(unsignedCount % (GetHUGE(kind) + 1));
|
|
}
|
|
|
|
template <typename Unused = void>
|
|
count_t GetSystemClockCountRate(int kind, fallback_implementation) {
|
|
return CLOCKS_PER_SEC;
|
|
}
|
|
|
|
template <typename Unused = void>
|
|
count_t GetSystemClockCountMax(int kind, fallback_implementation) {
|
|
constexpr auto max_clock_t{std::numeric_limits<std::clock_t>::max()};
|
|
unsigned_count_t maxCount{GetHUGE(kind)};
|
|
return max_clock_t <= maxCount ? static_cast<count_t>(max_clock_t)
|
|
: static_cast<count_t>(maxCount);
|
|
}
|
|
|
|
// POSIX implementation using clock_gettime where available. The clock_gettime
|
|
// result is in nanoseconds, which is converted as necessary to
|
|
// - deciseconds for kind 1
|
|
// - milliseconds for kinds 2, 4
|
|
// - nanoseconds for kinds 8, 16
|
|
constexpr unsigned_count_t DS_PER_SEC{10u};
|
|
constexpr unsigned_count_t MS_PER_SEC{1'000u};
|
|
constexpr unsigned_count_t NS_PER_SEC{1'000'000'000u};
|
|
|
|
#ifdef CLOCKID
|
|
template <typename T = int, typename U = struct timespec>
|
|
count_t GetSystemClockCount(int kind, preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
struct timespec tspec;
|
|
const unsigned_count_t huge{GetHUGE(kind)};
|
|
if (clock_gettime(CLOCKID, &tspec) != 0) {
|
|
return -huge; // failure
|
|
}
|
|
unsigned_count_t sec{static_cast<unsigned_count_t>(tspec.tv_sec)};
|
|
unsigned_count_t nsec{static_cast<unsigned_count_t>(tspec.tv_nsec)};
|
|
if (kind >= 8) {
|
|
return (sec * NS_PER_SEC + nsec) % (huge + 1);
|
|
} else if (kind >= 2) {
|
|
return (sec * MS_PER_SEC + (nsec / (NS_PER_SEC / MS_PER_SEC))) % (huge + 1);
|
|
} else { // kind == 1
|
|
return (sec * DS_PER_SEC + (nsec / (NS_PER_SEC / DS_PER_SEC))) % (huge + 1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
template <typename T = int, typename U = struct timespec>
|
|
count_t GetSystemClockCountRate(int kind, preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
return kind >= 8 ? NS_PER_SEC : kind >= 2 ? MS_PER_SEC : DS_PER_SEC;
|
|
}
|
|
|
|
template <typename T = int, typename U = struct timespec>
|
|
count_t GetSystemClockCountMax(int kind, preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
return GetHUGE(kind);
|
|
}
|
|
|
|
// DATE_AND_TIME (Fortran 2018 16.9.59)
|
|
|
|
// Helper to set an integer value to -HUGE
|
|
template <int KIND> struct StoreNegativeHugeAt {
|
|
void operator()(
|
|
const Fortran::runtime::Descriptor &result, std::size_t at) const {
|
|
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
|
|
Fortran::common::TypeCategory::Integer, KIND>>(at) =
|
|
-std::numeric_limits<Fortran::runtime::CppTypeFor<
|
|
Fortran::common::TypeCategory::Integer, KIND>>::max();
|
|
}
|
|
};
|
|
|
|
// Default implementation when date and time information is not available (set
|
|
// strings to blanks and values to -HUGE as defined by the standard).
|
|
static void DateAndTimeUnavailable(Fortran::runtime::Terminator &terminator,
|
|
char *date, std::size_t dateChars, char *time, std::size_t timeChars,
|
|
char *zone, std::size_t zoneChars,
|
|
const Fortran::runtime::Descriptor *values) {
|
|
if (date) {
|
|
std::memset(date, static_cast<int>(' '), dateChars);
|
|
}
|
|
if (time) {
|
|
std::memset(time, static_cast<int>(' '), timeChars);
|
|
}
|
|
if (zone) {
|
|
std::memset(zone, static_cast<int>(' '), zoneChars);
|
|
}
|
|
if (values) {
|
|
auto typeCode{values->type().GetCategoryAndKind()};
|
|
RUNTIME_CHECK(terminator,
|
|
values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
|
|
typeCode &&
|
|
typeCode->first == Fortran::common::TypeCategory::Integer);
|
|
// DATE_AND_TIME values argument must have decimal range > 4. Do not accept
|
|
// KIND 1 here.
|
|
int kind{typeCode->second};
|
|
RUNTIME_CHECK(terminator, kind != 1);
|
|
for (std::size_t i = 0; i < 8; ++i) {
|
|
Fortran::runtime::ApplyIntegerKind<StoreNegativeHugeAt, void>(
|
|
kind, terminator, *values, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
|
|
// SFINAE helper to return the struct tm.tm_gmtoff which is not a POSIX standard
|
|
// field.
|
|
template <int KIND, typename TM = struct tm>
|
|
Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
|
|
GetGmtOffset(const TM &tm, preferred_implementation,
|
|
decltype(tm.tm_gmtoff) *Enabled = nullptr) {
|
|
// Returns the GMT offset in minutes.
|
|
return tm.tm_gmtoff / 60;
|
|
}
|
|
template <int KIND, typename TM = struct tm>
|
|
Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
|
|
GetGmtOffset(const TM &tm, fallback_implementation) {
|
|
// tm.tm_gmtoff is not available, there may be platform dependent alternatives
|
|
// (such as using timezone from <time.h> when available), but so far just
|
|
// return -HUGE to report that this information is not available.
|
|
return -std::numeric_limits<Fortran::runtime::CppTypeFor<
|
|
Fortran::common::TypeCategory::Integer, KIND>>::max();
|
|
}
|
|
template <typename TM = struct tm> struct GmtOffsetHelper {
|
|
template <int KIND> struct StoreGmtOffset {
|
|
void operator()(const Fortran::runtime::Descriptor &result, std::size_t at,
|
|
TM &tm) const {
|
|
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
|
|
Fortran::common::TypeCategory::Integer, KIND>>(at) =
|
|
GetGmtOffset<KIND>(tm, 0);
|
|
}
|
|
};
|
|
};
|
|
|
|
// Dispatch to posix implementation where gettimeofday and localtime_r are
|
|
// available.
|
|
static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
|
|
std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
|
|
std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
|
|
|
|
timeval t;
|
|
if (gettimeofday(&t, nullptr) != 0) {
|
|
DateAndTimeUnavailable(
|
|
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
|
|
return;
|
|
}
|
|
time_t timer{t.tv_sec};
|
|
tm localTime;
|
|
localtime_r(&timer, &localTime);
|
|
std::intmax_t ms{t.tv_usec / 1000};
|
|
|
|
static constexpr std::size_t buffSize{16};
|
|
char buffer[buffSize];
|
|
auto copyBufferAndPad{
|
|
[&](char *dest, std::size_t destChars, std::size_t len) {
|
|
auto copyLen{std::min(len, destChars)};
|
|
std::memcpy(dest, buffer, copyLen);
|
|
for (auto i{copyLen}; i < destChars; ++i) {
|
|
dest[i] = ' ';
|
|
}
|
|
}};
|
|
if (date) {
|
|
auto len = std::strftime(buffer, buffSize, "%Y%m%d", &localTime);
|
|
copyBufferAndPad(date, dateChars, len);
|
|
}
|
|
if (time) {
|
|
auto len{std::snprintf(buffer, buffSize, "%02d%02d%02d.%03jd",
|
|
localTime.tm_hour, localTime.tm_min, localTime.tm_sec, ms)};
|
|
copyBufferAndPad(time, timeChars, len);
|
|
}
|
|
if (zone) {
|
|
// Note: this may leave the buffer empty on many platforms. Classic flang
|
|
// has a much more complex way of doing this (see __io_timezone in classic
|
|
// flang).
|
|
auto len{std::strftime(buffer, buffSize, "%z", &localTime)};
|
|
copyBufferAndPad(zone, zoneChars, len);
|
|
}
|
|
if (values) {
|
|
auto typeCode{values->type().GetCategoryAndKind()};
|
|
RUNTIME_CHECK(terminator,
|
|
values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
|
|
typeCode &&
|
|
typeCode->first == Fortran::common::TypeCategory::Integer);
|
|
// DATE_AND_TIME values argument must have decimal range > 4. Do not accept
|
|
// KIND 1 here.
|
|
int kind{typeCode->second};
|
|
RUNTIME_CHECK(terminator, kind != 1);
|
|
auto storeIntegerAt = [&](std::size_t atIndex, std::int64_t value) {
|
|
Fortran::runtime::ApplyIntegerKind<Fortran::runtime::StoreIntegerAt,
|
|
void>(kind, terminator, *values, atIndex, value);
|
|
};
|
|
storeIntegerAt(0, localTime.tm_year + 1900);
|
|
storeIntegerAt(1, localTime.tm_mon + 1);
|
|
storeIntegerAt(2, localTime.tm_mday);
|
|
Fortran::runtime::ApplyIntegerKind<
|
|
GmtOffsetHelper<struct tm>::StoreGmtOffset, void>(
|
|
kind, terminator, *values, 3, localTime);
|
|
storeIntegerAt(4, localTime.tm_hour);
|
|
storeIntegerAt(5, localTime.tm_min);
|
|
storeIntegerAt(6, localTime.tm_sec);
|
|
storeIntegerAt(7, ms);
|
|
}
|
|
}
|
|
|
|
#else
|
|
// Fallback implementation where gettimeofday or localtime_r are not both
|
|
// available (e.g. windows).
|
|
static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
|
|
std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
|
|
std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
|
|
// TODO: An actual implementation for non Posix system should be added.
|
|
// So far, implement as if the date and time is not available on those
|
|
// platforms.
|
|
DateAndTimeUnavailable(
|
|
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
|
|
}
|
|
#endif
|
|
} // namespace
|
|
|
|
namespace Fortran::runtime {
|
|
extern "C" {
|
|
|
|
double RTNAME(CpuTime)() { return GetCpuTime(0); }
|
|
|
|
std::int64_t RTNAME(SystemClockCount)(int kind) {
|
|
return GetSystemClockCount(kind, 0);
|
|
}
|
|
|
|
std::int64_t RTNAME(SystemClockCountRate)(int kind) {
|
|
return GetSystemClockCountRate(kind, 0);
|
|
}
|
|
|
|
std::int64_t RTNAME(SystemClockCountMax)(int kind) {
|
|
return GetSystemClockCountMax(kind, 0);
|
|
}
|
|
|
|
void RTNAME(DateAndTime)(char *date, std::size_t dateChars, char *time,
|
|
std::size_t timeChars, char *zone, std::size_t zoneChars,
|
|
const char *source, int line, const Descriptor *values) {
|
|
Fortran::runtime::Terminator terminator{source, line};
|
|
return GetDateAndTime(
|
|
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
|
|
}
|
|
|
|
} // extern "C"
|
|
} // namespace Fortran::runtime
|