llvm-project/clang/lib/CodeGen/CGStmtOpenMP.cpp

2762 lines
112 KiB
C++

//===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit OpenMP nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CGCleanup.h"
#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "TargetInfo.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtOpenMP.h"
using namespace clang;
using namespace CodeGen;
namespace {
/// Lexical scope for OpenMP executable constructs, that handles correct codegen
/// for captured expressions.
class OMPLexicalScope {
CodeGenFunction::LexicalScope Scope;
void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) {
for (const auto *C : S.clauses()) {
if (auto *CPI = OMPClauseWithPreInit::get(C)) {
if (auto *PreInit = cast_or_null<DeclStmt>(CPI->getPreInitStmt())) {
for (const auto *I : PreInit->decls())
CGF.EmitVarDecl(cast<VarDecl>(*I));
}
}
}
}
class PostUpdateCleanup final : public EHScopeStack::Cleanup {
const OMPExecutableDirective &S;
public:
PostUpdateCleanup(const OMPExecutableDirective &S) : S(S) {}
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
if (!CGF.HaveInsertPoint())
return;
(void)S;
// TODO: add cleanups for clauses that require post update.
}
};
public:
OMPLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S)
: Scope(CGF, S.getSourceRange()) {
emitPreInitStmt(CGF, S);
CGF.EHStack.pushCleanup<PostUpdateCleanup>(NormalAndEHCleanup, S);
}
};
} // namespace
llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) {
auto &C = getContext();
llvm::Value *Size = nullptr;
auto SizeInChars = C.getTypeSizeInChars(Ty);
if (SizeInChars.isZero()) {
// getTypeSizeInChars() returns 0 for a VLA.
while (auto *VAT = C.getAsVariableArrayType(Ty)) {
llvm::Value *ArraySize;
std::tie(ArraySize, Ty) = getVLASize(VAT);
Size = Size ? Builder.CreateNUWMul(Size, ArraySize) : ArraySize;
}
SizeInChars = C.getTypeSizeInChars(Ty);
if (SizeInChars.isZero())
return llvm::ConstantInt::get(SizeTy, /*V=*/0);
Size = Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars));
} else
Size = CGM.getSize(SizeInChars);
return Size;
}
void CodeGenFunction::GenerateOpenMPCapturedVars(
const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
const RecordDecl *RD = S.getCapturedRecordDecl();
auto CurField = RD->field_begin();
auto CurCap = S.captures().begin();
for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
E = S.capture_init_end();
I != E; ++I, ++CurField, ++CurCap) {
if (CurField->hasCapturedVLAType()) {
auto VAT = CurField->getCapturedVLAType();
auto *Val = VLASizeMap[VAT->getSizeExpr()];
CapturedVars.push_back(Val);
} else if (CurCap->capturesThis())
CapturedVars.push_back(CXXThisValue);
else if (CurCap->capturesVariableByCopy())
CapturedVars.push_back(
EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal());
else {
assert(CurCap->capturesVariable() && "Expected capture by reference.");
CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
}
}
}
static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType,
StringRef Name, LValue AddrLV,
bool isReferenceType = false) {
ASTContext &Ctx = CGF.getContext();
auto *CastedPtr = CGF.EmitScalarConversion(
AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
Ctx.getPointerType(DstType), SourceLocation());
auto TmpAddr =
CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
.getAddress();
// If we are dealing with references we need to return the address of the
// reference instead of the reference of the value.
if (isReferenceType) {
QualType RefType = Ctx.getLValueReferenceType(DstType);
auto *RefVal = TmpAddr.getPointer();
TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref");
auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
CGF.EmitScalarInit(RefVal, TmpLVal);
}
return TmpAddr;
}
llvm::Function *
CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
assert(
CapturedStmtInfo &&
"CapturedStmtInfo should be set when generating the captured function");
const CapturedDecl *CD = S.getCapturedDecl();
const RecordDecl *RD = S.getCapturedRecordDecl();
assert(CD->hasBody() && "missing CapturedDecl body");
// Build the argument list.
ASTContext &Ctx = CGM.getContext();
FunctionArgList Args;
Args.append(CD->param_begin(),
std::next(CD->param_begin(), CD->getContextParamPosition()));
auto I = S.captures().begin();
for (auto *FD : RD->fields()) {
QualType ArgType = FD->getType();
IdentifierInfo *II = nullptr;
VarDecl *CapVar = nullptr;
// If this is a capture by copy and the type is not a pointer, the outlined
// function argument type should be uintptr and the value properly casted to
// uintptr. This is necessary given that the runtime library is only able to
// deal with pointers. We can pass in the same way the VLA type sizes to the
// outlined function.
if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
I->capturesVariableArrayType())
ArgType = Ctx.getUIntPtrType();
if (I->capturesVariable() || I->capturesVariableByCopy()) {
CapVar = I->getCapturedVar();
II = CapVar->getIdentifier();
} else if (I->capturesThis())
II = &getContext().Idents.get("this");
else {
assert(I->capturesVariableArrayType());
II = &getContext().Idents.get("vla");
}
if (ArgType->isVariablyModifiedType())
ArgType = getContext().getVariableArrayDecayedType(ArgType);
Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr,
FD->getLocation(), II, ArgType));
++I;
}
Args.append(
std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
CD->param_end());
// Create the function declaration.
FunctionType::ExtInfo ExtInfo;
const CGFunctionInfo &FuncInfo =
CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
/*IsVariadic=*/false);
llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
llvm::Function *F = llvm::Function::Create(
FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
CapturedStmtInfo->getHelperName(), &CGM.getModule());
CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
if (CD->isNothrow())
F->addFnAttr(llvm::Attribute::NoUnwind);
// Generate the function.
StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
CD->getBody()->getLocStart());
unsigned Cnt = CD->getContextParamPosition();
I = S.captures().begin();
for (auto *FD : RD->fields()) {
// If we are capturing a pointer by copy we don't need to do anything, just
// use the value that we get from the arguments.
if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
setAddrOfLocalVar(I->getCapturedVar(), GetAddrOfLocalVar(Args[Cnt]));
++Cnt;
++I;
continue;
}
LValue ArgLVal =
MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(),
AlignmentSource::Decl);
if (FD->hasCapturedVLAType()) {
LValue CastedArgLVal =
MakeAddrLValue(castValueFromUintptr(*this, FD->getType(),
Args[Cnt]->getName(), ArgLVal),
FD->getType(), AlignmentSource::Decl);
auto *ExprArg =
EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal();
auto VAT = FD->getCapturedVLAType();
VLASizeMap[VAT->getSizeExpr()] = ExprArg;
} else if (I->capturesVariable()) {
auto *Var = I->getCapturedVar();
QualType VarTy = Var->getType();
Address ArgAddr = ArgLVal.getAddress();
if (!VarTy->isReferenceType()) {
ArgAddr = EmitLoadOfReference(
ArgAddr, ArgLVal.getType()->castAs<ReferenceType>());
}
setAddrOfLocalVar(
Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var)));
} else if (I->capturesVariableByCopy()) {
assert(!FD->getType()->isAnyPointerType() &&
"Not expecting a captured pointer.");
auto *Var = I->getCapturedVar();
QualType VarTy = Var->getType();
setAddrOfLocalVar(I->getCapturedVar(),
castValueFromUintptr(*this, FD->getType(),
Args[Cnt]->getName(), ArgLVal,
VarTy->isReferenceType()));
} else {
// If 'this' is captured, load it into CXXThisValue.
assert(I->capturesThis());
CXXThisValue =
EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal();
}
++Cnt;
++I;
}
PGO.assignRegionCounters(GlobalDecl(CD), F);
CapturedStmtInfo->EmitBody(*this, CD->getBody());
FinishFunction(CD->getBodyRBrace());
return F;
}
//===----------------------------------------------------------------------===//
// OpenMP Directive Emission
//===----------------------------------------------------------------------===//
void CodeGenFunction::EmitOMPAggregateAssign(
Address DestAddr, Address SrcAddr, QualType OriginalType,
const llvm::function_ref<void(Address, Address)> &CopyGen) {
// Perform element-by-element initialization.
QualType ElementTy;
// Drill down to the base element type on both arrays.
auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
auto SrcBegin = SrcAddr.getPointer();
auto DestBegin = DestAddr.getPointer();
// Cast from pointer to array type to pointer to single element.
auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
// The basic structure here is a while-do loop.
auto BodyBB = createBasicBlock("omp.arraycpy.body");
auto DoneBB = createBasicBlock("omp.arraycpy.done");
auto IsEmpty =
Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
// Enter the loop body, making that address the current address.
auto EntryBB = Builder.GetInsertBlock();
EmitBlock(BodyBB);
CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);
llvm::PHINode *SrcElementPHI =
Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
SrcElementPHI->addIncoming(SrcBegin, EntryBB);
Address SrcElementCurrent =
Address(SrcElementPHI,
SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
llvm::PHINode *DestElementPHI =
Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
DestElementPHI->addIncoming(DestBegin, EntryBB);
Address DestElementCurrent =
Address(DestElementPHI,
DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
// Emit copy.
CopyGen(DestElementCurrent, SrcElementCurrent);
// Shift the address forward by one element.
auto DestElementNext = Builder.CreateConstGEP1_32(
DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
auto SrcElementNext = Builder.CreateConstGEP1_32(
SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
// Check whether we've reached the end.
auto Done =
Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
Builder.CreateCondBr(Done, DoneBB, BodyBB);
DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());
// Done.
EmitBlock(DoneBB, /*IsFinished=*/true);
}
/// \brief Emit initialization of arrays of complex types.
/// \param DestAddr Address of the array.
/// \param Type Type of array.
/// \param Init Initial expression of array.
static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
QualType Type, const Expr *Init) {
// Perform element-by-element initialization.
QualType ElementTy;
// Drill down to the base element type on both arrays.
auto ArrayTy = Type->getAsArrayTypeUnsafe();
auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
DestAddr =
CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
auto DestBegin = DestAddr.getPointer();
// Cast from pointer to array type to pointer to single element.
auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
// The basic structure here is a while-do loop.
auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
auto IsEmpty =
CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
// Enter the loop body, making that address the current address.
auto EntryBB = CGF.Builder.GetInsertBlock();
CGF.EmitBlock(BodyBB);
CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
DestElementPHI->addIncoming(DestBegin, EntryBB);
Address DestElementCurrent =
Address(DestElementPHI,
DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
// Emit copy.
{
CodeGenFunction::RunCleanupsScope InitScope(CGF);
CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
/*IsInitializer=*/false);
}
// Shift the address forward by one element.
auto DestElementNext = CGF.Builder.CreateConstGEP1_32(
DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
// Check whether we've reached the end.
auto Done =
CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
// Done.
CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
}
void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
Address SrcAddr, const VarDecl *DestVD,
const VarDecl *SrcVD, const Expr *Copy) {
if (OriginalType->isArrayType()) {
auto *BO = dyn_cast<BinaryOperator>(Copy);
if (BO && BO->getOpcode() == BO_Assign) {
// Perform simple memcpy for simple copying.
EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
} else {
// For arrays with complex element types perform element by element
// copying.
EmitOMPAggregateAssign(
DestAddr, SrcAddr, OriginalType,
[this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
// Working with the single array element, so have to remap
// destination and source variables to corresponding array
// elements.
CodeGenFunction::OMPPrivateScope Remap(*this);
Remap.addPrivate(DestVD, [DestElement]() -> Address {
return DestElement;
});
Remap.addPrivate(
SrcVD, [SrcElement]() -> Address { return SrcElement; });
(void)Remap.Privatize();
EmitIgnoredExpr(Copy);
});
}
} else {
// Remap pseudo source variable to private copy.
CodeGenFunction::OMPPrivateScope Remap(*this);
Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; });
Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; });
(void)Remap.Privatize();
// Emit copying of the whole variable.
EmitIgnoredExpr(Copy);
}
}
bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
OMPPrivateScope &PrivateScope) {
if (!HaveInsertPoint())
return false;
bool FirstprivateIsLastprivate = false;
llvm::DenseSet<const VarDecl *> Lastprivates;
for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
for (const auto *D : C->varlists())
Lastprivates.insert(
cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
}
llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
auto IRef = C->varlist_begin();
auto InitsRef = C->inits().begin();
for (auto IInit : C->private_copies()) {
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
FirstprivateIsLastprivate =
FirstprivateIsLastprivate ||
(Lastprivates.count(OrigVD->getCanonicalDecl()) > 0);
if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
bool IsRegistered;
DeclRefExpr DRE(
const_cast<VarDecl *>(OrigVD),
/*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
OrigVD) != nullptr,
(*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
Address OriginalAddr = EmitLValue(&DRE).getAddress();
QualType Type = OrigVD->getType();
if (Type->isArrayType()) {
// Emit VarDecl with copy init for arrays.
// Get the address of the original variable captured in current
// captured region.
IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
auto Emission = EmitAutoVarAlloca(*VD);
auto *Init = VD->getInit();
if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
// Perform simple memcpy.
EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
Type);
} else {
EmitOMPAggregateAssign(
Emission.getAllocatedAddress(), OriginalAddr, Type,
[this, VDInit, Init](Address DestElement,
Address SrcElement) {
// Clean up any temporaries needed by the initialization.
RunCleanupsScope InitScope(*this);
// Emit initialization for single element.
setAddrOfLocalVar(VDInit, SrcElement);
EmitAnyExprToMem(Init, DestElement,
Init->getType().getQualifiers(),
/*IsInitializer*/ false);
LocalDeclMap.erase(VDInit);
});
}
EmitAutoVarCleanups(Emission);
return Emission.getAllocatedAddress();
});
} else {
IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
// Emit private VarDecl with copy init.
// Remap temp VDInit variable to the address of the original
// variable
// (for proper handling of captured global variables).
setAddrOfLocalVar(VDInit, OriginalAddr);
EmitDecl(*VD);
LocalDeclMap.erase(VDInit);
return GetAddrOfLocalVar(VD);
});
}
assert(IsRegistered &&
"firstprivate var already registered as private");
// Silence the warning about unused variable.
(void)IsRegistered;
}
++IRef;
++InitsRef;
}
}
return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty();
}
void CodeGenFunction::EmitOMPPrivateClause(
const OMPExecutableDirective &D,
CodeGenFunction::OMPPrivateScope &PrivateScope) {
if (!HaveInsertPoint())
return;
llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
auto IRef = C->varlist_begin();
for (auto IInit : C->private_copies()) {
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
bool IsRegistered =
PrivateScope.addPrivate(OrigVD, [&]() -> Address {
// Emit private VarDecl with copy init.
EmitDecl(*VD);
return GetAddrOfLocalVar(VD);
});
assert(IsRegistered && "private var already registered as private");
// Silence the warning about unused variable.
(void)IsRegistered;
}
++IRef;
}
}
}
bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
if (!HaveInsertPoint())
return false;
// threadprivate_var1 = master_threadprivate_var1;
// operator=(threadprivate_var2, master_threadprivate_var2);
// ...
// __kmpc_barrier(&loc, global_tid);
llvm::DenseSet<const VarDecl *> CopiedVars;
llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
auto IRef = C->varlist_begin();
auto ISrcRef = C->source_exprs().begin();
auto IDestRef = C->destination_exprs().begin();
for (auto *AssignOp : C->assignment_ops()) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
QualType Type = VD->getType();
if (CopiedVars.insert(VD->getCanonicalDecl()).second) {
// Get the address of the master variable. If we are emitting code with
// TLS support, the address is passed from the master as field in the
// captured declaration.
Address MasterAddr = Address::invalid();
if (getLangOpts().OpenMPUseTLS &&
getContext().getTargetInfo().isTLSSupported()) {
assert(CapturedStmtInfo->lookup(VD) &&
"Copyin threadprivates should have been captured!");
DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
VK_LValue, (*IRef)->getExprLoc());
MasterAddr = EmitLValue(&DRE).getAddress();
LocalDeclMap.erase(VD);
} else {
MasterAddr =
Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
: CGM.GetAddrOfGlobal(VD),
getContext().getDeclAlign(VD));
}
// Get the address of the threadprivate variable.
Address PrivateAddr = EmitLValue(*IRef).getAddress();
if (CopiedVars.size() == 1) {
// At first check if current thread is a master thread. If it is, no
// need to copy data.
CopyBegin = createBasicBlock("copyin.not.master");
CopyEnd = createBasicBlock("copyin.not.master.end");
Builder.CreateCondBr(
Builder.CreateICmpNE(
Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)),
CopyBegin, CopyEnd);
EmitBlock(CopyBegin);
}
auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
}
++IRef;
++ISrcRef;
++IDestRef;
}
}
if (CopyEnd) {
// Exit out of copying procedure for non-master thread.
EmitBlock(CopyEnd, /*IsFinished=*/true);
return true;
}
return false;
}
bool CodeGenFunction::EmitOMPLastprivateClauseInit(
const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
if (!HaveInsertPoint())
return false;
bool HasAtLeastOneLastprivate = false;
llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
HasAtLeastOneLastprivate = true;
auto IRef = C->varlist_begin();
auto IDestRef = C->destination_exprs().begin();
for (auto *IInit : C->private_copies()) {
// Keep the address of the original variable for future update at the end
// of the loop.
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address {
DeclRefExpr DRE(
const_cast<VarDecl *>(OrigVD),
/*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
OrigVD) != nullptr,
(*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
return EmitLValue(&DRE).getAddress();
});
// Check if the variable is also a firstprivate: in this case IInit is
// not generated. Initialization of this variable will happen in codegen
// for 'firstprivate' clause.
if (IInit) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
bool IsRegistered =
PrivateScope.addPrivate(OrigVD, [&]() -> Address {
// Emit private VarDecl with copy init.
EmitDecl(*VD);
return GetAddrOfLocalVar(VD);
});
assert(IsRegistered &&
"lastprivate var already registered as private");
(void)IsRegistered;
}
}
++IRef;
++IDestRef;
}
}
return HasAtLeastOneLastprivate;
}
void CodeGenFunction::EmitOMPLastprivateClauseFinal(
const OMPExecutableDirective &D, llvm::Value *IsLastIterCond) {
if (!HaveInsertPoint())
return;
// Emit following code:
// if (<IsLastIterCond>) {
// orig_var1 = private_orig_var1;
// ...
// orig_varn = private_orig_varn;
// }
llvm::BasicBlock *ThenBB = nullptr;
llvm::BasicBlock *DoneBB = nullptr;
if (IsLastIterCond) {
ThenBB = createBasicBlock(".omp.lastprivate.then");
DoneBB = createBasicBlock(".omp.lastprivate.done");
Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
EmitBlock(ThenBB);
}
llvm::DenseMap<const Decl *, const Expr *> LoopCountersAndUpdates;
if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
auto IC = LoopDirective->counters().begin();
for (auto F : LoopDirective->finals()) {
auto *D = cast<DeclRefExpr>(*IC)->getDecl()->getCanonicalDecl();
LoopCountersAndUpdates[D] = F;
++IC;
}
}
llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
auto IRef = C->varlist_begin();
auto ISrcRef = C->source_exprs().begin();
auto IDestRef = C->destination_exprs().begin();
for (auto *AssignOp : C->assignment_ops()) {
auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
QualType Type = PrivateVD->getType();
auto *CanonicalVD = PrivateVD->getCanonicalDecl();
if (AlreadyEmittedVars.insert(CanonicalVD).second) {
// If lastprivate variable is a loop control variable for loop-based
// directive, update its value before copyin back to original
// variable.
if (auto *UpExpr = LoopCountersAndUpdates.lookup(CanonicalVD))
EmitIgnoredExpr(UpExpr);
auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
// Get the address of the original variable.
Address OriginalAddr = GetAddrOfLocalVar(DestVD);
// Get the address of the private variable.
Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>())
PrivateAddr =
Address(Builder.CreateLoad(PrivateAddr),
getNaturalTypeAlignment(RefTy->getPointeeType()));
EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
}
++IRef;
++ISrcRef;
++IDestRef;
}
}
if (IsLastIterCond)
EmitBlock(DoneBB, /*IsFinished=*/true);
}
static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
LValue BaseLV, llvm::Value *Addr) {
Address Tmp = Address::invalid();
Address TopTmp = Address::invalid();
Address MostTopTmp = Address::invalid();
BaseTy = BaseTy.getNonReferenceType();
while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
!CGF.getContext().hasSameType(BaseTy, ElTy)) {
Tmp = CGF.CreateMemTemp(BaseTy);
if (TopTmp.isValid())
CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
else
MostTopTmp = Tmp;
TopTmp = Tmp;
BaseTy = BaseTy->getPointeeType();
}
llvm::Type *Ty = BaseLV.getPointer()->getType();
if (Tmp.isValid())
Ty = Tmp.getElementType();
Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
if (Tmp.isValid()) {
CGF.Builder.CreateStore(Addr, Tmp);
return MostTopTmp;
}
return Address(Addr, BaseLV.getAlignment());
}
static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
LValue BaseLV) {
BaseTy = BaseTy.getNonReferenceType();
while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
!CGF.getContext().hasSameType(BaseTy, ElTy)) {
if (auto *PtrTy = BaseTy->getAs<PointerType>())
BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy);
else {
BaseLV = CGF.EmitLoadOfReferenceLValue(BaseLV.getAddress(),
BaseTy->castAs<ReferenceType>());
}
BaseTy = BaseTy->getPointeeType();
}
return CGF.MakeAddrLValue(
Address(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
BaseLV.getPointer(), CGF.ConvertTypeForMem(ElTy)->getPointerTo()),
BaseLV.getAlignment()),
BaseLV.getType(), BaseLV.getAlignmentSource());
}
void CodeGenFunction::EmitOMPReductionClauseInit(
const OMPExecutableDirective &D,
CodeGenFunction::OMPPrivateScope &PrivateScope) {
if (!HaveInsertPoint())
return;
for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
auto ILHS = C->lhs_exprs().begin();
auto IRHS = C->rhs_exprs().begin();
auto IPriv = C->privates().begin();
for (auto IRef : C->varlists()) {
auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) {
auto *Base = OASE->getBase()->IgnoreParenImpCasts();
while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
Base = TempOASE->getBase()->IgnoreParenImpCasts();
while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
Base = TempASE->getBase()->IgnoreParenImpCasts();
auto *DE = cast<DeclRefExpr>(Base);
auto *OrigVD = cast<VarDecl>(DE->getDecl());
auto OASELValueLB = EmitOMPArraySectionExpr(OASE);
auto OASELValueUB =
EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
auto OriginalBaseLValue = EmitLValue(DE);
LValue BaseLValue =
loadToBegin(*this, OrigVD->getType(), OASELValueLB.getType(),
OriginalBaseLValue);
// Store the address of the original variable associated with the LHS
// implicit variable.
PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address {
return OASELValueLB.getAddress();
});
// Emit reduction copy.
bool IsRegistered = PrivateScope.addPrivate(
OrigVD, [this, OrigVD, PrivateVD, BaseLValue, OASELValueLB,
OASELValueUB, OriginalBaseLValue]() -> Address {
// Emit VarDecl with copy init for arrays.
// Get the address of the original variable captured in current
// captured region.
auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(),
OASELValueLB.getPointer());
Size = Builder.CreateNUWAdd(
Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
CodeGenFunction::OpaqueValueMapping OpaqueMap(
*this, cast<OpaqueValueExpr>(
getContext()
.getAsVariableArrayType(PrivateVD->getType())
->getSizeExpr()),
RValue::get(Size));
EmitVariablyModifiedType(PrivateVD->getType());
auto Emission = EmitAutoVarAlloca(*PrivateVD);
auto Addr = Emission.getAllocatedAddress();
auto *Init = PrivateVD->getInit();
EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), Init);
EmitAutoVarCleanups(Emission);
// Emit private VarDecl with reduction init.
auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
OASELValueLB.getPointer());
auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
return castToBase(*this, OrigVD->getType(),
OASELValueLB.getType(), OriginalBaseLValue,
Ptr);
});
assert(IsRegistered && "private var already registered as private");
// Silence the warning about unused variable.
(void)IsRegistered;
PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
return GetAddrOfLocalVar(PrivateVD);
});
} else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) {
auto *Base = ASE->getBase()->IgnoreParenImpCasts();
while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
Base = TempASE->getBase()->IgnoreParenImpCasts();
auto *DE = cast<DeclRefExpr>(Base);
auto *OrigVD = cast<VarDecl>(DE->getDecl());
auto ASELValue = EmitLValue(ASE);
auto OriginalBaseLValue = EmitLValue(DE);
LValue BaseLValue = loadToBegin(
*this, OrigVD->getType(), ASELValue.getType(), OriginalBaseLValue);
// Store the address of the original variable associated with the LHS
// implicit variable.
PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address {
return ASELValue.getAddress();
});
// Emit reduction copy.
bool IsRegistered = PrivateScope.addPrivate(
OrigVD, [this, OrigVD, PrivateVD, BaseLValue, ASELValue,
OriginalBaseLValue]() -> Address {
// Emit private VarDecl with reduction init.
EmitDecl(*PrivateVD);
auto Addr = GetAddrOfLocalVar(PrivateVD);
auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
ASELValue.getPointer());
auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
return castToBase(*this, OrigVD->getType(), ASELValue.getType(),
OriginalBaseLValue, Ptr);
});
assert(IsRegistered && "private var already registered as private");
// Silence the warning about unused variable.
(void)IsRegistered;
PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
return Builder.CreateElementBitCast(
GetAddrOfLocalVar(PrivateVD), ConvertTypeForMem(RHSVD->getType()),
"rhs.begin");
});
} else {
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
QualType Type = PrivateVD->getType();
if (getContext().getAsArrayType(Type)) {
// Store the address of the original variable associated with the LHS
// implicit variable.
DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
CapturedStmtInfo->lookup(OrigVD) != nullptr,
IRef->getType(), VK_LValue, IRef->getExprLoc());
Address OriginalAddr = EmitLValue(&DRE).getAddress();
PrivateScope.addPrivate(LHSVD, [this, OriginalAddr,
LHSVD]() -> Address {
return Builder.CreateElementBitCast(
OriginalAddr, ConvertTypeForMem(LHSVD->getType()),
"lhs.begin");
});
bool IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
if (Type->isVariablyModifiedType()) {
CodeGenFunction::OpaqueValueMapping OpaqueMap(
*this, cast<OpaqueValueExpr>(
getContext()
.getAsVariableArrayType(PrivateVD->getType())
->getSizeExpr()),
RValue::get(
getTypeSize(OrigVD->getType().getNonReferenceType())));
EmitVariablyModifiedType(Type);
}
auto Emission = EmitAutoVarAlloca(*PrivateVD);
auto Addr = Emission.getAllocatedAddress();
auto *Init = PrivateVD->getInit();
EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), Init);
EmitAutoVarCleanups(Emission);
return Emission.getAllocatedAddress();
});
assert(IsRegistered && "private var already registered as private");
// Silence the warning about unused variable.
(void)IsRegistered;
PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() -> Address {
return Builder.CreateElementBitCast(
GetAddrOfLocalVar(PrivateVD),
ConvertTypeForMem(RHSVD->getType()), "rhs.begin");
});
} else {
// Store the address of the original variable associated with the LHS
// implicit variable.
PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef]() -> Address {
DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
CapturedStmtInfo->lookup(OrigVD) != nullptr,
IRef->getType(), VK_LValue, IRef->getExprLoc());
return EmitLValue(&DRE).getAddress();
});
// Emit reduction copy.
bool IsRegistered =
PrivateScope.addPrivate(OrigVD, [this, PrivateVD]() -> Address {
// Emit private VarDecl with reduction init.
EmitDecl(*PrivateVD);
return GetAddrOfLocalVar(PrivateVD);
});
assert(IsRegistered && "private var already registered as private");
// Silence the warning about unused variable.
(void)IsRegistered;
PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
return GetAddrOfLocalVar(PrivateVD);
});
}
}
++ILHS;
++IRHS;
++IPriv;
}
}
}
void CodeGenFunction::EmitOMPReductionClauseFinal(
const OMPExecutableDirective &D) {
if (!HaveInsertPoint())
return;
llvm::SmallVector<const Expr *, 8> Privates;
llvm::SmallVector<const Expr *, 8> LHSExprs;
llvm::SmallVector<const Expr *, 8> RHSExprs;
llvm::SmallVector<const Expr *, 8> ReductionOps;
bool HasAtLeastOneReduction = false;
for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
HasAtLeastOneReduction = true;
Privates.append(C->privates().begin(), C->privates().end());
LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
}
if (HasAtLeastOneReduction) {
// Emit nowait reduction if nowait clause is present or directive is a
// parallel directive (it always has implicit barrier).
CGM.getOpenMPRuntime().emitReduction(
*this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps,
D.getSingleClause<OMPNowaitClause>() ||
isOpenMPParallelDirective(D.getDirectiveKind()) ||
D.getDirectiveKind() == OMPD_simd,
D.getDirectiveKind() == OMPD_simd);
}
}
static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
const OMPExecutableDirective &S,
OpenMPDirectiveKind InnermostKind,
const RegionCodeGenTy &CodeGen) {
auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
llvm::SmallVector<llvm::Value *, 16> CapturedVars;
CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
/*IgnoreResultAssign*/ true);
CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
CGF, NumThreads, NumThreadsClause->getLocStart());
}
if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
CGF.CGM.getOpenMPRuntime().emitProcBindClause(
CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
}
const Expr *IfCond = nullptr;
for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
if (C->getNameModifier() == OMPD_unknown ||
C->getNameModifier() == OMPD_parallel) {
IfCond = C->getCondition();
break;
}
}
CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
CapturedVars, IfCond);
}
void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
OMPLexicalScope Scope(*this, S);
// Emit parallel region as a standalone region.
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
OMPPrivateScope PrivateScope(CGF);
bool Copyins = CGF.EmitOMPCopyinClause(S);
(void)CGF.EmitOMPFirstprivateClause(S, PrivateScope);
if (Copyins) {
// Emit implicit barrier to synchronize threads and avoid data races on
// propagation master's thread values of threadprivate variables to local
// instances of that variables of all other implicit threads.
CGF.CGM.getOpenMPRuntime().emitBarrierCall(
CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
/*ForceSimpleCall=*/true);
}
CGF.EmitOMPPrivateClause(S, PrivateScope);
CGF.EmitOMPReductionClauseInit(S, PrivateScope);
(void)PrivateScope.Privatize();
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
CGF.EmitOMPReductionClauseFinal(S);
};
emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen);
}
void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
JumpDest LoopExit) {
RunCleanupsScope BodyScope(*this);
// Update counters values on current iteration.
for (auto I : D.updates()) {
EmitIgnoredExpr(I);
}
// Update the linear variables.
for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
for (auto U : C->updates()) {
EmitIgnoredExpr(U);
}
}
// On a continue in the body, jump to the end.
auto Continue = getJumpDestInCurrentScope("omp.body.continue");
BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
// Emit loop body.
EmitStmt(D.getBody());
// The end (updates/cleanups).
EmitBlock(Continue.getBlock());
BreakContinueStack.pop_back();
}
void CodeGenFunction::EmitOMPInnerLoop(
const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
const Expr *IncExpr,
const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
// Start the loop with a block that tests the condition.
auto CondBlock = createBasicBlock("omp.inner.for.cond");
EmitBlock(CondBlock);
LoopStack.push(CondBlock);
// If there are any cleanups between here and the loop-exit scope,
// create a block to stage a loop exit along.
auto ExitBlock = LoopExit.getBlock();
if (RequiresCleanup)
ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
auto LoopBody = createBasicBlock("omp.inner.for.body");
// Emit condition.
EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
if (ExitBlock != LoopExit.getBlock()) {
EmitBlock(ExitBlock);
EmitBranchThroughCleanup(LoopExit);
}
EmitBlock(LoopBody);
incrementProfileCounter(&S);
// Create a block for the increment.
auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
BodyGen(*this);
// Emit "IV = IV + 1" and a back-edge to the condition block.
EmitBlock(Continue.getBlock());
EmitIgnoredExpr(IncExpr);
PostIncGen(*this);
BreakContinueStack.pop_back();
EmitBranch(CondBlock);
LoopStack.pop();
// Emit the fall-through block.
EmitBlock(LoopExit.getBlock());
}
void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
if (!HaveInsertPoint())
return;
// Emit inits for the linear variables.
for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
for (auto Init : C->inits()) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
auto *OrigVD = cast<VarDecl>(
cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())->getDecl());
DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
CapturedStmtInfo->lookup(OrigVD) != nullptr,
VD->getInit()->getType(), VK_LValue,
VD->getInit()->getExprLoc());
AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
EmitExprAsInit(&DRE, VD,
MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()),
/*capturedByInit=*/false);
EmitAutoVarCleanups(Emission);
}
// Emit the linear steps for the linear clauses.
// If a step is not constant, it is pre-calculated before the loop.
if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
// Emit calculation of the linear step.
EmitIgnoredExpr(CS);
}
}
}
static void emitLinearClauseFinal(CodeGenFunction &CGF,
const OMPLoopDirective &D) {
if (!CGF.HaveInsertPoint())
return;
// Emit the final values of the linear variables.
for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
auto IC = C->varlist_begin();
for (auto F : C->finals()) {
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
(*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
Address OrigAddr = CGF.EmitLValue(&DRE).getAddress();
CodeGenFunction::OMPPrivateScope VarScope(CGF);
VarScope.addPrivate(OrigVD,
[OrigAddr]() -> Address { return OrigAddr; });
(void)VarScope.Privatize();
CGF.EmitIgnoredExpr(F);
++IC;
}
}
}
static void emitAlignedClause(CodeGenFunction &CGF,
const OMPExecutableDirective &D) {
if (!CGF.HaveInsertPoint())
return;
for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
unsigned ClauseAlignment = 0;
if (auto AlignmentExpr = Clause->getAlignment()) {
auto AlignmentCI =
cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
}
for (auto E : Clause->varlists()) {
unsigned Alignment = ClauseAlignment;
if (Alignment == 0) {
// OpenMP [2.8.1, Description]
// If no optional parameter is specified, implementation-defined default
// alignments for SIMD instructions on the target platforms are assumed.
Alignment =
CGF.getContext()
.toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
E->getType()->getPointeeType()))
.getQuantity();
}
assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
"alignment is not power of 2");
if (Alignment != 0) {
llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
CGF.EmitAlignmentAssumption(PtrValue, Alignment);
}
}
}
}
static void emitPrivateLoopCounters(CodeGenFunction &CGF,
CodeGenFunction::OMPPrivateScope &LoopScope,
ArrayRef<Expr *> Counters,
ArrayRef<Expr *> PrivateCounters) {
if (!CGF.HaveInsertPoint())
return;
auto I = PrivateCounters.begin();
for (auto *E : Counters) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
Address Addr = Address::invalid();
(void)LoopScope.addPrivate(PrivateVD, [&]() -> Address {
// Emit var without initialization.
auto VarEmission = CGF.EmitAutoVarAlloca(*PrivateVD);
CGF.EmitAutoVarCleanups(VarEmission);
Addr = VarEmission.getAllocatedAddress();
return Addr;
});
(void)LoopScope.addPrivate(VD, [&]() -> Address { return Addr; });
++I;
}
}
static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
const Expr *Cond, llvm::BasicBlock *TrueBlock,
llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
if (!CGF.HaveInsertPoint())
return;
{
CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
emitPrivateLoopCounters(CGF, PreCondScope, S.counters(),
S.private_counters());
(void)PreCondScope.Privatize();
// Get initial values of real counters.
for (auto I : S.inits()) {
CGF.EmitIgnoredExpr(I);
}
}
// Check that loop is executed at least one time.
CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
}
static void
emitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D,
CodeGenFunction::OMPPrivateScope &PrivateScope) {
if (!CGF.HaveInsertPoint())
return;
for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
auto CurPrivate = C->privates().begin();
for (auto *E : C->varlists()) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
auto *PrivateVD =
cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address {
// Emit private VarDecl with copy init.
CGF.EmitVarDecl(*PrivateVD);
return CGF.GetAddrOfLocalVar(PrivateVD);
});
assert(IsRegistered && "linear var already registered as private");
// Silence the warning about unused variable.
(void)IsRegistered;
++CurPrivate;
}
}
}
static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
const OMPExecutableDirective &D,
bool IsMonotonic) {
if (!CGF.HaveInsertPoint())
return;
if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
/*ignoreResult=*/true);
llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
// In presence of finite 'safelen', it may be unsafe to mark all
// the memory instructions parallel, because loop-carried
// dependences of 'safelen' iterations are possible.
if (!IsMonotonic)
CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
} else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
/*ignoreResult=*/true);
llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
// In presence of finite 'safelen', it may be unsafe to mark all
// the memory instructions parallel, because loop-carried
// dependences of 'safelen' iterations are possible.
CGF.LoopStack.setParallel(false);
}
}
void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
bool IsMonotonic) {
// Walk clauses and process safelen/lastprivate.
LoopStack.setParallel(!IsMonotonic);
LoopStack.setVectorizeEnable(true);
emitSimdlenSafelenClause(*this, D, IsMonotonic);
}
void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &D) {
if (!HaveInsertPoint())
return;
auto IC = D.counters().begin();
for (auto F : D.finals()) {
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD)) {
DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
CapturedStmtInfo->lookup(OrigVD) != nullptr,
(*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
Address OrigAddr = EmitLValue(&DRE).getAddress();
OMPPrivateScope VarScope(*this);
VarScope.addPrivate(OrigVD,
[OrigAddr]() -> Address { return OrigAddr; });
(void)VarScope.Privatize();
EmitIgnoredExpr(F);
}
++IC;
}
emitLinearClauseFinal(*this, D);
}
void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
// if (PreCond) {
// for (IV in 0..LastIteration) BODY;
// <Final counter/linear vars updates>;
// }
//
// Emit: if (PreCond) - begin.
// If the condition constant folds and can be elided, avoid emitting the
// whole loop.
bool CondConstant;
llvm::BasicBlock *ContBlock = nullptr;
if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
if (!CondConstant)
return;
} else {
auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
ContBlock = CGF.createBasicBlock("simd.if.end");
emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
CGF.getProfileCount(&S));
CGF.EmitBlock(ThenBlock);
CGF.incrementProfileCounter(&S);
}
// Emit the loop iteration variable.
const Expr *IVExpr = S.getIterationVariable();
const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
CGF.EmitVarDecl(*IVDecl);
CGF.EmitIgnoredExpr(S.getInit());
// Emit the iterations count variable.
// If it is not a variable, Sema decided to calculate iterations count on
// each iteration (e.g., it is foldable into a constant).
if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
// Emit calculation of the iterations count.
CGF.EmitIgnoredExpr(S.getCalcLastIteration());
}
CGF.EmitOMPSimdInit(S);
emitAlignedClause(CGF, S);
CGF.EmitOMPLinearClauseInit(S);
bool HasLastprivateClause;
{
OMPPrivateScope LoopScope(CGF);
emitPrivateLoopCounters(CGF, LoopScope, S.counters(),
S.private_counters());
emitPrivateLinearVars(CGF, S, LoopScope);
CGF.EmitOMPPrivateClause(S, LoopScope);
CGF.EmitOMPReductionClauseInit(S, LoopScope);
HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
(void)LoopScope.Privatize();
CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
S.getInc(),
[&S](CodeGenFunction &CGF) {
CGF.EmitOMPLoopBody(S, JumpDest());
CGF.EmitStopPoint(&S);
},
[](CodeGenFunction &) {});
// Emit final copy of the lastprivate variables at the end of loops.
if (HasLastprivateClause) {
CGF.EmitOMPLastprivateClauseFinal(S);
}
CGF.EmitOMPReductionClauseFinal(S);
}
CGF.EmitOMPSimdFinal(S);
// Emit: if (PreCond) - end.
if (ContBlock) {
CGF.EmitBranch(ContBlock);
CGF.EmitBlock(ContBlock, true);
}
};
CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
}
void CodeGenFunction::EmitOMPForOuterLoop(
OpenMPScheduleClauseKind ScheduleKind, bool IsMonotonic,
const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
auto &RT = CGM.getOpenMPRuntime();
// Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind);
assert((Ordered ||
!RT.isStaticNonchunked(ScheduleKind, /*Chunked=*/Chunk != nullptr)) &&
"static non-chunked schedule does not need outer loop");
// Emit outer loop.
//
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
// When schedule(dynamic,chunk_size) is specified, the iterations are
// distributed to threads in the team in chunks as the threads request them.
// Each thread executes a chunk of iterations, then requests another chunk,
// until no chunks remain to be distributed. Each chunk contains chunk_size
// iterations, except for the last chunk to be distributed, which may have
// fewer iterations. When no chunk_size is specified, it defaults to 1.
//
// When schedule(guided,chunk_size) is specified, the iterations are assigned
// to threads in the team in chunks as the executing threads request them.
// Each thread executes a chunk of iterations, then requests another chunk,
// until no chunks remain to be assigned. For a chunk_size of 1, the size of
// each chunk is proportional to the number of unassigned iterations divided
// by the number of threads in the team, decreasing to 1. For a chunk_size
// with value k (greater than 1), the size of each chunk is determined in the
// same way, with the restriction that the chunks do not contain fewer than k
// iterations (except for the last chunk to be assigned, which may have fewer
// than k iterations).
//
// When schedule(auto) is specified, the decision regarding scheduling is
// delegated to the compiler and/or runtime system. The programmer gives the
// implementation the freedom to choose any possible mapping of iterations to
// threads in the team.
//
// When schedule(runtime) is specified, the decision regarding scheduling is
// deferred until run time, and the schedule and chunk size are taken from the
// run-sched-var ICV. If the ICV is set to auto, the schedule is
// implementation defined
//
// while(__kmpc_dispatch_next(&LB, &UB)) {
// idx = LB;
// while (idx <= UB) { BODY; ++idx;
// __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
// } // inner loop
// }
//
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
// When schedule(static, chunk_size) is specified, iterations are divided into
// chunks of size chunk_size, and the chunks are assigned to the threads in
// the team in a round-robin fashion in the order of the thread number.
//
// while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
// while (idx <= UB) { BODY; ++idx; } // inner loop
// LB = LB + ST;
// UB = UB + ST;
// }
//
const Expr *IVExpr = S.getIterationVariable();
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
if (DynamicOrOrdered) {
llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration());
RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind,
IVSize, IVSigned, Ordered, UBVal, Chunk);
} else {
RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind,
IVSize, IVSigned, Ordered, IL, LB, UB, ST, Chunk);
}
auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
// Start the loop with a block that tests the condition.
auto CondBlock = createBasicBlock("omp.dispatch.cond");
EmitBlock(CondBlock);
LoopStack.push(CondBlock);
llvm::Value *BoolCondVal = nullptr;
if (!DynamicOrOrdered) {
// UB = min(UB, GlobalUB)
EmitIgnoredExpr(S.getEnsureUpperBound());
// IV = LB
EmitIgnoredExpr(S.getInit());
// IV < UB
BoolCondVal = EvaluateExprAsBool(S.getCond());
} else {
BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned,
IL, LB, UB, ST);
}
// If there are any cleanups between here and the loop-exit scope,
// create a block to stage a loop exit along.
auto ExitBlock = LoopExit.getBlock();
if (LoopScope.requiresCleanups())
ExitBlock = createBasicBlock("omp.dispatch.cleanup");
auto LoopBody = createBasicBlock("omp.dispatch.body");
Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
if (ExitBlock != LoopExit.getBlock()) {
EmitBlock(ExitBlock);
EmitBranchThroughCleanup(LoopExit);
}
EmitBlock(LoopBody);
// Emit "IV = LB" (in case of static schedule, we have already calculated new
// LB for loop condition and emitted it above).
if (DynamicOrOrdered)
EmitIgnoredExpr(S.getInit());
// Create a block for the increment.
auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
// Generate !llvm.loop.parallel metadata for loads and stores for loops
// with dynamic/guided scheduling and without ordered clause.
if (!isOpenMPSimdDirective(S.getDirectiveKind()))
LoopStack.setParallel(!IsMonotonic);
else
EmitOMPSimdInit(S, IsMonotonic);
SourceLocation Loc = S.getLocStart();
EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
[&S, LoopExit](CodeGenFunction &CGF) {
CGF.EmitOMPLoopBody(S, LoopExit);
CGF.EmitStopPoint(&S);
},
[Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
if (Ordered) {
CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
CGF, Loc, IVSize, IVSigned);
}
});
EmitBlock(Continue.getBlock());
BreakContinueStack.pop_back();
if (!DynamicOrOrdered) {
// Emit "LB = LB + Stride", "UB = UB + Stride".
EmitIgnoredExpr(S.getNextLowerBound());
EmitIgnoredExpr(S.getNextUpperBound());
}
EmitBranch(CondBlock);
LoopStack.pop();
// Emit the fall-through block.
EmitBlock(LoopExit.getBlock());
// Tell the runtime we are done.
if (!DynamicOrOrdered)
RT.emitForStaticFinish(*this, S.getLocEnd());
}
/// \brief Emit a helper variable and return corresponding lvalue.
static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
const DeclRefExpr *Helper) {
auto VDecl = cast<VarDecl>(Helper->getDecl());
CGF.EmitVarDecl(*VDecl);
return CGF.EmitLValue(Helper);
}
namespace {
struct ScheduleKindModifiersTy {
OpenMPScheduleClauseKind Kind;
OpenMPScheduleClauseModifier M1;
OpenMPScheduleClauseModifier M2;
ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
OpenMPScheduleClauseModifier M1,
OpenMPScheduleClauseModifier M2)
: Kind(Kind), M1(M1), M2(M2) {}
};
} // namespace
bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
// Emit the loop iteration variable.
auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
EmitVarDecl(*IVDecl);
// Emit the iterations count variable.
// If it is not a variable, Sema decided to calculate iterations count on each
// iteration (e.g., it is foldable into a constant).
if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
// Emit calculation of the iterations count.
EmitIgnoredExpr(S.getCalcLastIteration());
}
auto &RT = CGM.getOpenMPRuntime();
bool HasLastprivateClause;
// Check pre-condition.
{
// Skip the entire loop if we don't meet the precondition.
// If the condition constant folds and can be elided, avoid emitting the
// whole loop.
bool CondConstant;
llvm::BasicBlock *ContBlock = nullptr;
if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
if (!CondConstant)
return false;
} else {
auto *ThenBlock = createBasicBlock("omp.precond.then");
ContBlock = createBasicBlock("omp.precond.end");
emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
getProfileCount(&S));
EmitBlock(ThenBlock);
incrementProfileCounter(&S);
}
emitAlignedClause(*this, S);
EmitOMPLinearClauseInit(S);
// Emit 'then' code.
{
// Emit helper vars inits.
LValue LB =
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
LValue UB =
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
LValue ST =
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
LValue IL =
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
OMPPrivateScope LoopScope(*this);
if (EmitOMPFirstprivateClause(S, LoopScope)) {
// Emit implicit barrier to synchronize threads and avoid data races on
// initialization of firstprivate variables and post-update of
// lastprivate variables.
CGM.getOpenMPRuntime().emitBarrierCall(
*this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
/*ForceSimpleCall=*/true);
}
EmitOMPPrivateClause(S, LoopScope);
HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
EmitOMPReductionClauseInit(S, LoopScope);
emitPrivateLoopCounters(*this, LoopScope, S.counters(),
S.private_counters());
emitPrivateLinearVars(*this, S, LoopScope);
(void)LoopScope.Privatize();
// Detect the loop schedule kind and chunk.
llvm::Value *Chunk = nullptr;
OpenMPScheduleClauseKind ScheduleKind = OMPC_SCHEDULE_unknown;
OpenMPScheduleClauseModifier M1 = OMPC_SCHEDULE_MODIFIER_unknown;
OpenMPScheduleClauseModifier M2 = OMPC_SCHEDULE_MODIFIER_unknown;
if (auto *C = S.getSingleClause<OMPScheduleClause>()) {
ScheduleKind = C->getScheduleKind();
M1 = C->getFirstScheduleModifier();
M2 = C->getSecondScheduleModifier();
if (const auto *Ch = C->getChunkSize()) {
Chunk = EmitScalarExpr(Ch);
Chunk = EmitScalarConversion(Chunk, Ch->getType(),
S.getIterationVariable()->getType(),
S.getLocStart());
}
}
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
const bool Ordered = S.getSingleClause<OMPOrderedClause>() != nullptr;
// OpenMP 4.5, 2.7.1 Loop Construct, Description.
// If the static schedule kind is specified or if the ordered clause is
// specified, and if no monotonic modifier is specified, the effect will
// be as if the monotonic modifier was specified.
if (RT.isStaticNonchunked(ScheduleKind,
/* Chunked */ Chunk != nullptr) &&
!Ordered) {
if (isOpenMPSimdDirective(S.getDirectiveKind()))
EmitOMPSimdInit(S, /*IsMonotonic=*/true);
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
// When no chunk_size is specified, the iteration space is divided into
// chunks that are approximately equal in size, and at most one chunk is
// distributed to each thread. Note that the size of the chunks is
// unspecified in this case.
RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind,
IVSize, IVSigned, Ordered,
IL.getAddress(), LB.getAddress(),
UB.getAddress(), ST.getAddress());
auto LoopExit =
getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
// UB = min(UB, GlobalUB);
EmitIgnoredExpr(S.getEnsureUpperBound());
// IV = LB;
EmitIgnoredExpr(S.getInit());
// while (idx <= UB) { BODY; ++idx; }
EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
S.getInc(),
[&S, LoopExit](CodeGenFunction &CGF) {
CGF.EmitOMPLoopBody(S, LoopExit);
CGF.EmitStopPoint(&S);
},
[](CodeGenFunction &) {});
EmitBlock(LoopExit.getBlock());
// Tell the runtime we are done.
RT.emitForStaticFinish(*this, S.getLocStart());
} else {
const bool IsMonotonic = Ordered ||
ScheduleKind == OMPC_SCHEDULE_static ||
ScheduleKind == OMPC_SCHEDULE_unknown ||
M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
// Emit the outer loop, which requests its work chunk [LB..UB] from
// runtime and runs the inner loop to process it.
EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
LB.getAddress(), UB.getAddress(), ST.getAddress(),
IL.getAddress(), Chunk);
}
EmitOMPReductionClauseFinal(S);
// Emit final copy of the lastprivate variables if IsLastIter != 0.
if (HasLastprivateClause)
EmitOMPLastprivateClauseFinal(
S, Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
}
if (isOpenMPSimdDirective(S.getDirectiveKind())) {
EmitOMPSimdFinal(S);
}
// We're now done with the loop, so jump to the continuation block.
if (ContBlock) {
EmitBranch(ContBlock);
EmitBlock(ContBlock, true);
}
}
return HasLastprivateClause;
}
void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
bool HasLastprivates = false;
{
OMPLexicalScope Scope(*this, S);
auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
};
CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
S.hasCancel());
}
// Emit an implicit barrier at the end.
if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
}
}
void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
bool HasLastprivates = false;
{
OMPLexicalScope Scope(*this, S);
auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
};
CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
}
// Emit an implicit barrier at the end.
if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
}
}
static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
const Twine &Name,
llvm::Value *Init = nullptr) {
auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
if (Init)
CGF.EmitScalarInit(Init, LVal);
return LVal;
}
void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
auto *CS = dyn_cast<CompoundStmt>(Stmt);
bool HasLastprivates = false;
auto &&CodeGen = [&S, Stmt, CS, &HasLastprivates](CodeGenFunction &CGF) {
auto &C = CGF.CGM.getContext();
auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
// Emit helper vars inits.
LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
CGF.Builder.getInt32(0));
auto *GlobalUBVal = CS != nullptr ? CGF.Builder.getInt32(CS->size() - 1)
: CGF.Builder.getInt32(0);
LValue UB =
createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
CGF.Builder.getInt32(1));
LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
CGF.Builder.getInt32(0));
// Loop counter.
LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
// Generate condition for loop.
BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
OK_Ordinary, S.getLocStart(),
/*fpContractable=*/false);
// Increment for loop counter.
UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
S.getLocStart());
auto BodyGen = [Stmt, CS, &S, &IV](CodeGenFunction &CGF) {
// Iterate through all sections and emit a switch construct:
// switch (IV) {
// case 0:
// <SectionStmt[0]>;
// break;
// ...
// case <NumSection> - 1:
// <SectionStmt[<NumSection> - 1]>;
// break;
// }
// .omp.sections.exit:
auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
auto *SwitchStmt = CGF.Builder.CreateSwitch(
CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
CS == nullptr ? 1 : CS->size());
if (CS) {
unsigned CaseNumber = 0;
for (auto *SubStmt : CS->children()) {
auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
CGF.EmitBlock(CaseBB);
SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
CGF.EmitStmt(SubStmt);
CGF.EmitBranch(ExitBB);
++CaseNumber;
}
} else {
auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
CGF.EmitBlock(CaseBB);
SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB);
CGF.EmitStmt(Stmt);
CGF.EmitBranch(ExitBB);
}
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
};
CodeGenFunction::OMPPrivateScope LoopScope(CGF);
if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
// Emit implicit barrier to synchronize threads and avoid data races on
// initialization of firstprivate variables and post-update of lastprivate
// variables.
CGF.CGM.getOpenMPRuntime().emitBarrierCall(
CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
/*ForceSimpleCall=*/true);
}
CGF.EmitOMPPrivateClause(S, LoopScope);
HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
CGF.EmitOMPReductionClauseInit(S, LoopScope);
(void)LoopScope.Privatize();
// Emit static non-chunked loop.
CGF.CGM.getOpenMPRuntime().emitForStaticInit(
CGF, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32,
/*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), LB.getAddress(),
UB.getAddress(), ST.getAddress());
// UB = min(UB, GlobalUB);
auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
// IV = LB;
CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
// while (idx <= UB) { BODY; ++idx; }
CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
[](CodeGenFunction &) {});
// Tell the runtime we are done.
CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart());
CGF.EmitOMPReductionClauseFinal(S);
// Emit final copy of the lastprivate variables if IsLastIter != 0.
if (HasLastprivates)
CGF.EmitOMPLastprivateClauseFinal(
S, CGF.Builder.CreateIsNotNull(
CGF.EmitLoadOfScalar(IL, S.getLocStart())));
};
bool HasCancel = false;
if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
HasCancel = OSD->hasCancel();
else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
HasCancel = OPSD->hasCancel();
CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
HasCancel);
// Emit barrier for lastprivates only if 'sections' directive has 'nowait'
// clause. Otherwise the barrier will be generated by the codegen for the
// directive.
if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
// Emit implicit barrier to synchronize threads and avoid data races on
// initialization of firstprivate variables.
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
OMPD_unknown);
}
}
void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
{
OMPLexicalScope Scope(*this, S);
EmitSections(S);
}
// Emit an implicit barrier at the end.
if (!S.getSingleClause<OMPNowaitClause>()) {
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
OMPD_sections);
}
}
void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
OMPLexicalScope Scope(*this, S);
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
};
CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
S.hasCancel());
}
void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
llvm::SmallVector<const Expr *, 8> CopyprivateVars;
llvm::SmallVector<const Expr *, 8> DestExprs;
llvm::SmallVector<const Expr *, 8> SrcExprs;
llvm::SmallVector<const Expr *, 8> AssignmentOps;
// Check if there are any 'copyprivate' clauses associated with this
// 'single' construct.
// Build a list of copyprivate variables along with helper expressions
// (<source>, <destination>, <destination>=<source> expressions)
for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
DestExprs.append(C->destination_exprs().begin(),
C->destination_exprs().end());
SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
AssignmentOps.append(C->assignment_ops().begin(),
C->assignment_ops().end());
}
{
OMPLexicalScope Scope(*this, S);
// Emit code for 'single' region along with 'copyprivate' clauses
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
CodeGenFunction::OMPPrivateScope SingleScope(CGF);
(void)CGF.EmitOMPFirstprivateClause(S, SingleScope);
CGF.EmitOMPPrivateClause(S, SingleScope);
(void)SingleScope.Privatize();
CGF.EmitStmt(
cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
};
CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
CopyprivateVars, DestExprs,
SrcExprs, AssignmentOps);
}
// Emit an implicit barrier at the end (to avoid data race on firstprivate
// init or if no 'nowait' clause was specified and no 'copyprivate' clause).
if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) {
CGM.getOpenMPRuntime().emitBarrierCall(
*this, S.getLocStart(),
S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
}
}
void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
OMPLexicalScope Scope(*this, S);
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
};
CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
}
void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
OMPLexicalScope Scope(*this, S);
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
};
Expr *Hint = nullptr;
if (auto *HintClause = S.getSingleClause<OMPHintClause>())
Hint = HintClause->getHint();
CGM.getOpenMPRuntime().emitCriticalRegion(*this,
S.getDirectiveName().getAsString(),
CodeGen, S.getLocStart(), Hint);
}
void CodeGenFunction::EmitOMPParallelForDirective(
const OMPParallelForDirective &S) {
// Emit directive as a combined directive that consists of two implicit
// directives: 'parallel' with 'for' directive.
OMPLexicalScope Scope(*this, S);
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
CGF.EmitOMPWorksharingLoop(S);
};
emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen);
}
void CodeGenFunction::EmitOMPParallelForSimdDirective(
const OMPParallelForSimdDirective &S) {
// Emit directive as a combined directive that consists of two implicit
// directives: 'parallel' with 'for' directive.
OMPLexicalScope Scope(*this, S);
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
CGF.EmitOMPWorksharingLoop(S);
};
emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen);
}
void CodeGenFunction::EmitOMPParallelSectionsDirective(
const OMPParallelSectionsDirective &S) {
// Emit directive as a combined directive that consists of two implicit
// directives: 'parallel' with 'sections' directive.
OMPLexicalScope Scope(*this, S);
auto &&CodeGen = [&S](CodeGenFunction &CGF) { CGF.EmitSections(S); };
emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen);
}
void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
// Emit outlined function for task construct.
OMPLexicalScope Scope(*this, S);
auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
auto *I = CS->getCapturedDecl()->param_begin();
auto *PartId = std::next(I);
// The first function argument for tasks is a thread id, the second one is a
// part id (0 for tied tasks, >=0 for untied task).
llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
// Get list of private variables.
llvm::SmallVector<const Expr *, 8> PrivateVars;
llvm::SmallVector<const Expr *, 8> PrivateCopies;
for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
auto IRef = C->varlist_begin();
for (auto *IInit : C->private_copies()) {
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
PrivateVars.push_back(*IRef);
PrivateCopies.push_back(IInit);
}
++IRef;
}
}
EmittedAsPrivate.clear();
// Get list of firstprivate variables.
llvm::SmallVector<const Expr *, 8> FirstprivateVars;
llvm::SmallVector<const Expr *, 8> FirstprivateCopies;
llvm::SmallVector<const Expr *, 8> FirstprivateInits;
for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
auto IRef = C->varlist_begin();
auto IElemInitRef = C->inits().begin();
for (auto *IInit : C->private_copies()) {
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
FirstprivateVars.push_back(*IRef);
FirstprivateCopies.push_back(IInit);
FirstprivateInits.push_back(*IElemInitRef);
}
++IRef;
++IElemInitRef;
}
}
// Build list of dependences.
llvm::SmallVector<std::pair<OpenMPDependClauseKind, const Expr *>, 8>
Dependences;
for (const auto *C : S.getClausesOfKind<OMPDependClause>()) {
for (auto *IRef : C->varlists()) {
Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef));
}
}
auto &&CodeGen = [PartId, &S, &PrivateVars, &FirstprivateVars](
CodeGenFunction &CGF) {
// Set proper addresses for generated private copies.
auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
OMPPrivateScope Scope(CGF);
if (!PrivateVars.empty() || !FirstprivateVars.empty()) {
auto *CopyFn = CGF.Builder.CreateLoad(
CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)));
auto *PrivatesPtr = CGF.Builder.CreateLoad(
CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)));
// Map privates.
llvm::SmallVector<std::pair<const VarDecl *, Address>, 16>
PrivatePtrs;
llvm::SmallVector<llvm::Value *, 16> CallArgs;
CallArgs.push_back(PrivatesPtr);
for (auto *E : PrivateVars) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
Address PrivatePtr =
CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
CallArgs.push_back(PrivatePtr.getPointer());
}
for (auto *E : FirstprivateVars) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
Address PrivatePtr =
CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
CallArgs.push_back(PrivatePtr.getPointer());
}
CGF.EmitRuntimeCall(CopyFn, CallArgs);
for (auto &&Pair : PrivatePtrs) {
Address Replacement(CGF.Builder.CreateLoad(Pair.second),
CGF.getContext().getDeclAlign(Pair.first));
Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
}
}
(void)Scope.Privatize();
if (*PartId) {
// TODO: emit code for untied tasks.
}
CGF.EmitStmt(CS->getCapturedStmt());
};
auto OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
S, *I, OMPD_task, CodeGen);
// Check if we should emit tied or untied task.
bool Tied = !S.getSingleClause<OMPUntiedClause>();
// Check if the task is final
llvm::PointerIntPair<llvm::Value *, 1, bool> Final;
if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
// If the condition constant folds and can be elided, try to avoid emitting
// the condition and the dead arm of the if/else.
auto *Cond = Clause->getCondition();
bool CondConstant;
if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
Final.setInt(CondConstant);
else
Final.setPointer(EvaluateExprAsBool(Cond));
} else {
// By default the task is not final.
Final.setInt(/*IntVal=*/false);
}
auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
const Expr *IfCond = nullptr;
for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
if (C->getNameModifier() == OMPD_unknown ||
C->getNameModifier() == OMPD_task) {
IfCond = C->getCondition();
break;
}
}
CGM.getOpenMPRuntime().emitTaskCall(
*this, S.getLocStart(), S, Tied, Final, OutlinedFn, SharedsTy,
CapturedStruct, IfCond, PrivateVars, PrivateCopies, FirstprivateVars,
FirstprivateCopies, FirstprivateInits, Dependences);
}
void CodeGenFunction::EmitOMPTaskyieldDirective(
const OMPTaskyieldDirective &S) {
CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
}
void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
}
void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
}
void CodeGenFunction::EmitOMPTaskgroupDirective(
const OMPTaskgroupDirective &S) {
OMPLexicalScope Scope(*this, S);
auto &&CodeGen = [&S](CodeGenFunction &CGF) {
CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
};
CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
}
void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) {
return llvm::makeArrayRef(FlushClause->varlist_begin(),
FlushClause->varlist_end());
}
return llvm::None;
}(), S.getLocStart());
}
void CodeGenFunction::EmitOMPDistributeDirective(
const OMPDistributeDirective &S) {
llvm_unreachable("CodeGen for 'omp distribute' is not supported yet.");
}
static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
const CapturedStmt *S) {
CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
CGF.CapturedStmtInfo = &CapStmtInfo;
auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
Fn->addFnAttr(llvm::Attribute::NoInline);
return Fn;
}
void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
if (!S.getAssociatedStmt())
return;
OMPLexicalScope Scope(*this, S);
auto *C = S.getSingleClause<OMPSIMDClause>();
auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF) {
if (C) {
auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
llvm::SmallVector<llvm::Value *, 16> CapturedVars;
CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars);
} else {
CGF.EmitStmt(
cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
}
};
CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C);
}
static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
QualType SrcType, QualType DestType,
SourceLocation Loc) {
assert(CGF.hasScalarEvaluationKind(DestType) &&
"DestType must have scalar evaluation kind.");
assert(!Val.isAggregate() && "Must be a scalar or complex.");
return Val.isScalar()
? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType,
Loc)
: CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
DestType, Loc);
}
static CodeGenFunction::ComplexPairTy
convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
QualType DestType, SourceLocation Loc) {
assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
"DestType must have complex evaluation kind.");
CodeGenFunction::ComplexPairTy ComplexVal;
if (Val.isScalar()) {
// Convert the input element to the element type of the complex.
auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
DestElementType, Loc);
ComplexVal = CodeGenFunction::ComplexPairTy(
ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
} else {
assert(Val.isComplex() && "Must be a scalar or complex.");
auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
ComplexVal.first = CGF.EmitScalarConversion(
Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
ComplexVal.second = CGF.EmitScalarConversion(
Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
}
return ComplexVal;
}
static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
LValue LVal, RValue RVal) {
if (LVal.isGlobalReg()) {
CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
} else {
CGF.EmitAtomicStore(RVal, LVal, IsSeqCst ? llvm::SequentiallyConsistent
: llvm::Monotonic,
LVal.isVolatile(), /*IsInit=*/false);
}
}
void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
QualType RValTy, SourceLocation Loc) {
switch (getEvaluationKind(LVal.getType())) {
case TEK_Scalar:
EmitStoreThroughLValue(RValue::get(convertToScalarValue(
*this, RVal, RValTy, LVal.getType(), Loc)),
LVal);
break;
case TEK_Complex:
EmitStoreOfComplex(
convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
/*isInit=*/false);
break;
case TEK_Aggregate:
llvm_unreachable("Must be a scalar or complex.");
}
}
static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
const Expr *X, const Expr *V,
SourceLocation Loc) {
// v = x;
assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
LValue XLValue = CGF.EmitLValue(X);
LValue VLValue = CGF.EmitLValue(V);
RValue Res = XLValue.isGlobalReg()
? CGF.EmitLoadOfLValue(XLValue, Loc)
: CGF.EmitAtomicLoad(XLValue, Loc,
IsSeqCst ? llvm::SequentiallyConsistent
: llvm::Monotonic,
XLValue.isVolatile());
// OpenMP, 2.12.6, atomic Construct
// Any atomic construct with a seq_cst clause forces the atomically
// performed operation to include an implicit flush operation without a
// list.
if (IsSeqCst)
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
}
static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
const Expr *X, const Expr *E,
SourceLocation Loc) {
// x = expr;
assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
// OpenMP, 2.12.6, atomic Construct
// Any atomic construct with a seq_cst clause forces the atomically
// performed operation to include an implicit flush operation without a
// list.
if (IsSeqCst)
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
}
static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
RValue Update,
BinaryOperatorKind BO,
llvm::AtomicOrdering AO,
bool IsXLHSInRHSPart) {
auto &Context = CGF.CGM.getContext();
// Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
// expression is simple and atomic is allowed for the given type for the
// target platform.
if (BO == BO_Comma || !Update.isScalar() ||
!Update.getScalarVal()->getType()->isIntegerTy() ||
!X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
(Update.getScalarVal()->getType() !=
X.getAddress().getElementType())) ||
!X.getAddress().getElementType()->isIntegerTy() ||
!Context.getTargetInfo().hasBuiltinAtomic(
Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
return std::make_pair(false, RValue::get(nullptr));
llvm::AtomicRMWInst::BinOp RMWOp;
switch (BO) {
case BO_Add:
RMWOp = llvm::AtomicRMWInst::Add;
break;
case BO_Sub:
if (!IsXLHSInRHSPart)
return std::make_pair(false, RValue::get(nullptr));
RMWOp = llvm::AtomicRMWInst::Sub;
break;
case BO_And:
RMWOp = llvm::AtomicRMWInst::And;
break;
case BO_Or:
RMWOp = llvm::AtomicRMWInst::Or;
break;
case BO_Xor:
RMWOp = llvm::AtomicRMWInst::Xor;
break;
case BO_LT:
RMWOp = X.getType()->hasSignedIntegerRepresentation()
? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
: llvm::AtomicRMWInst::Max)
: (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
: llvm::AtomicRMWInst::UMax);
break;
case BO_GT:
RMWOp = X.getType()->hasSignedIntegerRepresentation()
? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
: llvm::AtomicRMWInst::Min)
: (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
: llvm::AtomicRMWInst::UMin);
break;
case BO_Assign:
RMWOp = llvm::AtomicRMWInst::Xchg;
break;
case BO_Mul:
case BO_Div:
case BO_Rem:
case BO_Shl:
case BO_Shr:
case BO_LAnd:
case BO_LOr:
return std::make_pair(false, RValue::get(nullptr));
case BO_PtrMemD:
case BO_PtrMemI:
case BO_LE:
case BO_GE:
case BO_EQ:
case BO_NE:
case BO_AddAssign:
case BO_SubAssign:
case BO_AndAssign:
case BO_OrAssign:
case BO_XorAssign:
case BO_MulAssign:
case BO_DivAssign:
case BO_RemAssign:
case BO_ShlAssign:
case BO_ShrAssign:
case BO_Comma:
llvm_unreachable("Unsupported atomic update operation");
}
auto *UpdateVal = Update.getScalarVal();
if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
UpdateVal = CGF.Builder.CreateIntCast(
IC, X.getAddress().getElementType(),
X.getType()->hasSignedIntegerRepresentation());
}
auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
return std::make_pair(true, RValue::get(Res));
}
std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
llvm::AtomicOrdering AO, SourceLocation Loc,
const llvm::function_ref<RValue(RValue)> &CommonGen) {
// Update expressions are allowed to have the following forms:
// x binop= expr; -> xrval + expr;
// x++, ++x -> xrval + 1;
// x--, --x -> xrval - 1;
// x = x binop expr; -> xrval binop expr
// x = expr Op x; - > expr binop xrval;
auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
if (!Res.first) {
if (X.isGlobalReg()) {
// Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
// 'xrval'.
EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
} else {
// Perform compare-and-swap procedure.
EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
}
}
return Res;
}
static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
const Expr *X, const Expr *E,
const Expr *UE, bool IsXLHSInRHSPart,
SourceLocation Loc) {
assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
"Update expr in 'atomic update' must be a binary operator.");
auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
// Update expressions are allowed to have the following forms:
// x binop= expr; -> xrval + expr;
// x++, ++x -> xrval + 1;
// x--, --x -> xrval - 1;
// x = x binop expr; -> xrval binop expr
// x = expr Op x; - > expr binop xrval;
assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
LValue XLValue = CGF.EmitLValue(X);
RValue ExprRValue = CGF.EmitAnyExpr(E);
auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
auto Gen =
[&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
return CGF.EmitAnyExpr(UE);
};
(void)CGF.EmitOMPAtomicSimpleUpdateExpr(
XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
// OpenMP, 2.12.6, atomic Construct
// Any atomic construct with a seq_cst clause forces the atomically
// performed operation to include an implicit flush operation without a
// list.
if (IsSeqCst)
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
}
static RValue convertToType(CodeGenFunction &CGF, RValue Value,
QualType SourceType, QualType ResType,
SourceLocation Loc) {
switch (CGF.getEvaluationKind(ResType)) {
case TEK_Scalar:
return RValue::get(
convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
case TEK_Complex: {
auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
return RValue::getComplex(Res.first, Res.second);
}
case TEK_Aggregate:
break;
}
llvm_unreachable("Must be a scalar or complex.");
}
static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
bool IsPostfixUpdate, const Expr *V,
const Expr *X, const Expr *E,
const Expr *UE, bool IsXLHSInRHSPart,
SourceLocation Loc) {
assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
RValue NewVVal;
LValue VLValue = CGF.EmitLValue(V);
LValue XLValue = CGF.EmitLValue(X);
RValue ExprRValue = CGF.EmitAnyExpr(E);
auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
QualType NewVValType;
if (UE) {
// 'x' is updated with some additional value.
assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
"Update expr in 'atomic capture' must be a binary operator.");
auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
// Update expressions are allowed to have the following forms:
// x binop= expr; -> xrval + expr;
// x++, ++x -> xrval + 1;
// x--, --x -> xrval - 1;
// x = x binop expr; -> xrval binop expr
// x = expr Op x; - > expr binop xrval;
auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
NewVValType = XRValExpr->getType();
auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
RValue Res = CGF.EmitAnyExpr(UE);
NewVVal = IsPostfixUpdate ? XRValue : Res;
return Res;
};
auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
if (Res.first) {
// 'atomicrmw' instruction was generated.
if (IsPostfixUpdate) {
// Use old value from 'atomicrmw'.
NewVVal = Res.second;
} else {
// 'atomicrmw' does not provide new value, so evaluate it using old
// value of 'x'.
CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
NewVVal = CGF.EmitAnyExpr(UE);
}
}
} else {
// 'x' is simply rewritten with some 'expr'.
NewVValType = X->getType().getNonReferenceType();
ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
X->getType().getNonReferenceType(), Loc);
auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
NewVVal = XRValue;
return ExprRValue;
};
// Try to perform atomicrmw xchg, otherwise simple exchange.
auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
Loc, Gen);
if (Res.first) {
// 'atomicrmw' instruction was generated.
NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
}
}
// Emit post-update store to 'v' of old/new 'x' value.
CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
// OpenMP, 2.12.6, atomic Construct
// Any atomic construct with a seq_cst clause forces the atomically
// performed operation to include an implicit flush operation without a
// list.
if (IsSeqCst)
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
}
static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
bool IsSeqCst, bool IsPostfixUpdate,
const Expr *X, const Expr *V, const Expr *E,
const Expr *UE, bool IsXLHSInRHSPart,
SourceLocation Loc) {
switch (Kind) {
case OMPC_read:
EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
break;
case OMPC_write:
EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
break;
case OMPC_unknown:
case OMPC_update:
EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
break;
case OMPC_capture:
EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
IsXLHSInRHSPart, Loc);
break;
case OMPC_if:
case OMPC_final:
case OMPC_num_threads:
case OMPC_private:
case OMPC_firstprivate:
case OMPC_lastprivate:
case OMPC_reduction:
case OMPC_safelen:
case OMPC_simdlen:
case OMPC_collapse:
case OMPC_default:
case OMPC_seq_cst:
case OMPC_shared:
case OMPC_linear:
case OMPC_aligned:
case OMPC_copyin:
case OMPC_copyprivate:
case OMPC_flush:
case OMPC_proc_bind:
case OMPC_schedule:
case OMPC_ordered:
case OMPC_nowait:
case OMPC_untied:
case OMPC_threadprivate:
case OMPC_depend:
case OMPC_mergeable:
case OMPC_device:
case OMPC_threads:
case OMPC_simd:
case OMPC_map:
case OMPC_num_teams:
case OMPC_thread_limit:
case OMPC_priority:
case OMPC_grainsize:
case OMPC_nogroup:
case OMPC_num_tasks:
case OMPC_hint:
case OMPC_dist_schedule:
case OMPC_defaultmap:
llvm_unreachable("Clause is not allowed in 'omp atomic'.");
}
}
void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
OpenMPClauseKind Kind = OMPC_unknown;
for (auto *C : S.clauses()) {
// Find first clause (skip seq_cst clause, if it is first).
if (C->getClauseKind() != OMPC_seq_cst) {
Kind = C->getClauseKind();
break;
}
}
const auto *CS =
S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
enterFullExpression(EWC);
}
// Processing for statements under 'atomic capture'.
if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
for (const auto *C : Compound->body()) {
if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
enterFullExpression(EWC);
}
}
}
OMPLexicalScope Scope(*this, S);
auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF) {
CGF.EmitStopPoint(CS);
EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
S.getV(), S.getExpr(), S.getUpdateExpr(),
S.isXLHSInRHSPart(), S.getLocStart());
};
CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
}
void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
OMPLexicalScope Scope(*this, S);
const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt());
llvm::SmallVector<llvm::Value *, 16> CapturedVars;
GenerateOpenMPCapturedVars(CS, CapturedVars);
llvm::Function *Fn = nullptr;
llvm::Constant *FnID = nullptr;
// Check if we have any if clause associated with the directive.
const Expr *IfCond = nullptr;
if (auto *C = S.getSingleClause<OMPIfClause>()) {
IfCond = C->getCondition();
}
// Check if we have any device clause associated with the directive.
const Expr *Device = nullptr;
if (auto *C = S.getSingleClause<OMPDeviceClause>()) {
Device = C->getDevice();
}
// Check if we have an if clause whose conditional always evaluates to false
// or if we do not have any targets specified. If so the target region is not
// an offload entry point.
bool IsOffloadEntry = true;
if (IfCond) {
bool Val;
if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
IsOffloadEntry = false;
}
if (CGM.getLangOpts().OMPTargetTriples.empty())
IsOffloadEntry = false;
assert(CurFuncDecl && "No parent declaration for target region!");
StringRef ParentName;
// In case we have Ctors/Dtors we use the complete type variant to produce
// the mangling of the device outlined kernel.
if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl))
ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl))
ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
else
ParentName =
CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl)));
CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
IsOffloadEntry);
CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device,
CapturedVars);
}
void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) {
llvm_unreachable("CodeGen for 'omp teams' is not supported yet.");
}
void CodeGenFunction::EmitOMPCancellationPointDirective(
const OMPCancellationPointDirective &S) {
CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
S.getCancelRegion());
}
void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
const Expr *IfCond = nullptr;
for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
if (C->getNameModifier() == OMPD_unknown ||
C->getNameModifier() == OMPD_cancel) {
IfCond = C->getCondition();
break;
}
}
CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond,
S.getCancelRegion());
}
CodeGenFunction::JumpDest
CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
if (Kind == OMPD_parallel || Kind == OMPD_task)
return ReturnBlock;
assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for);
return BreakContinueStack.back().BreakBlock;
}
// Generate the instructions for '#pragma omp target data' directive.
void CodeGenFunction::EmitOMPTargetDataDirective(
const OMPTargetDataDirective &S) {
// emit the code inside the construct for now
auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
CGM.getOpenMPRuntime().emitInlinedDirective(
*this, OMPD_target_data,
[&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); });
}
void CodeGenFunction::EmitOMPTargetEnterDataDirective(
const OMPTargetEnterDataDirective &S) {
// TODO: codegen for target enter data.
}
void CodeGenFunction::EmitOMPTargetExitDataDirective(
const OMPTargetExitDataDirective &S) {
// TODO: codegen for target exit data.
}
void CodeGenFunction::EmitOMPTargetParallelDirective(
const OMPTargetParallelDirective &S) {
// TODO: codegen for target parallel.
}
void CodeGenFunction::EmitOMPTargetParallelForDirective(
const OMPTargetParallelForDirective &S) {
// TODO: codegen for target parallel for.
}
void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
// emit the code inside the construct for now
auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
CGM.getOpenMPRuntime().emitInlinedDirective(
*this, OMPD_taskloop,
[&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); });
}
void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
const OMPTaskLoopSimdDirective &S) {
// emit the code inside the construct for now
auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
CGM.getOpenMPRuntime().emitInlinedDirective(
*this, OMPD_taskloop_simd,
[&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); });
}