llvm-project/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp

379 lines
15 KiB
C++

//===- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect -*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the RegBankSelect class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#define DEBUG_TYPE "regbankselect"
using namespace llvm;
char RegBankSelect::ID = 0;
INITIALIZE_PASS(RegBankSelect, "regbankselect",
"Assign register bank of generic virtual registers",
false, false);
RegBankSelect::RegBankSelect()
: MachineFunctionPass(ID), RBI(nullptr), MRI(nullptr) {
initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
}
void RegBankSelect::init(MachineFunction &MF) {
RBI = MF.getSubtarget().getRegBankInfo();
assert(RBI && "Cannot work without RegisterBankInfo");
MRI = &MF.getRegInfo();
TRI = MF.getSubtarget().getRegisterInfo();
MIRBuilder.setMF(MF);
}
bool RegBankSelect::assignmentMatch(
unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping) const {
// Each part of a break down needs to end up in a different register.
// In other word, Reg assignement does not match.
if (ValMapping.BreakDown.size() > 1)
return false;
const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
DEBUG(dbgs() << "Does assignment already match: ";
if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
dbgs() << " against ";
assert(DesiredRegBrank && "The mapping must be valid");
dbgs() << *DesiredRegBrank << '\n';);
return CurRegBank == DesiredRegBrank;
}
unsigned
RegBankSelect::repairReg(unsigned Reg,
const RegisterBankInfo::ValueMapping &ValMapping,
MachineInstr &DefUseMI, bool IsDef) {
assert(ValMapping.BreakDown.size() == 1 &&
"Support for complex break down not supported yet");
const RegisterBankInfo::PartialMapping &PartialMap = ValMapping.BreakDown[0];
assert(PartialMap.Length ==
(TargetRegisterInfo::isPhysicalRegister(Reg)
? TRI->getMinimalPhysRegClass(Reg)->getSize() * 8
: MRI->getSize(Reg)) &&
"Repairing other than copy not implemented yet");
// If the MIRBuilder is configured to insert somewhere else than
// DefUseMI, we may not use this function like was it first
// internded (local repairing), so make sure we pay attention before
// we remove the assert.
// In particular, it is likely that we will have to properly save
// the insertion point of the MIRBuilder and restore it at the end
// of this method.
assert(&DefUseMI == &(*MIRBuilder.getInsertPt()) &&
"Need to save and restore the insertion point");
// For use, we will add a copy just in front of the instruction.
// For def, we will add a copy just after the instruction.
// In either case, the insertion point must be valid. In particular,
// make sure we do not insert in the middle of terminators or phis.
bool Before = !IsDef;
setSafeInsertionPoint(DefUseMI, Before);
if (DefUseMI.isTerminator() && Before) {
// Check that the insertion point does not happen
// before the definition of Reg.
// This can happen if Reg is defined by a terminator
// and used by another one.
// In that case the repairing code is actually more involved
// because we have to split the block.
// Assert that this is not a physical register.
// The target independent code does not insert physical registers
// on terminators, so if we end up in this situation, this is
// likely a bug in the target.
assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
"Check for physical register not implemented");
const MachineInstr *RegDef = MRI->getVRegDef(Reg);
assert(RegDef && "Reg has more than one definition?");
// Assert to make the code more readable; Reg is used by DefUseMI, i.e.,
// (Before == !IsDef == true), so DefUseMI != RegDef otherwise we have
// a use (that is not a PHI) that is not dominated by its def.
assert(&DefUseMI != RegDef && "Def does not dominate all of its uses");
if (RegDef->isTerminator() && RegDef->getParent() == DefUseMI.getParent())
// By construction, the repairing should happen between two
// terminators: RegDef and DefUseMI.
// This is not implemented.
report_fatal_error("Repairing between terminators not implemented yet");
}
// Create a new temporary to hold the repaired value.
unsigned NewReg = MRI->createGenericVirtualRegister(PartialMap.Length);
// Set the registers for the source and destination of the copy.
unsigned Src = Reg, Dst = NewReg;
// If this is a definition that we repair, the copy will be
// inverted.
if (IsDef)
std::swap(Src, Dst);
(void)MIRBuilder.buildInstr(TargetOpcode::COPY, Dst, Src);
DEBUG(dbgs() << "Repair: " << PrintReg(Reg) << " with: "
<< PrintReg(NewReg) << '\n');
// Restore the insertion point of the MIRBuilder.
MIRBuilder.setInstr(DefUseMI, Before);
return NewReg;
}
void RegBankSelect::setSafeInsertionPoint(MachineInstr &InsertPt, bool Before) {
// Check that we are not looking to insert before a phi.
// Indeed, we would need more information on what to do.
// By default that should be all the predecessors, but this is
// probably not what we want in general.
assert((!Before || !InsertPt.isPHI()) &&
"Insertion before phis not implemented");
// The same kind of observation hold for terminators if we try to
// insert after them.
assert((Before || !InsertPt.isTerminator()) &&
"Insertion after terminatos not implemented");
if (InsertPt.isPHI()) {
assert(!Before && "Not supported!!");
MachineBasicBlock *MBB = InsertPt.getParent();
assert(MBB && "Insertion point is not in a basic block");
MachineBasicBlock::iterator FirstNonPHIPt = MBB->getFirstNonPHI();
if (FirstNonPHIPt == MBB->end()) {
// If there is not any non-phi instruction, insert at the end of MBB.
MIRBuilder.setMBB(*MBB, /*Beginning*/ false);
return;
}
// The insertion point before the first non-phi instruction.
MIRBuilder.setInstr(*FirstNonPHIPt, /*Before*/ true);
return;
}
if (InsertPt.isTerminator()) {
MachineBasicBlock *MBB = InsertPt.getParent();
assert(MBB && "Insertion point is not in a basic block");
MIRBuilder.setInstr(*MBB->getFirstTerminator(), /*Before*/ true);
return;
}
MIRBuilder.setInstr(InsertPt, /*Before*/ Before);
}
void RegBankSelect::assignInstr(MachineInstr &MI) {
DEBUG(dbgs() << "Assign: " << MI);
const RegisterBankInfo::InstructionMapping DefaultMapping =
RBI->getInstrMapping(MI);
// Make sure the mapping is valid for MI.
assert(DefaultMapping.verify(MI) && "Invalid instruction mapping");
DEBUG(dbgs() << "Mapping: " << DefaultMapping << '\n');
// Set the insertion point before MI.
// This is where we are going to insert the repairing code if any.
MIRBuilder.setInstr(MI, /*Before*/ true);
// For now, do not look for alternative mappings.
// Alternative mapping may require to rewrite MI and we do not support
// that yet.
// Walk the operands and assign then to the chosen mapping, possibly with
// the insertion of repair code for uses.
for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
++OpIdx) {
MachineOperand &MO = MI.getOperand(OpIdx);
// Nothing to be done for non-register operands.
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
const RegisterBankInfo::ValueMapping &ValMapping =
DefaultMapping.getOperandMapping(OpIdx);
// If Reg is already properly mapped, move on.
if (assignmentMatch(Reg, ValMapping))
continue;
// For uses, we may need to create a new temporary.
// Indeed, if Reg is already assigned a register bank, at this
// point, we know it is different from the one defined by the
// chosen mapping, we need to adjust for that.
// For definitions, changing the register bank will affect all
// its uses, and in particular the ones we already visited.
// Although this is correct, since with the RPO traversal of the
// basic blocks the only uses that we already visisted for this
// definition are PHIs (i.e., copies), this may not be the best
// solution according to the cost model.
// Therefore, create a new temporary for Reg.
assert(ValMapping.BreakDown.size() == 1 &&
"Support for complex break down not supported yet");
if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
MRI->getRegClassOrRegBank(Reg)) {
if (!MO.isDef() && MI.isPHI()) {
// Phis are already copies, so there is nothing to repair.
// Note: This will not hold when we support break downs with
// more than one segment.
DEBUG(dbgs() << "Skip PHI use\n");
continue;
}
// If MO is a definition, since repairing after a terminator is
// painful, do not repair. Indeed, this is probably not worse
// saving the move in the PHIs that will get reassigned.
if (!MO.isDef() || !MI.isTerminator())
Reg = repairReg(Reg, ValMapping, MI, MO.isDef());
}
// If we end up here, MO should be free of encoding constraints,
// i.e., we do not have to constrained the RegBank of Reg to
// the requirement of the operands.
// If that is not the case, this means the code was broken before
// hands because we should have found that the assignment match.
// This will not hold when we will consider alternative mappings.
DEBUG(dbgs() << "Assign: " << *ValMapping.BreakDown[0].RegBank << " to "
<< PrintReg(Reg) << '\n');
MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
MO.setReg(Reg);
}
DEBUG(dbgs() << "Assigned: " << MI);
}
bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
init(MF);
// Walk the function and assign register banks to all operands.
// Use a RPOT to make sure all registers are assigned before we choose
// the best mapping of the current instruction.
ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
for (MachineBasicBlock *MBB : RPOT)
for (MachineInstr &MI : *MBB)
assignInstr(MI);
return false;
}
//------------------------------------------------------------------------------
// Helper Class Implementation
//------------------------------------------------------------------------------
RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
: LocalCost(0), NonLocalCost(0), LocalFreq(LocalFreq.getFrequency()) {}
bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
// Check if this overflows.
if (LocalCost + Cost < LocalCost) {
saturate();
return true;
}
LocalCost += Cost;
return isSaturated();
}
bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
// Check if this overflows.
if (NonLocalCost + Cost < NonLocalCost) {
saturate();
return true;
}
NonLocalCost += Cost;
return isSaturated();
}
bool RegBankSelect::MappingCost::isSaturated() const {
return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
LocalFreq == UINT64_MAX;
}
void RegBankSelect::MappingCost::saturate() {
*this = ImpossibleCost();
--LocalCost;
}
RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
}
bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
// Sort out the easy cases.
if (*this == Cost)
return false;
// If one is impossible to realize the other is cheaper unless it is
// impossible as well.
if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
// If one is saturated the other is cheaper, unless it is saturated
// as well.
if (isSaturated() || Cost.isSaturated())
return isSaturated() < Cost.isSaturated();
// At this point we know both costs hold sensible values.
// If both values have a different base frequency, there is no much
// we can do but to scale everything.
// However, if they have the same base frequency we can avoid making
// complicated computation.
uint64_t ThisLocalAdjust;
uint64_t OtherLocalAdjust;
if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
// At this point, we know the local costs are comparable.
// Do the case that do not involve potential overflow first.
if (NonLocalCost == Cost.NonLocalCost)
// Since the non-local costs do not discriminate on the result,
// just compare the local costs.
return LocalCost < Cost.LocalCost;
// The base costs are comparable so we may only keep the relative
// value to increase our chances of avoiding overflows.
ThisLocalAdjust = 0;
OtherLocalAdjust = 0;
if (LocalCost < Cost.LocalCost)
OtherLocalAdjust = Cost.LocalCost - LocalCost;
else
ThisLocalAdjust = LocalCost - Cost.LocalCost;
} else {
ThisLocalAdjust = LocalCost;
OtherLocalAdjust = Cost.LocalCost;
}
// The non-local costs are comparable, just keep the relative value.
uint64_t ThisNonLocalAdjust = 0;
uint64_t OtherNonLocalAdjust = 0;
if (NonLocalCost < Cost.NonLocalCost)
OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
else
ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
// Scale everything to make them comparable.
uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
// Check for overflow on that operation.
bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
ThisScaledCost < LocalFreq);
uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
// Check for overflow on the last operation.
bool OtherOverflows =
OtherLocalAdjust &&
(OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
// Add the non-local costs.
ThisOverflows |= ThisNonLocalAdjust &&
ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
ThisScaledCost += ThisNonLocalAdjust;
OtherOverflows |= OtherNonLocalAdjust &&
OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
OtherScaledCost += OtherNonLocalAdjust;
// If both overflows, we cannot compare without additional
// precision, e.g., APInt. Just give up on that case.
if (ThisOverflows && OtherOverflows)
return false;
// If one overflows but not the other, we can still compare.
if (ThisOverflows || OtherOverflows)
return ThisOverflows < OtherOverflows;
// Otherwise, just compare the values.
return ThisScaledCost < OtherScaledCost;
}
bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
LocalFreq == Cost.LocalFreq;
}