llvm-project/clang-tools-extra/clangd/CodeComplete.cpp

1736 lines
70 KiB
C++

//===--- CodeComplete.cpp ----------------------------------------*- C++-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Code completion has several moving parts:
// - AST-based completions are provided using the completion hooks in Sema.
// - external completions are retrieved from the index (using hints from Sema)
// - the two sources overlap, and must be merged and overloads bundled
// - results must be scored and ranked (see Quality.h) before rendering
//
// Signature help works in a similar way as code completion, but it is simpler:
// it's purely AST-based, and there are few candidates.
//
//===----------------------------------------------------------------------===//
#include "CodeComplete.h"
#include "AST.h"
#include "ClangdUnit.h"
#include "CodeCompletionStrings.h"
#include "Compiler.h"
#include "Diagnostics.h"
#include "ExpectedTypes.h"
#include "FileDistance.h"
#include "FuzzyMatch.h"
#include "Headers.h"
#include "Logger.h"
#include "Quality.h"
#include "SourceCode.h"
#include "TUScheduler.h"
#include "Trace.h"
#include "URI.h"
#include "index/Index.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Format/Format.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Sema/CodeCompleteConsumer.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ScopedPrinter.h"
#include <algorithm>
#include <iterator>
// We log detailed candidate here if you run with -debug-only=codecomplete.
#define DEBUG_TYPE "CodeComplete"
namespace clang {
namespace clangd {
namespace {
CompletionItemKind toCompletionItemKind(index::SymbolKind Kind) {
using SK = index::SymbolKind;
switch (Kind) {
case SK::Unknown:
return CompletionItemKind::Missing;
case SK::Module:
case SK::Namespace:
case SK::NamespaceAlias:
return CompletionItemKind::Module;
case SK::Macro:
return CompletionItemKind::Text;
case SK::Enum:
return CompletionItemKind::Enum;
// FIXME(ioeric): use LSP struct instead of class when it is suppoted in the
// protocol.
case SK::Struct:
case SK::Class:
case SK::Protocol:
case SK::Extension:
case SK::Union:
return CompletionItemKind::Class;
// FIXME(ioeric): figure out whether reference is the right type for aliases.
case SK::TypeAlias:
case SK::Using:
return CompletionItemKind::Reference;
case SK::Function:
// FIXME(ioeric): this should probably be an operator. This should be fixed
// when `Operator` is support type in the protocol.
case SK::ConversionFunction:
return CompletionItemKind::Function;
case SK::Variable:
case SK::Parameter:
return CompletionItemKind::Variable;
case SK::Field:
return CompletionItemKind::Field;
// FIXME(ioeric): use LSP enum constant when it is supported in the protocol.
case SK::EnumConstant:
return CompletionItemKind::Value;
case SK::InstanceMethod:
case SK::ClassMethod:
case SK::StaticMethod:
case SK::Destructor:
return CompletionItemKind::Method;
case SK::InstanceProperty:
case SK::ClassProperty:
case SK::StaticProperty:
return CompletionItemKind::Property;
case SK::Constructor:
return CompletionItemKind::Constructor;
}
llvm_unreachable("Unhandled clang::index::SymbolKind.");
}
CompletionItemKind
toCompletionItemKind(CodeCompletionResult::ResultKind ResKind,
const NamedDecl *Decl,
CodeCompletionContext::Kind CtxKind) {
if (Decl)
return toCompletionItemKind(index::getSymbolInfo(Decl).Kind);
if (CtxKind == CodeCompletionContext::CCC_IncludedFile)
return CompletionItemKind::File;
switch (ResKind) {
case CodeCompletionResult::RK_Declaration:
llvm_unreachable("RK_Declaration without Decl");
case CodeCompletionResult::RK_Keyword:
return CompletionItemKind::Keyword;
case CodeCompletionResult::RK_Macro:
return CompletionItemKind::Text; // unfortunately, there's no 'Macro'
// completion items in LSP.
case CodeCompletionResult::RK_Pattern:
return CompletionItemKind::Snippet;
}
llvm_unreachable("Unhandled CodeCompletionResult::ResultKind.");
}
/// Get the optional chunk as a string. This function is possibly recursive.
///
/// The parameter info for each parameter is appended to the Parameters.
std::string getOptionalParameters(const CodeCompletionString &CCS,
std::vector<ParameterInformation> &Parameters,
SignatureQualitySignals &Signal) {
std::string Result;
for (const auto &Chunk : CCS) {
switch (Chunk.Kind) {
case CodeCompletionString::CK_Optional:
assert(Chunk.Optional &&
"Expected the optional code completion string to be non-null.");
Result += getOptionalParameters(*Chunk.Optional, Parameters, Signal);
break;
case CodeCompletionString::CK_VerticalSpace:
break;
case CodeCompletionString::CK_Placeholder:
// A string that acts as a placeholder for, e.g., a function call
// argument.
// Intentional fallthrough here.
case CodeCompletionString::CK_CurrentParameter: {
// A piece of text that describes the parameter that corresponds to
// the code-completion location within a function call, message send,
// macro invocation, etc.
Result += Chunk.Text;
ParameterInformation Info;
Info.label = Chunk.Text;
Parameters.push_back(std::move(Info));
Signal.ContainsActiveParameter = true;
Signal.NumberOfOptionalParameters++;
break;
}
default:
Result += Chunk.Text;
break;
}
}
return Result;
}
/// Creates a `HeaderFile` from \p Header which can be either a URI or a literal
/// include.
static llvm::Expected<HeaderFile> toHeaderFile(llvm::StringRef Header,
llvm::StringRef HintPath) {
if (isLiteralInclude(Header))
return HeaderFile{Header.str(), /*Verbatim=*/true};
auto U = URI::parse(Header);
if (!U)
return U.takeError();
auto IncludePath = URI::includeSpelling(*U);
if (!IncludePath)
return IncludePath.takeError();
if (!IncludePath->empty())
return HeaderFile{std::move(*IncludePath), /*Verbatim=*/true};
auto Resolved = URI::resolve(*U, HintPath);
if (!Resolved)
return Resolved.takeError();
return HeaderFile{std::move(*Resolved), /*Verbatim=*/false};
}
/// A code completion result, in clang-native form.
/// It may be promoted to a CompletionItem if it's among the top-ranked results.
struct CompletionCandidate {
llvm::StringRef Name; // Used for filtering and sorting.
// We may have a result from Sema, from the index, or both.
const CodeCompletionResult *SemaResult = nullptr;
const Symbol *IndexResult = nullptr;
llvm::SmallVector<llvm::StringRef, 1> RankedIncludeHeaders;
// Returns a token identifying the overload set this is part of.
// 0 indicates it's not part of any overload set.
size_t overloadSet() const {
llvm::SmallString<256> Scratch;
if (IndexResult) {
switch (IndexResult->SymInfo.Kind) {
case index::SymbolKind::ClassMethod:
case index::SymbolKind::InstanceMethod:
case index::SymbolKind::StaticMethod:
#ifndef NDEBUG
llvm_unreachable("Don't expect members from index in code completion");
#else
LLVM_FALLTHROUGH;
#endif
case index::SymbolKind::Function:
// We can't group overloads together that need different #includes.
// This could break #include insertion.
return llvm::hash_combine(
(IndexResult->Scope + IndexResult->Name).toStringRef(Scratch),
headerToInsertIfAllowed().getValueOr(""));
default:
return 0;
}
}
assert(SemaResult);
// We need to make sure we're consistent with the IndexResult case!
const NamedDecl *D = SemaResult->Declaration;
if (!D || !D->isFunctionOrFunctionTemplate())
return 0;
{
llvm::raw_svector_ostream OS(Scratch);
D->printQualifiedName(OS);
}
return llvm::hash_combine(Scratch,
headerToInsertIfAllowed().getValueOr(""));
}
// The best header to include if include insertion is allowed.
llvm::Optional<llvm::StringRef> headerToInsertIfAllowed() const {
if (RankedIncludeHeaders.empty())
return None;
if (SemaResult && SemaResult->Declaration) {
// Avoid inserting new #include if the declaration is found in the current
// file e.g. the symbol is forward declared.
auto &SM = SemaResult->Declaration->getASTContext().getSourceManager();
for (const Decl *RD : SemaResult->Declaration->redecls())
if (SM.isInMainFile(SM.getExpansionLoc(RD->getBeginLoc())))
return None;
}
return RankedIncludeHeaders[0];
}
using Bundle = llvm::SmallVector<CompletionCandidate, 4>;
};
using ScoredBundle =
std::pair<CompletionCandidate::Bundle, CodeCompletion::Scores>;
struct ScoredBundleGreater {
bool operator()(const ScoredBundle &L, const ScoredBundle &R) {
if (L.second.Total != R.second.Total)
return L.second.Total > R.second.Total;
return L.first.front().Name <
R.first.front().Name; // Earlier name is better.
}
};
// Assembles a code completion out of a bundle of >=1 completion candidates.
// Many of the expensive strings are only computed at this point, once we know
// the candidate bundle is going to be returned.
//
// Many fields are the same for all candidates in a bundle (e.g. name), and are
// computed from the first candidate, in the constructor.
// Others vary per candidate, so add() must be called for remaining candidates.
struct CodeCompletionBuilder {
CodeCompletionBuilder(ASTContext &ASTCtx, const CompletionCandidate &C,
CodeCompletionString *SemaCCS,
llvm::ArrayRef<std::string> QueryScopes,
const IncludeInserter &Includes,
llvm::StringRef FileName,
CodeCompletionContext::Kind ContextKind,
const CodeCompleteOptions &Opts)
: ASTCtx(ASTCtx), ExtractDocumentation(Opts.IncludeComments),
EnableFunctionArgSnippets(Opts.EnableFunctionArgSnippets) {
add(C, SemaCCS);
if (C.SemaResult) {
Completion.Origin |= SymbolOrigin::AST;
Completion.Name = llvm::StringRef(SemaCCS->getTypedText());
if (Completion.Scope.empty()) {
if ((C.SemaResult->Kind == CodeCompletionResult::RK_Declaration) ||
(C.SemaResult->Kind == CodeCompletionResult::RK_Pattern))
if (const auto *D = C.SemaResult->getDeclaration())
if (const auto *ND = dyn_cast<NamedDecl>(D))
Completion.Scope =
splitQualifiedName(printQualifiedName(*ND)).first;
}
Completion.Kind = toCompletionItemKind(
C.SemaResult->Kind, C.SemaResult->Declaration, ContextKind);
// Sema could provide more info on whether the completion was a file or
// folder.
if (Completion.Kind == CompletionItemKind::File &&
Completion.Name.back() == '/')
Completion.Kind = CompletionItemKind::Folder;
for (const auto &FixIt : C.SemaResult->FixIts) {
Completion.FixIts.push_back(
toTextEdit(FixIt, ASTCtx.getSourceManager(), ASTCtx.getLangOpts()));
}
llvm::sort(Completion.FixIts, [](const TextEdit &X, const TextEdit &Y) {
return std::tie(X.range.start.line, X.range.start.character) <
std::tie(Y.range.start.line, Y.range.start.character);
});
Completion.Deprecated |=
(C.SemaResult->Availability == CXAvailability_Deprecated);
}
if (C.IndexResult) {
Completion.Origin |= C.IndexResult->Origin;
if (Completion.Scope.empty())
Completion.Scope = C.IndexResult->Scope;
if (Completion.Kind == CompletionItemKind::Missing)
Completion.Kind = toCompletionItemKind(C.IndexResult->SymInfo.Kind);
if (Completion.Name.empty())
Completion.Name = C.IndexResult->Name;
// If the completion was visible to Sema, no qualifier is needed. This
// avoids unneeded qualifiers in cases like with `using ns::X`.
if (Completion.RequiredQualifier.empty() && !C.SemaResult) {
llvm::StringRef ShortestQualifier = C.IndexResult->Scope;
for (llvm::StringRef Scope : QueryScopes) {
llvm::StringRef Qualifier = C.IndexResult->Scope;
if (Qualifier.consume_front(Scope) &&
Qualifier.size() < ShortestQualifier.size())
ShortestQualifier = Qualifier;
}
Completion.RequiredQualifier = ShortestQualifier;
}
Completion.Deprecated |= (C.IndexResult->Flags & Symbol::Deprecated);
}
// Turn absolute path into a literal string that can be #included.
auto Inserted = [&](llvm::StringRef Header)
-> llvm::Expected<std::pair<std::string, bool>> {
auto ResolvedDeclaring =
toHeaderFile(C.IndexResult->CanonicalDeclaration.FileURI, FileName);
if (!ResolvedDeclaring)
return ResolvedDeclaring.takeError();
auto ResolvedInserted = toHeaderFile(Header, FileName);
if (!ResolvedInserted)
return ResolvedInserted.takeError();
return std::make_pair(
Includes.calculateIncludePath(*ResolvedDeclaring, *ResolvedInserted),
Includes.shouldInsertInclude(*ResolvedDeclaring, *ResolvedInserted));
};
bool ShouldInsert = C.headerToInsertIfAllowed().hasValue();
// Calculate include paths and edits for all possible headers.
for (const auto &Inc : C.RankedIncludeHeaders) {
if (auto ToInclude = Inserted(Inc)) {
CodeCompletion::IncludeCandidate Include;
Include.Header = ToInclude->first;
if (ToInclude->second && ShouldInsert)
Include.Insertion = Includes.insert(ToInclude->first);
Completion.Includes.push_back(std::move(Include));
} else
log("Failed to generate include insertion edits for adding header "
"(FileURI='{0}', IncludeHeader='{1}') into {2}",
C.IndexResult->CanonicalDeclaration.FileURI, Inc, FileName);
}
// Prefer includes that do not need edits (i.e. already exist).
std::stable_partition(Completion.Includes.begin(),
Completion.Includes.end(),
[](const CodeCompletion::IncludeCandidate &I) {
return !I.Insertion.hasValue();
});
}
void add(const CompletionCandidate &C, CodeCompletionString *SemaCCS) {
assert(bool(C.SemaResult) == bool(SemaCCS));
Bundled.emplace_back();
BundledEntry &S = Bundled.back();
if (C.SemaResult) {
getSignature(*SemaCCS, &S.Signature, &S.SnippetSuffix,
&Completion.RequiredQualifier);
S.ReturnType = getReturnType(*SemaCCS);
} else if (C.IndexResult) {
S.Signature = C.IndexResult->Signature;
S.SnippetSuffix = C.IndexResult->CompletionSnippetSuffix;
S.ReturnType = C.IndexResult->ReturnType;
}
if (ExtractDocumentation && Completion.Documentation.empty()) {
if (C.IndexResult)
Completion.Documentation = C.IndexResult->Documentation;
else if (C.SemaResult)
Completion.Documentation = getDocComment(ASTCtx, *C.SemaResult,
/*CommentsFromHeader=*/false);
}
}
CodeCompletion build() {
Completion.ReturnType = summarizeReturnType();
Completion.Signature = summarizeSignature();
Completion.SnippetSuffix = summarizeSnippet();
Completion.BundleSize = Bundled.size();
return std::move(Completion);
}
private:
struct BundledEntry {
std::string SnippetSuffix;
std::string Signature;
std::string ReturnType;
};
// If all BundledEntrys have the same value for a property, return it.
template <std::string BundledEntry::*Member>
const std::string *onlyValue() const {
auto B = Bundled.begin(), E = Bundled.end();
for (auto I = B + 1; I != E; ++I)
if (I->*Member != B->*Member)
return nullptr;
return &(B->*Member);
}
template <bool BundledEntry::*Member> const bool *onlyValue() const {
auto B = Bundled.begin(), E = Bundled.end();
for (auto I = B + 1; I != E; ++I)
if (I->*Member != B->*Member)
return nullptr;
return &(B->*Member);
}
std::string summarizeReturnType() const {
if (auto *RT = onlyValue<&BundledEntry::ReturnType>())
return *RT;
return "";
}
std::string summarizeSnippet() const {
auto *Snippet = onlyValue<&BundledEntry::SnippetSuffix>();
if (!Snippet)
// All bundles are function calls.
// FIXME(ibiryukov): sometimes add template arguments to a snippet, e.g.
// we need to complete 'forward<$1>($0)'.
return "($0)";
if (EnableFunctionArgSnippets)
return *Snippet;
// Replace argument snippets with a simplified pattern.
if (Snippet->empty())
return "";
if (Completion.Kind == CompletionItemKind::Function ||
Completion.Kind == CompletionItemKind::Method) {
// Functions snippets can be of 2 types:
// - containing only function arguments, e.g.
// foo(${1:int p1}, ${2:int p2});
// We transform this pattern to '($0)' or '()'.
// - template arguments and function arguments, e.g.
// foo<${1:class}>(${2:int p1}).
// We transform this pattern to '<$1>()$0' or '<$0>()'.
bool EmptyArgs = llvm::StringRef(*Snippet).endswith("()");
if (Snippet->front() == '<')
return EmptyArgs ? "<$1>()$0" : "<$1>($0)";
if (Snippet->front() == '(')
return EmptyArgs ? "()" : "($0)";
return *Snippet; // Not an arg snippet?
}
if (Completion.Kind == CompletionItemKind::Reference ||
Completion.Kind == CompletionItemKind::Class) {
if (Snippet->front() != '<')
return *Snippet; // Not an arg snippet?
// Classes and template using aliases can only have template arguments,
// e.g. Foo<${1:class}>.
if (llvm::StringRef(*Snippet).endswith("<>"))
return "<>"; // can happen with defaulted template arguments.
return "<$0>";
}
return *Snippet;
}
std::string summarizeSignature() const {
if (auto *Signature = onlyValue<&BundledEntry::Signature>())
return *Signature;
// All bundles are function calls.
return "(…)";
}
ASTContext &ASTCtx;
CodeCompletion Completion;
llvm::SmallVector<BundledEntry, 1> Bundled;
bool ExtractDocumentation;
bool EnableFunctionArgSnippets;
};
// Determine the symbol ID for a Sema code completion result, if possible.
llvm::Optional<SymbolID> getSymbolID(const CodeCompletionResult &R,
const SourceManager &SM) {
switch (R.Kind) {
case CodeCompletionResult::RK_Declaration:
case CodeCompletionResult::RK_Pattern: {
return clang::clangd::getSymbolID(R.Declaration);
}
case CodeCompletionResult::RK_Macro:
return clang::clangd::getSymbolID(*R.Macro, R.MacroDefInfo, SM);
case CodeCompletionResult::RK_Keyword:
return None;
}
llvm_unreachable("unknown CodeCompletionResult kind");
}
// Scopes of the paritial identifier we're trying to complete.
// It is used when we query the index for more completion results.
struct SpecifiedScope {
// The scopes we should look in, determined by Sema.
//
// If the qualifier was fully resolved, we look for completions in these
// scopes; if there is an unresolved part of the qualifier, it should be
// resolved within these scopes.
//
// Examples of qualified completion:
//
// "::vec" => {""}
// "using namespace std; ::vec^" => {"", "std::"}
// "namespace ns {using namespace std;} ns::^" => {"ns::", "std::"}
// "std::vec^" => {""} // "std" unresolved
//
// Examples of unqualified completion:
//
// "vec^" => {""}
// "using namespace std; vec^" => {"", "std::"}
// "using namespace std; namespace ns { vec^ }" => {"ns::", "std::", ""}
//
// "" for global namespace, "ns::" for normal namespace.
std::vector<std::string> AccessibleScopes;
// The full scope qualifier as typed by the user (without the leading "::").
// Set if the qualifier is not fully resolved by Sema.
llvm::Optional<std::string> UnresolvedQualifier;
// Construct scopes being queried in indexes. The results are deduplicated.
// This method format the scopes to match the index request representation.
std::vector<std::string> scopesForIndexQuery() {
std::set<std::string> Results;
for (llvm::StringRef AS : AccessibleScopes)
Results.insert(
((UnresolvedQualifier ? *UnresolvedQualifier : "") + AS).str());
return {Results.begin(), Results.end()};
}
};
// Get all scopes that will be queried in indexes and whether symbols from
// any scope is allowed. The first scope in the list is the preferred scope
// (e.g. enclosing namespace).
std::pair<std::vector<std::string>, bool>
getQueryScopes(CodeCompletionContext &CCContext, const Sema &CCSema,
const CodeCompleteOptions &Opts) {
auto GetAllAccessibleScopes = [](CodeCompletionContext &CCContext) {
SpecifiedScope Info;
for (auto *Context : CCContext.getVisitedContexts()) {
if (isa<TranslationUnitDecl>(Context))
Info.AccessibleScopes.push_back(""); // global namespace
else if (isa<NamespaceDecl>(Context))
Info.AccessibleScopes.push_back(printNamespaceScope(*Context));
}
return Info;
};
auto SS = CCContext.getCXXScopeSpecifier();
// Unqualified completion (e.g. "vec^").
if (!SS) {
std::vector<std::string> Scopes;
std::string EnclosingScope = printNamespaceScope(*CCSema.CurContext);
Scopes.push_back(EnclosingScope);
for (auto &S : GetAllAccessibleScopes(CCContext).scopesForIndexQuery()) {
if (EnclosingScope != S)
Scopes.push_back(std::move(S));
}
// Allow AllScopes completion only for there is no explicit scope qualifier.
return {Scopes, Opts.AllScopes};
}
// Qualified completion ("std::vec^"), we have two cases depending on whether
// the qualifier can be resolved by Sema.
if ((*SS)->isValid()) { // Resolved qualifier.
return {GetAllAccessibleScopes(CCContext).scopesForIndexQuery(), false};
}
// Unresolved qualifier.
// FIXME: When Sema can resolve part of a scope chain (e.g.
// "known::unknown::id"), we should expand the known part ("known::") rather
// than treating the whole thing as unknown.
SpecifiedScope Info;
Info.AccessibleScopes.push_back(""); // global namespace
Info.UnresolvedQualifier =
Lexer::getSourceText(CharSourceRange::getCharRange((*SS)->getRange()),
CCSema.SourceMgr, clang::LangOptions())
.ltrim("::");
// Sema excludes the trailing "::".
if (!Info.UnresolvedQualifier->empty())
*Info.UnresolvedQualifier += "::";
return {Info.scopesForIndexQuery(), false};
}
// Should we perform index-based completion in a context of the specified kind?
// FIXME: consider allowing completion, but restricting the result types.
bool contextAllowsIndex(enum CodeCompletionContext::Kind K) {
switch (K) {
case CodeCompletionContext::CCC_TopLevel:
case CodeCompletionContext::CCC_ObjCInterface:
case CodeCompletionContext::CCC_ObjCImplementation:
case CodeCompletionContext::CCC_ObjCIvarList:
case CodeCompletionContext::CCC_ClassStructUnion:
case CodeCompletionContext::CCC_Statement:
case CodeCompletionContext::CCC_Expression:
case CodeCompletionContext::CCC_ObjCMessageReceiver:
case CodeCompletionContext::CCC_EnumTag:
case CodeCompletionContext::CCC_UnionTag:
case CodeCompletionContext::CCC_ClassOrStructTag:
case CodeCompletionContext::CCC_ObjCProtocolName:
case CodeCompletionContext::CCC_Namespace:
case CodeCompletionContext::CCC_Type:
case CodeCompletionContext::CCC_ParenthesizedExpression:
case CodeCompletionContext::CCC_ObjCInterfaceName:
case CodeCompletionContext::CCC_ObjCCategoryName:
case CodeCompletionContext::CCC_Symbol:
case CodeCompletionContext::CCC_SymbolOrNewName:
return true;
case CodeCompletionContext::CCC_OtherWithMacros:
case CodeCompletionContext::CCC_DotMemberAccess:
case CodeCompletionContext::CCC_ArrowMemberAccess:
case CodeCompletionContext::CCC_ObjCPropertyAccess:
case CodeCompletionContext::CCC_MacroName:
case CodeCompletionContext::CCC_MacroNameUse:
case CodeCompletionContext::CCC_PreprocessorExpression:
case CodeCompletionContext::CCC_PreprocessorDirective:
case CodeCompletionContext::CCC_SelectorName:
case CodeCompletionContext::CCC_TypeQualifiers:
case CodeCompletionContext::CCC_ObjCInstanceMessage:
case CodeCompletionContext::CCC_ObjCClassMessage:
case CodeCompletionContext::CCC_IncludedFile:
// FIXME: Provide identifier based completions for the following contexts:
case CodeCompletionContext::CCC_Other: // Be conservative.
case CodeCompletionContext::CCC_NaturalLanguage:
case CodeCompletionContext::CCC_Recovery:
case CodeCompletionContext::CCC_NewName:
return false;
}
llvm_unreachable("unknown code completion context");
}
static bool isInjectedClass(const NamedDecl &D) {
if (auto *R = dyn_cast_or_null<RecordDecl>(&D))
if (R->isInjectedClassName())
return true;
return false;
}
// Some member calls are blacklisted because they're so rarely useful.
static bool isBlacklistedMember(const NamedDecl &D) {
// Destructor completion is rarely useful, and works inconsistently.
// (s.^ completes ~string, but s.~st^ is an error).
if (D.getKind() == Decl::CXXDestructor)
return true;
// Injected name may be useful for A::foo(), but who writes A::A::foo()?
if (isInjectedClass(D))
return true;
// Explicit calls to operators are also rare.
auto NameKind = D.getDeclName().getNameKind();
if (NameKind == DeclarationName::CXXOperatorName ||
NameKind == DeclarationName::CXXLiteralOperatorName ||
NameKind == DeclarationName::CXXConversionFunctionName)
return true;
return false;
}
// The CompletionRecorder captures Sema code-complete output, including context.
// It filters out ignored results (but doesn't apply fuzzy-filtering yet).
// It doesn't do scoring or conversion to CompletionItem yet, as we want to
// merge with index results first.
// Generally the fields and methods of this object should only be used from
// within the callback.
struct CompletionRecorder : public CodeCompleteConsumer {
CompletionRecorder(const CodeCompleteOptions &Opts,
llvm::unique_function<void()> ResultsCallback)
: CodeCompleteConsumer(Opts.getClangCompleteOpts(),
/*OutputIsBinary=*/false),
CCContext(CodeCompletionContext::CCC_Other), Opts(Opts),
CCAllocator(std::make_shared<GlobalCodeCompletionAllocator>()),
CCTUInfo(CCAllocator), ResultsCallback(std::move(ResultsCallback)) {
assert(this->ResultsCallback);
}
std::vector<CodeCompletionResult> Results;
CodeCompletionContext CCContext;
Sema *CCSema = nullptr; // Sema that created the results.
// FIXME: Sema is scary. Can we store ASTContext and Preprocessor, instead?
void ProcessCodeCompleteResults(class Sema &S, CodeCompletionContext Context,
CodeCompletionResult *InResults,
unsigned NumResults) override final {
// Results from recovery mode are generally useless, and the callback after
// recovery (if any) is usually more interesting. To make sure we handle the
// future callback from sema, we just ignore all callbacks in recovery mode,
// as taking only results from recovery mode results in poor completion
// results.
// FIXME: in case there is no future sema completion callback after the
// recovery mode, we might still want to provide some results (e.g. trivial
// identifier-based completion).
if (Context.getKind() == CodeCompletionContext::CCC_Recovery) {
log("Code complete: Ignoring sema code complete callback with Recovery "
"context.");
return;
}
// If a callback is called without any sema result and the context does not
// support index-based completion, we simply skip it to give way to
// potential future callbacks with results.
if (NumResults == 0 && !contextAllowsIndex(Context.getKind()))
return;
if (CCSema) {
log("Multiple code complete callbacks (parser backtracked?). "
"Dropping results from context {0}, keeping results from {1}.",
getCompletionKindString(Context.getKind()),
getCompletionKindString(this->CCContext.getKind()));
return;
}
// Record the completion context.
CCSema = &S;
CCContext = Context;
// Retain the results we might want.
for (unsigned I = 0; I < NumResults; ++I) {
auto &Result = InResults[I];
// Class members that are shadowed by subclasses are usually noise.
if (Result.Hidden && Result.Declaration &&
Result.Declaration->isCXXClassMember())
continue;
if (!Opts.IncludeIneligibleResults &&
(Result.Availability == CXAvailability_NotAvailable ||
Result.Availability == CXAvailability_NotAccessible))
continue;
if (Result.Declaration &&
!Context.getBaseType().isNull() // is this a member-access context?
&& isBlacklistedMember(*Result.Declaration))
continue;
// Skip injected class name when no class scope is not explicitly set.
// E.g. show injected A::A in `using A::A^` but not in "A^".
if (Result.Declaration && !Context.getCXXScopeSpecifier().hasValue() &&
isInjectedClass(*Result.Declaration))
continue;
// We choose to never append '::' to completion results in clangd.
Result.StartsNestedNameSpecifier = false;
Results.push_back(Result);
}
ResultsCallback();
}
CodeCompletionAllocator &getAllocator() override { return *CCAllocator; }
CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return CCTUInfo; }
// Returns the filtering/sorting name for Result, which must be from Results.
// Returned string is owned by this recorder (or the AST).
llvm::StringRef getName(const CodeCompletionResult &Result) {
switch (Result.Kind) {
case CodeCompletionResult::RK_Declaration:
if (auto *ID = Result.Declaration->getIdentifier())
return ID->getName();
break;
case CodeCompletionResult::RK_Keyword:
return Result.Keyword;
case CodeCompletionResult::RK_Macro:
return Result.Macro->getName();
case CodeCompletionResult::RK_Pattern:
return Result.Pattern->getTypedText();
}
auto *CCS = codeCompletionString(Result);
return CCS->getTypedText();
}
// Build a CodeCompletion string for R, which must be from Results.
// The CCS will be owned by this recorder.
CodeCompletionString *codeCompletionString(const CodeCompletionResult &R) {
// CodeCompletionResult doesn't seem to be const-correct. We own it, anyway.
return const_cast<CodeCompletionResult &>(R).CreateCodeCompletionString(
*CCSema, CCContext, *CCAllocator, CCTUInfo,
/*IncludeBriefComments=*/false);
}
private:
CodeCompleteOptions Opts;
std::shared_ptr<GlobalCodeCompletionAllocator> CCAllocator;
CodeCompletionTUInfo CCTUInfo;
llvm::unique_function<void()> ResultsCallback;
};
struct ScoredSignature {
// When set, requires documentation to be requested from the index with this
// ID.
llvm::Optional<SymbolID> IDForDoc;
SignatureInformation Signature;
SignatureQualitySignals Quality;
};
class SignatureHelpCollector final : public CodeCompleteConsumer {
public:
SignatureHelpCollector(const clang::CodeCompleteOptions &CodeCompleteOpts,
const SymbolIndex *Index, SignatureHelp &SigHelp)
: CodeCompleteConsumer(CodeCompleteOpts,
/*OutputIsBinary=*/false),
SigHelp(SigHelp),
Allocator(std::make_shared<clang::GlobalCodeCompletionAllocator>()),
CCTUInfo(Allocator), Index(Index) {}
void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
OverloadCandidate *Candidates,
unsigned NumCandidates,
SourceLocation OpenParLoc) override {
assert(!OpenParLoc.isInvalid());
SourceManager &SrcMgr = S.getSourceManager();
OpenParLoc = SrcMgr.getFileLoc(OpenParLoc);
if (SrcMgr.isInMainFile(OpenParLoc))
SigHelp.argListStart = sourceLocToPosition(SrcMgr, OpenParLoc);
else
elog("Location oustide main file in signature help: {0}",
OpenParLoc.printToString(SrcMgr));
std::vector<ScoredSignature> ScoredSignatures;
SigHelp.signatures.reserve(NumCandidates);
ScoredSignatures.reserve(NumCandidates);
// FIXME(rwols): How can we determine the "active overload candidate"?
// Right now the overloaded candidates seem to be provided in a "best fit"
// order, so I'm not too worried about this.
SigHelp.activeSignature = 0;
assert(CurrentArg <= (unsigned)std::numeric_limits<int>::max() &&
"too many arguments");
SigHelp.activeParameter = static_cast<int>(CurrentArg);
for (unsigned I = 0; I < NumCandidates; ++I) {
OverloadCandidate Candidate = Candidates[I];
// We want to avoid showing instantiated signatures, because they may be
// long in some cases (e.g. when 'T' is substituted with 'std::string', we
// would get 'std::basic_string<char>').
if (auto *Func = Candidate.getFunction()) {
if (auto *Pattern = Func->getTemplateInstantiationPattern())
Candidate = OverloadCandidate(Pattern);
}
const auto *CCS = Candidate.CreateSignatureString(
CurrentArg, S, *Allocator, CCTUInfo, true);
assert(CCS && "Expected the CodeCompletionString to be non-null");
ScoredSignatures.push_back(processOverloadCandidate(
Candidate, *CCS,
Candidate.getFunction()
? getDeclComment(S.getASTContext(), *Candidate.getFunction())
: ""));
}
// Sema does not load the docs from the preamble, so we need to fetch extra
// docs from the index instead.
llvm::DenseMap<SymbolID, std::string> FetchedDocs;
if (Index) {
LookupRequest IndexRequest;
for (const auto &S : ScoredSignatures) {
if (!S.IDForDoc)
continue;
IndexRequest.IDs.insert(*S.IDForDoc);
}
Index->lookup(IndexRequest, [&](const Symbol &S) {
if (!S.Documentation.empty())
FetchedDocs[S.ID] = S.Documentation;
});
log("SigHelp: requested docs for {0} symbols from the index, got {1} "
"symbols with non-empty docs in the response",
IndexRequest.IDs.size(), FetchedDocs.size());
}
llvm::sort(ScoredSignatures, [](const ScoredSignature &L,
const ScoredSignature &R) {
// Ordering follows:
// - Less number of parameters is better.
// - Function is better than FunctionType which is better than
// Function Template.
// - High score is better.
// - Shorter signature is better.
// - Alphebatically smaller is better.
if (L.Quality.NumberOfParameters != R.Quality.NumberOfParameters)
return L.Quality.NumberOfParameters < R.Quality.NumberOfParameters;
if (L.Quality.NumberOfOptionalParameters !=
R.Quality.NumberOfOptionalParameters)
return L.Quality.NumberOfOptionalParameters <
R.Quality.NumberOfOptionalParameters;
if (L.Quality.Kind != R.Quality.Kind) {
using OC = CodeCompleteConsumer::OverloadCandidate;
switch (L.Quality.Kind) {
case OC::CK_Function:
return true;
case OC::CK_FunctionType:
return R.Quality.Kind != OC::CK_Function;
case OC::CK_FunctionTemplate:
return false;
}
llvm_unreachable("Unknown overload candidate type.");
}
if (L.Signature.label.size() != R.Signature.label.size())
return L.Signature.label.size() < R.Signature.label.size();
return L.Signature.label < R.Signature.label;
});
for (auto &SS : ScoredSignatures) {
auto IndexDocIt =
SS.IDForDoc ? FetchedDocs.find(*SS.IDForDoc) : FetchedDocs.end();
if (IndexDocIt != FetchedDocs.end())
SS.Signature.documentation = IndexDocIt->second;
SigHelp.signatures.push_back(std::move(SS.Signature));
}
}
GlobalCodeCompletionAllocator &getAllocator() override { return *Allocator; }
CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return CCTUInfo; }
private:
// FIXME(ioeric): consider moving CodeCompletionString logic here to
// CompletionString.h.
ScoredSignature processOverloadCandidate(const OverloadCandidate &Candidate,
const CodeCompletionString &CCS,
llvm::StringRef DocComment) const {
SignatureInformation Signature;
SignatureQualitySignals Signal;
const char *ReturnType = nullptr;
Signature.documentation = formatDocumentation(CCS, DocComment);
Signal.Kind = Candidate.getKind();
for (const auto &Chunk : CCS) {
switch (Chunk.Kind) {
case CodeCompletionString::CK_ResultType:
// A piece of text that describes the type of an entity or,
// for functions and methods, the return type.
assert(!ReturnType && "Unexpected CK_ResultType");
ReturnType = Chunk.Text;
break;
case CodeCompletionString::CK_Placeholder:
// A string that acts as a placeholder for, e.g., a function call
// argument.
// Intentional fallthrough here.
case CodeCompletionString::CK_CurrentParameter: {
// A piece of text that describes the parameter that corresponds to
// the code-completion location within a function call, message send,
// macro invocation, etc.
Signature.label += Chunk.Text;
ParameterInformation Info;
Info.label = Chunk.Text;
Signature.parameters.push_back(std::move(Info));
Signal.NumberOfParameters++;
Signal.ContainsActiveParameter = true;
break;
}
case CodeCompletionString::CK_Optional: {
// The rest of the parameters are defaulted/optional.
assert(Chunk.Optional &&
"Expected the optional code completion string to be non-null.");
Signature.label += getOptionalParameters(*Chunk.Optional,
Signature.parameters, Signal);
break;
}
case CodeCompletionString::CK_VerticalSpace:
break;
default:
Signature.label += Chunk.Text;
break;
}
}
if (ReturnType) {
Signature.label += " -> ";
Signature.label += ReturnType;
}
dlog("Signal for {0}: {1}", Signature, Signal);
ScoredSignature Result;
Result.Signature = std::move(Signature);
Result.Quality = Signal;
Result.IDForDoc =
Result.Signature.documentation.empty() && Candidate.getFunction()
? clangd::getSymbolID(Candidate.getFunction())
: None;
return Result;
}
SignatureHelp &SigHelp;
std::shared_ptr<clang::GlobalCodeCompletionAllocator> Allocator;
CodeCompletionTUInfo CCTUInfo;
const SymbolIndex *Index;
}; // SignatureHelpCollector
struct SemaCompleteInput {
PathRef FileName;
const tooling::CompileCommand &Command;
const PreambleData *Preamble;
llvm::StringRef Contents;
Position Pos;
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS;
std::shared_ptr<PCHContainerOperations> PCHs;
};
// Invokes Sema code completion on a file.
// If \p Includes is set, it will be updated based on the compiler invocation.
bool semaCodeComplete(std::unique_ptr<CodeCompleteConsumer> Consumer,
const clang::CodeCompleteOptions &Options,
const SemaCompleteInput &Input,
IncludeStructure *Includes = nullptr) {
trace::Span Tracer("Sema completion");
std::vector<const char *> ArgStrs;
for (const auto &S : Input.Command.CommandLine)
ArgStrs.push_back(S.c_str());
if (Input.VFS->setCurrentWorkingDirectory(Input.Command.Directory)) {
log("Couldn't set working directory");
// We run parsing anyway, our lit-tests rely on results for non-existing
// working dirs.
}
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS = Input.VFS;
if (Input.Preamble && Input.Preamble->StatCache)
VFS = Input.Preamble->StatCache->getConsumingFS(std::move(VFS));
IgnoreDiagnostics DummyDiagsConsumer;
auto CI = createInvocationFromCommandLine(
ArgStrs,
CompilerInstance::createDiagnostics(new DiagnosticOptions,
&DummyDiagsConsumer, false),
VFS);
if (!CI) {
elog("Couldn't create CompilerInvocation");
return false;
}
auto &FrontendOpts = CI->getFrontendOpts();
FrontendOpts.DisableFree = false;
FrontendOpts.SkipFunctionBodies = true;
CI->getLangOpts()->CommentOpts.ParseAllComments = true;
// Disable typo correction in Sema.
CI->getLangOpts()->SpellChecking = false;
// Setup code completion.
FrontendOpts.CodeCompleteOpts = Options;
FrontendOpts.CodeCompletionAt.FileName = Input.FileName;
auto Offset = positionToOffset(Input.Contents, Input.Pos);
if (!Offset) {
elog("Code completion position was invalid {0}", Offset.takeError());
return false;
}
std::tie(FrontendOpts.CodeCompletionAt.Line,
FrontendOpts.CodeCompletionAt.Column) =
offsetToClangLineColumn(Input.Contents, *Offset);
std::unique_ptr<llvm::MemoryBuffer> ContentsBuffer =
llvm::MemoryBuffer::getMemBufferCopy(Input.Contents, Input.FileName);
// The diagnostic options must be set before creating a CompilerInstance.
CI->getDiagnosticOpts().IgnoreWarnings = true;
// We reuse the preamble whether it's valid or not. This is a
// correctness/performance tradeoff: building without a preamble is slow, and
// completion is latency-sensitive.
// However, if we're completing *inside* the preamble section of the draft,
// overriding the preamble will break sema completion. Fortunately we can just
// skip all includes in this case; these completions are really simple.
bool CompletingInPreamble =
ComputePreambleBounds(*CI->getLangOpts(), ContentsBuffer.get(), 0).Size >
*Offset;
// NOTE: we must call BeginSourceFile after prepareCompilerInstance. Otherwise
// the remapped buffers do not get freed.
auto Clang = prepareCompilerInstance(
std::move(CI),
(Input.Preamble && !CompletingInPreamble) ? &Input.Preamble->Preamble
: nullptr,
std::move(ContentsBuffer), std::move(Input.PCHs), std::move(VFS),
DummyDiagsConsumer);
Clang->getPreprocessorOpts().SingleFileParseMode = CompletingInPreamble;
Clang->setCodeCompletionConsumer(Consumer.release());
SyntaxOnlyAction Action;
if (!Action.BeginSourceFile(*Clang, Clang->getFrontendOpts().Inputs[0])) {
log("BeginSourceFile() failed when running codeComplete for {0}",
Input.FileName);
return false;
}
if (Includes)
Clang->getPreprocessor().addPPCallbacks(
collectIncludeStructureCallback(Clang->getSourceManager(), Includes));
if (!Action.Execute()) {
log("Execute() failed when running codeComplete for {0}", Input.FileName);
return false;
}
Action.EndSourceFile();
return true;
}
// Should we allow index completions in the specified context?
bool allowIndex(CodeCompletionContext &CC) {
if (!contextAllowsIndex(CC.getKind()))
return false;
// We also avoid ClassName::bar (but allow namespace::bar).
auto Scope = CC.getCXXScopeSpecifier();
if (!Scope)
return true;
NestedNameSpecifier *NameSpec = (*Scope)->getScopeRep();
if (!NameSpec)
return true;
// We only query the index when qualifier is a namespace.
// If it's a class, we rely solely on sema completions.
switch (NameSpec->getKind()) {
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
return true;
case NestedNameSpecifier::Super:
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
// Unresolved inside a template.
case NestedNameSpecifier::Identifier:
return false;
}
llvm_unreachable("invalid NestedNameSpecifier kind");
}
std::future<SymbolSlab> startAsyncFuzzyFind(const SymbolIndex &Index,
const FuzzyFindRequest &Req) {
return runAsync<SymbolSlab>([&Index, Req]() {
trace::Span Tracer("Async fuzzyFind");
SymbolSlab::Builder Syms;
Index.fuzzyFind(Req, [&Syms](const Symbol &Sym) { Syms.insert(Sym); });
return std::move(Syms).build();
});
}
// Creates a `FuzzyFindRequest` based on the cached index request from the
// last completion, if any, and the speculated completion filter text in the
// source code.
llvm::Optional<FuzzyFindRequest>
speculativeFuzzyFindRequestForCompletion(FuzzyFindRequest CachedReq,
PathRef File, llvm::StringRef Content,
Position Pos) {
auto Filter = speculateCompletionFilter(Content, Pos);
if (!Filter) {
elog("Failed to speculate filter text for code completion at Pos "
"{0}:{1}: {2}",
Pos.line, Pos.character, Filter.takeError());
return None;
}
CachedReq.Query = *Filter;
return CachedReq;
}
// Returns the most popular include header for \p Sym. If two headers are
// equally popular, prefer the shorter one. Returns empty string if \p Sym has
// no include header.
llvm::SmallVector<llvm::StringRef, 1> getRankedIncludes(const Symbol &Sym) {
auto Includes = Sym.IncludeHeaders;
// Sort in descending order by reference count and header length.
llvm::sort(Includes, [](const Symbol::IncludeHeaderWithReferences &LHS,
const Symbol::IncludeHeaderWithReferences &RHS) {
if (LHS.References == RHS.References)
return LHS.IncludeHeader.size() < RHS.IncludeHeader.size();
return LHS.References > RHS.References;
});
llvm::SmallVector<llvm::StringRef, 1> Headers;
for (const auto &Include : Includes)
Headers.push_back(Include.IncludeHeader);
return Headers;
}
// Runs Sema-based (AST) and Index-based completion, returns merged results.
//
// There are a few tricky considerations:
// - the AST provides information needed for the index query (e.g. which
// namespaces to search in). So Sema must start first.
// - we only want to return the top results (Opts.Limit).
// Building CompletionItems for everything else is wasteful, so we want to
// preserve the "native" format until we're done with scoring.
// - the data underlying Sema completion items is owned by the AST and various
// other arenas, which must stay alive for us to build CompletionItems.
// - we may get duplicate results from Sema and the Index, we need to merge.
//
// So we start Sema completion first, and do all our work in its callback.
// We use the Sema context information to query the index.
// Then we merge the two result sets, producing items that are Sema/Index/Both.
// These items are scored, and the top N are synthesized into the LSP response.
// Finally, we can clean up the data structures created by Sema completion.
//
// Main collaborators are:
// - semaCodeComplete sets up the compiler machinery to run code completion.
// - CompletionRecorder captures Sema completion results, including context.
// - SymbolIndex (Opts.Index) provides index completion results as Symbols
// - CompletionCandidates are the result of merging Sema and Index results.
// Each candidate points to an underlying CodeCompletionResult (Sema), a
// Symbol (Index), or both. It computes the result quality score.
// CompletionCandidate also does conversion to CompletionItem (at the end).
// - FuzzyMatcher scores how the candidate matches the partial identifier.
// This score is combined with the result quality score for the final score.
// - TopN determines the results with the best score.
class CodeCompleteFlow {
PathRef FileName;
IncludeStructure Includes; // Complete once the compiler runs.
SpeculativeFuzzyFind *SpecFuzzyFind; // Can be nullptr.
const CodeCompleteOptions &Opts;
// Sema takes ownership of Recorder. Recorder is valid until Sema cleanup.
CompletionRecorder *Recorder = nullptr;
int NSema = 0, NIndex = 0, NBoth = 0; // Counters for logging.
bool Incomplete = false; // Would more be available with a higher limit?
llvm::Optional<FuzzyMatcher> Filter; // Initialized once Sema runs.
std::vector<std::string> QueryScopes; // Initialized once Sema runs.
// Initialized once QueryScopes is initialized, if there are scopes.
llvm::Optional<ScopeDistance> ScopeProximity;
llvm::Optional<OpaqueType> PreferredType; // Initialized once Sema runs.
// Whether to query symbols from any scope. Initialized once Sema runs.
bool AllScopes = false;
// Include-insertion and proximity scoring rely on the include structure.
// This is available after Sema has run.
llvm::Optional<IncludeInserter> Inserter; // Available during runWithSema.
llvm::Optional<URIDistance> FileProximity; // Initialized once Sema runs.
/// Speculative request based on the cached request and the filter text before
/// the cursor.
/// Initialized right before sema run. This is only set if `SpecFuzzyFind` is
/// set and contains a cached request.
llvm::Optional<FuzzyFindRequest> SpecReq;
public:
// A CodeCompleteFlow object is only useful for calling run() exactly once.
CodeCompleteFlow(PathRef FileName, const IncludeStructure &Includes,
SpeculativeFuzzyFind *SpecFuzzyFind,
const CodeCompleteOptions &Opts)
: FileName(FileName), Includes(Includes), SpecFuzzyFind(SpecFuzzyFind),
Opts(Opts) {}
CodeCompleteResult run(const SemaCompleteInput &SemaCCInput) && {
trace::Span Tracer("CodeCompleteFlow");
if (Opts.Index && SpecFuzzyFind && SpecFuzzyFind->CachedReq.hasValue()) {
assert(!SpecFuzzyFind->Result.valid());
if ((SpecReq = speculativeFuzzyFindRequestForCompletion(
*SpecFuzzyFind->CachedReq, SemaCCInput.FileName,
SemaCCInput.Contents, SemaCCInput.Pos)))
SpecFuzzyFind->Result = startAsyncFuzzyFind(*Opts.Index, *SpecReq);
}
// We run Sema code completion first. It builds an AST and calculates:
// - completion results based on the AST.
// - partial identifier and context. We need these for the index query.
CodeCompleteResult Output;
auto RecorderOwner = llvm::make_unique<CompletionRecorder>(Opts, [&]() {
assert(Recorder && "Recorder is not set");
auto Style =
format::getStyle(format::DefaultFormatStyle, SemaCCInput.FileName,
format::DefaultFallbackStyle, SemaCCInput.Contents,
SemaCCInput.VFS.get());
if (!Style) {
log("getStyle() failed for file {0}: {1}. Fallback is LLVM style.",
SemaCCInput.FileName, Style.takeError());
Style = format::getLLVMStyle();
}
// If preprocessor was run, inclusions from preprocessor callback should
// already be added to Includes.
Inserter.emplace(
SemaCCInput.FileName, SemaCCInput.Contents, *Style,
SemaCCInput.Command.Directory,
Recorder->CCSema->getPreprocessor().getHeaderSearchInfo());
for (const auto &Inc : Includes.MainFileIncludes)
Inserter->addExisting(Inc);
// Most of the cost of file proximity is in initializing the FileDistance
// structures based on the observed includes, once per query. Conceptually
// that happens here (though the per-URI-scheme initialization is lazy).
// The per-result proximity scoring is (amortized) very cheap.
FileDistanceOptions ProxOpts{}; // Use defaults.
const auto &SM = Recorder->CCSema->getSourceManager();
llvm::StringMap<SourceParams> ProxSources;
for (auto &Entry : Includes.includeDepth(
SM.getFileEntryForID(SM.getMainFileID())->getName())) {
auto &Source = ProxSources[Entry.getKey()];
Source.Cost = Entry.getValue() * ProxOpts.IncludeCost;
// Symbols near our transitive includes are good, but only consider
// things in the same directory or below it. Otherwise there can be
// many false positives.
if (Entry.getValue() > 0)
Source.MaxUpTraversals = 1;
}
FileProximity.emplace(ProxSources, ProxOpts);
Output = runWithSema();
Inserter.reset(); // Make sure this doesn't out-live Clang.
SPAN_ATTACH(Tracer, "sema_completion_kind",
getCompletionKindString(Recorder->CCContext.getKind()));
log("Code complete: sema context {0}, query scopes [{1}] (AnyScope={2}), "
"expected type {3}",
getCompletionKindString(Recorder->CCContext.getKind()),
llvm::join(QueryScopes.begin(), QueryScopes.end(), ","), AllScopes,
PreferredType ? Recorder->CCContext.getPreferredType().getAsString()
: "<none>");
});
Recorder = RecorderOwner.get();
semaCodeComplete(std::move(RecorderOwner), Opts.getClangCompleteOpts(),
SemaCCInput, &Includes);
SPAN_ATTACH(Tracer, "sema_results", NSema);
SPAN_ATTACH(Tracer, "index_results", NIndex);
SPAN_ATTACH(Tracer, "merged_results", NBoth);
SPAN_ATTACH(Tracer, "returned_results", int64_t(Output.Completions.size()));
SPAN_ATTACH(Tracer, "incomplete", Output.HasMore);
log("Code complete: {0} results from Sema, {1} from Index, "
"{2} matched, {3} returned{4}.",
NSema, NIndex, NBoth, Output.Completions.size(),
Output.HasMore ? " (incomplete)" : "");
assert(!Opts.Limit || Output.Completions.size() <= Opts.Limit);
// We don't assert that isIncomplete means we hit a limit.
// Indexes may choose to impose their own limits even if we don't have one.
return Output;
}
private:
// This is called by run() once Sema code completion is done, but before the
// Sema data structures are torn down. It does all the real work.
CodeCompleteResult runWithSema() {
const auto &CodeCompletionRange = CharSourceRange::getCharRange(
Recorder->CCSema->getPreprocessor().getCodeCompletionTokenRange());
Range TextEditRange;
// When we are getting completions with an empty identifier, for example
// std::vector<int> asdf;
// asdf.^;
// Then the range will be invalid and we will be doing insertion, use
// current cursor position in such cases as range.
if (CodeCompletionRange.isValid()) {
TextEditRange = halfOpenToRange(Recorder->CCSema->getSourceManager(),
CodeCompletionRange);
} else {
const auto &Pos = sourceLocToPosition(
Recorder->CCSema->getSourceManager(),
Recorder->CCSema->getPreprocessor().getCodeCompletionLoc());
TextEditRange.start = TextEditRange.end = Pos;
}
Filter = FuzzyMatcher(
Recorder->CCSema->getPreprocessor().getCodeCompletionFilter());
std::tie(QueryScopes, AllScopes) =
getQueryScopes(Recorder->CCContext, *Recorder->CCSema, Opts);
if (!QueryScopes.empty())
ScopeProximity.emplace(QueryScopes);
PreferredType =
OpaqueType::fromType(Recorder->CCSema->getASTContext(),
Recorder->CCContext.getPreferredType());
// Sema provides the needed context to query the index.
// FIXME: in addition to querying for extra/overlapping symbols, we should
// explicitly request symbols corresponding to Sema results.
// We can use their signals even if the index can't suggest them.
// We must copy index results to preserve them, but there are at most Limit.
auto IndexResults = (Opts.Index && allowIndex(Recorder->CCContext))
? queryIndex()
: SymbolSlab();
trace::Span Tracer("Populate CodeCompleteResult");
// Merge Sema and Index results, score them, and pick the winners.
auto Top = mergeResults(Recorder->Results, IndexResults);
CodeCompleteResult Output;
// Convert the results to final form, assembling the expensive strings.
for (auto &C : Top) {
Output.Completions.push_back(toCodeCompletion(C.first));
Output.Completions.back().Score = C.second;
Output.Completions.back().CompletionTokenRange = TextEditRange;
}
Output.HasMore = Incomplete;
Output.Context = Recorder->CCContext.getKind();
return Output;
}
SymbolSlab queryIndex() {
trace::Span Tracer("Query index");
SPAN_ATTACH(Tracer, "limit", int64_t(Opts.Limit));
// Build the query.
FuzzyFindRequest Req;
if (Opts.Limit)
Req.Limit = Opts.Limit;
Req.Query = Filter->pattern();
Req.RestrictForCodeCompletion = true;
Req.Scopes = QueryScopes;
Req.AnyScope = AllScopes;
// FIXME: we should send multiple weighted paths here.
Req.ProximityPaths.push_back(FileName);
vlog("Code complete: fuzzyFind({0:2})", toJSON(Req));
if (SpecFuzzyFind)
SpecFuzzyFind->NewReq = Req;
if (SpecFuzzyFind && SpecFuzzyFind->Result.valid() && (*SpecReq == Req)) {
vlog("Code complete: speculative fuzzy request matches the actual index "
"request. Waiting for the speculative index results.");
SPAN_ATTACH(Tracer, "Speculative results", true);
trace::Span WaitSpec("Wait speculative results");
return SpecFuzzyFind->Result.get();
}
SPAN_ATTACH(Tracer, "Speculative results", false);
// Run the query against the index.
SymbolSlab::Builder ResultsBuilder;
if (Opts.Index->fuzzyFind(
Req, [&](const Symbol &Sym) { ResultsBuilder.insert(Sym); }))
Incomplete = true;
return std::move(ResultsBuilder).build();
}
// Merges Sema and Index results where possible, to form CompletionCandidates.
// Groups overloads if desired, to form CompletionCandidate::Bundles. The
// bundles are scored and top results are returned, best to worst.
std::vector<ScoredBundle>
mergeResults(const std::vector<CodeCompletionResult> &SemaResults,
const SymbolSlab &IndexResults) {
trace::Span Tracer("Merge and score results");
std::vector<CompletionCandidate::Bundle> Bundles;
llvm::DenseMap<size_t, size_t> BundleLookup;
auto AddToBundles = [&](const CodeCompletionResult *SemaResult,
const Symbol *IndexResult) {
CompletionCandidate C;
C.SemaResult = SemaResult;
C.IndexResult = IndexResult;
if (C.IndexResult)
C.RankedIncludeHeaders = getRankedIncludes(*C.IndexResult);
C.Name = IndexResult ? IndexResult->Name : Recorder->getName(*SemaResult);
if (auto OverloadSet = Opts.BundleOverloads ? C.overloadSet() : 0) {
auto Ret = BundleLookup.try_emplace(OverloadSet, Bundles.size());
if (Ret.second)
Bundles.emplace_back();
Bundles[Ret.first->second].push_back(std::move(C));
} else {
Bundles.emplace_back();
Bundles.back().push_back(std::move(C));
}
};
llvm::DenseSet<const Symbol *> UsedIndexResults;
auto CorrespondingIndexResult =
[&](const CodeCompletionResult &SemaResult) -> const Symbol * {
if (auto SymID =
getSymbolID(SemaResult, Recorder->CCSema->getSourceManager())) {
auto I = IndexResults.find(*SymID);
if (I != IndexResults.end()) {
UsedIndexResults.insert(&*I);
return &*I;
}
}
return nullptr;
};
// Emit all Sema results, merging them with Index results if possible.
for (auto &SemaResult : Recorder->Results)
AddToBundles(&SemaResult, CorrespondingIndexResult(SemaResult));
// Now emit any Index-only results.
for (const auto &IndexResult : IndexResults) {
if (UsedIndexResults.count(&IndexResult))
continue;
AddToBundles(/*SemaResult=*/nullptr, &IndexResult);
}
// We only keep the best N results at any time, in "native" format.
TopN<ScoredBundle, ScoredBundleGreater> Top(
Opts.Limit == 0 ? std::numeric_limits<size_t>::max() : Opts.Limit);
for (auto &Bundle : Bundles)
addCandidate(Top, std::move(Bundle));
return std::move(Top).items();
}
llvm::Optional<float> fuzzyScore(const CompletionCandidate &C) {
// Macros can be very spammy, so we only support prefix completion.
// We won't end up with underfull index results, as macros are sema-only.
if (C.SemaResult && C.SemaResult->Kind == CodeCompletionResult::RK_Macro &&
!C.Name.startswith_lower(Filter->pattern()))
return None;
return Filter->match(C.Name);
}
// Scores a candidate and adds it to the TopN structure.
void addCandidate(TopN<ScoredBundle, ScoredBundleGreater> &Candidates,
CompletionCandidate::Bundle Bundle) {
SymbolQualitySignals Quality;
SymbolRelevanceSignals Relevance;
Relevance.Context = Recorder->CCContext.getKind();
Relevance.Query = SymbolRelevanceSignals::CodeComplete;
Relevance.FileProximityMatch = FileProximity.getPointer();
if (ScopeProximity)
Relevance.ScopeProximityMatch = ScopeProximity.getPointer();
if (PreferredType)
Relevance.HadContextType = true;
auto &First = Bundle.front();
if (auto FuzzyScore = fuzzyScore(First))
Relevance.NameMatch = *FuzzyScore;
else
return;
SymbolOrigin Origin = SymbolOrigin::Unknown;
bool FromIndex = false;
for (const auto &Candidate : Bundle) {
if (Candidate.IndexResult) {
Quality.merge(*Candidate.IndexResult);
Relevance.merge(*Candidate.IndexResult);
Origin |= Candidate.IndexResult->Origin;
FromIndex = true;
if (!Candidate.IndexResult->Type.empty())
Relevance.HadSymbolType |= true;
if (PreferredType &&
PreferredType->raw() == Candidate.IndexResult->Type) {
Relevance.TypeMatchesPreferred = true;
}
}
if (Candidate.SemaResult) {
Quality.merge(*Candidate.SemaResult);
Relevance.merge(*Candidate.SemaResult);
if (PreferredType) {
if (auto CompletionType = OpaqueType::fromCompletionResult(
Recorder->CCSema->getASTContext(), *Candidate.SemaResult)) {
Relevance.HadSymbolType |= true;
if (PreferredType == CompletionType)
Relevance.TypeMatchesPreferred = true;
}
}
Origin |= SymbolOrigin::AST;
}
}
CodeCompletion::Scores Scores;
Scores.Quality = Quality.evaluate();
Scores.Relevance = Relevance.evaluate();
Scores.Total = evaluateSymbolAndRelevance(Scores.Quality, Scores.Relevance);
// NameMatch is in fact a multiplier on total score, so rescoring is sound.
Scores.ExcludingName = Relevance.NameMatch
? Scores.Total / Relevance.NameMatch
: Scores.Quality;
dlog("CodeComplete: {0} ({1}) = {2}\n{3}{4}\n", First.Name,
llvm::to_string(Origin), Scores.Total, llvm::to_string(Quality),
llvm::to_string(Relevance));
NSema += bool(Origin & SymbolOrigin::AST);
NIndex += FromIndex;
NBoth += bool(Origin & SymbolOrigin::AST) && FromIndex;
if (Candidates.push({std::move(Bundle), Scores}))
Incomplete = true;
}
CodeCompletion toCodeCompletion(const CompletionCandidate::Bundle &Bundle) {
llvm::Optional<CodeCompletionBuilder> Builder;
for (const auto &Item : Bundle) {
CodeCompletionString *SemaCCS =
Item.SemaResult ? Recorder->codeCompletionString(*Item.SemaResult)
: nullptr;
if (!Builder)
Builder.emplace(Recorder->CCSema->getASTContext(), Item, SemaCCS,
QueryScopes, *Inserter, FileName,
Recorder->CCContext.getKind(), Opts);
else
Builder->add(Item, SemaCCS);
}
return Builder->build();
}
};
} // namespace
clang::CodeCompleteOptions CodeCompleteOptions::getClangCompleteOpts() const {
clang::CodeCompleteOptions Result;
Result.IncludeCodePatterns = EnableSnippets && IncludeCodePatterns;
Result.IncludeMacros = IncludeMacros;
Result.IncludeGlobals = true;
// We choose to include full comments and not do doxygen parsing in
// completion.
// FIXME: ideally, we should support doxygen in some form, e.g. do markdown
// formatting of the comments.
Result.IncludeBriefComments = false;
// When an is used, Sema is responsible for completing the main file,
// the index can provide results from the preamble.
// Tell Sema not to deserialize the preamble to look for results.
Result.LoadExternal = !Index;
Result.IncludeFixIts = IncludeFixIts;
return Result;
}
llvm::Expected<llvm::StringRef>
speculateCompletionFilter(llvm::StringRef Content, Position Pos) {
auto Offset = positionToOffset(Content, Pos);
if (!Offset)
return llvm::make_error<llvm::StringError>(
"Failed to convert position to offset in content.",
llvm::inconvertibleErrorCode());
if (*Offset == 0)
return "";
// Start from the character before the cursor.
int St = *Offset - 1;
// FIXME(ioeric): consider UTF characters?
auto IsValidIdentifierChar = [](char c) {
return ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') ||
(c >= '0' && c <= '9') || (c == '_'));
};
size_t Len = 0;
for (; (St >= 0) && IsValidIdentifierChar(Content[St]); --St, ++Len) {
}
if (Len > 0)
St++; // Shift to the first valid character.
return Content.substr(St, Len);
}
CodeCompleteResult
codeComplete(PathRef FileName, const tooling::CompileCommand &Command,
const PreambleData *Preamble, llvm::StringRef Contents,
Position Pos, llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS,
std::shared_ptr<PCHContainerOperations> PCHs,
CodeCompleteOptions Opts, SpeculativeFuzzyFind *SpecFuzzyFind) {
return CodeCompleteFlow(FileName,
Preamble ? Preamble->Includes : IncludeStructure(),
SpecFuzzyFind, Opts)
.run({FileName, Command, Preamble, Contents, Pos, VFS, PCHs});
}
SignatureHelp signatureHelp(PathRef FileName,
const tooling::CompileCommand &Command,
const PreambleData *Preamble,
llvm::StringRef Contents, Position Pos,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS,
std::shared_ptr<PCHContainerOperations> PCHs,
const SymbolIndex *Index) {
SignatureHelp Result;
clang::CodeCompleteOptions Options;
Options.IncludeGlobals = false;
Options.IncludeMacros = false;
Options.IncludeCodePatterns = false;
Options.IncludeBriefComments = false;
IncludeStructure PreambleInclusions; // Unused for signatureHelp
semaCodeComplete(
llvm::make_unique<SignatureHelpCollector>(Options, Index, Result),
Options,
{FileName, Command, Preamble, Contents, Pos, std::move(VFS),
std::move(PCHs)});
return Result;
}
bool isIndexedForCodeCompletion(const NamedDecl &ND, ASTContext &ASTCtx) {
auto InTopLevelScope = [](const NamedDecl &ND) {
switch (ND.getDeclContext()->getDeclKind()) {
case Decl::TranslationUnit:
case Decl::Namespace:
case Decl::LinkageSpec:
return true;
default:
break;
};
return false;
};
if (InTopLevelScope(ND))
return true;
if (const auto *EnumDecl = dyn_cast<clang::EnumDecl>(ND.getDeclContext()))
return InTopLevelScope(*EnumDecl) && !EnumDecl->isScoped();
return false;
}
CompletionItem CodeCompletion::render(const CodeCompleteOptions &Opts) const {
CompletionItem LSP;
const auto *InsertInclude = Includes.empty() ? nullptr : &Includes[0];
LSP.label = ((InsertInclude && InsertInclude->Insertion)
? Opts.IncludeIndicator.Insert
: Opts.IncludeIndicator.NoInsert) +
(Opts.ShowOrigins ? "[" + llvm::to_string(Origin) + "]" : "") +
RequiredQualifier + Name + Signature;
LSP.kind = Kind;
LSP.detail = BundleSize > 1 ? llvm::formatv("[{0} overloads]", BundleSize)
: ReturnType;
LSP.deprecated = Deprecated;
if (InsertInclude)
LSP.detail += "\n" + InsertInclude->Header;
LSP.documentation = Documentation;
LSP.sortText = sortText(Score.Total, Name);
LSP.filterText = Name;
LSP.textEdit = {CompletionTokenRange, RequiredQualifier + Name};
// Merge continuous additionalTextEdits into main edit. The main motivation
// behind this is to help LSP clients, it seems most of them are confused when
// they are provided with additionalTextEdits that are consecutive to main
// edit.
// Note that we store additional text edits from back to front in a line. That
// is mainly to help LSP clients again, so that changes do not effect each
// other.
for (const auto &FixIt : FixIts) {
if (IsRangeConsecutive(FixIt.range, LSP.textEdit->range)) {
LSP.textEdit->newText = FixIt.newText + LSP.textEdit->newText;
LSP.textEdit->range.start = FixIt.range.start;
} else {
LSP.additionalTextEdits.push_back(FixIt);
}
}
if (Opts.EnableSnippets)
LSP.textEdit->newText += SnippetSuffix;
// FIXME(kadircet): Do not even fill insertText after making sure textEdit is
// compatible with most of the editors.
LSP.insertText = LSP.textEdit->newText;
LSP.insertTextFormat = Opts.EnableSnippets ? InsertTextFormat::Snippet
: InsertTextFormat::PlainText;
if (InsertInclude && InsertInclude->Insertion)
LSP.additionalTextEdits.push_back(*InsertInclude->Insertion);
return LSP;
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const CodeCompletion &C) {
// For now just lean on CompletionItem.
return OS << C.render(CodeCompleteOptions());
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const CodeCompleteResult &R) {
OS << "CodeCompleteResult: " << R.Completions.size() << (R.HasMore ? "+" : "")
<< " (" << getCompletionKindString(R.Context) << ")"
<< " items:\n";
for (const auto &C : R.Completions)
OS << C << "\n";
return OS;
}
} // namespace clangd
} // namespace clang