forked from OSchip/llvm-project
829 lines
29 KiB
C++
829 lines
29 KiB
C++
//===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements the lowering of LLVM calls to machine code calls for
|
|
/// GlobalISel.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUCallLowering.h"
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUISelLowering.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "SIISelLowering.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/Support/LowLevelTypeImpl.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
struct OutgoingValueHandler : public CallLowering::ValueHandler {
|
|
OutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
|
|
MachineInstrBuilder MIB, CCAssignFn *AssignFn)
|
|
: ValueHandler(B, MRI, AssignFn), MIB(MIB) {}
|
|
|
|
MachineInstrBuilder MIB;
|
|
|
|
bool isIncomingArgumentHandler() const override { return false; }
|
|
|
|
Register getStackAddress(uint64_t Size, int64_t Offset,
|
|
MachinePointerInfo &MPO) override {
|
|
llvm_unreachable("not implemented");
|
|
}
|
|
|
|
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
|
|
MachinePointerInfo &MPO, CCValAssign &VA) override {
|
|
llvm_unreachable("not implemented");
|
|
}
|
|
|
|
void assignValueToReg(Register ValVReg, Register PhysReg,
|
|
CCValAssign &VA) override {
|
|
Register ExtReg;
|
|
if (VA.getLocVT().getSizeInBits() < 32) {
|
|
// 16-bit types are reported as legal for 32-bit registers. We need to
|
|
// extend and do a 32-bit copy to avoid the verifier complaining about it.
|
|
ExtReg = MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
|
|
} else
|
|
ExtReg = extendRegister(ValVReg, VA);
|
|
|
|
// If this is a scalar return, insert a readfirstlane just in case the value
|
|
// ends up in a VGPR.
|
|
// FIXME: Assert this is a shader return.
|
|
const SIRegisterInfo *TRI
|
|
= static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
|
|
if (TRI->isSGPRReg(MRI, PhysReg)) {
|
|
auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
|
|
{MRI.getType(ExtReg)}, false)
|
|
.addReg(ExtReg);
|
|
ExtReg = ToSGPR.getReg(0);
|
|
}
|
|
|
|
MIRBuilder.buildCopy(PhysReg, ExtReg);
|
|
MIB.addUse(PhysReg, RegState::Implicit);
|
|
}
|
|
|
|
bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
const CallLowering::ArgInfo &Info,
|
|
ISD::ArgFlagsTy Flags,
|
|
CCState &State) override {
|
|
return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
|
|
}
|
|
};
|
|
|
|
struct IncomingArgHandler : public CallLowering::ValueHandler {
|
|
uint64_t StackUsed = 0;
|
|
|
|
IncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
|
|
CCAssignFn *AssignFn)
|
|
: ValueHandler(B, MRI, AssignFn) {}
|
|
|
|
Register getStackAddress(uint64_t Size, int64_t Offset,
|
|
MachinePointerInfo &MPO) override {
|
|
auto &MFI = MIRBuilder.getMF().getFrameInfo();
|
|
int FI = MFI.CreateFixedObject(Size, Offset, true);
|
|
MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
|
|
auto AddrReg = MIRBuilder.buildFrameIndex(
|
|
LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
|
|
StackUsed = std::max(StackUsed, Size + Offset);
|
|
return AddrReg.getReg(0);
|
|
}
|
|
|
|
void assignValueToReg(Register ValVReg, Register PhysReg,
|
|
CCValAssign &VA) override {
|
|
markPhysRegUsed(PhysReg);
|
|
|
|
if (VA.getLocVT().getSizeInBits() < 32) {
|
|
// 16-bit types are reported as legal for 32-bit registers. We need to do
|
|
// a 32-bit copy, and truncate to avoid the verifier complaining about it.
|
|
auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
|
|
MIRBuilder.buildTrunc(ValVReg, Copy);
|
|
return;
|
|
}
|
|
|
|
switch (VA.getLocInfo()) {
|
|
case CCValAssign::LocInfo::SExt:
|
|
case CCValAssign::LocInfo::ZExt:
|
|
case CCValAssign::LocInfo::AExt: {
|
|
auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
|
|
MIRBuilder.buildTrunc(ValVReg, Copy);
|
|
break;
|
|
}
|
|
default:
|
|
MIRBuilder.buildCopy(ValVReg, PhysReg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
|
|
MachinePointerInfo &MPO, CCValAssign &VA) override {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
|
|
// FIXME: Get alignment
|
|
auto MMO = MF.getMachineMemOperand(
|
|
MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size,
|
|
inferAlignFromPtrInfo(MF, MPO));
|
|
MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
|
|
}
|
|
|
|
/// How the physical register gets marked varies between formal
|
|
/// parameters (it's a basic-block live-in), and a call instruction
|
|
/// (it's an implicit-def of the BL).
|
|
virtual void markPhysRegUsed(unsigned PhysReg) = 0;
|
|
|
|
// FIXME: What is the point of this being a callback?
|
|
bool isIncomingArgumentHandler() const override { return true; }
|
|
};
|
|
|
|
struct FormalArgHandler : public IncomingArgHandler {
|
|
FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
|
|
CCAssignFn *AssignFn)
|
|
: IncomingArgHandler(B, MRI, AssignFn) {}
|
|
|
|
void markPhysRegUsed(unsigned PhysReg) override {
|
|
MIRBuilder.getMBB().addLiveIn(PhysReg);
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
|
|
: CallLowering(&TLI) {
|
|
}
|
|
|
|
// FIXME: Compatability shim
|
|
static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
|
|
switch (MIOpc) {
|
|
case TargetOpcode::G_SEXT:
|
|
return ISD::SIGN_EXTEND;
|
|
case TargetOpcode::G_ZEXT:
|
|
return ISD::ZERO_EXTEND;
|
|
case TargetOpcode::G_ANYEXT:
|
|
return ISD::ANY_EXTEND;
|
|
default:
|
|
llvm_unreachable("not an extend opcode");
|
|
}
|
|
}
|
|
|
|
void AMDGPUCallLowering::splitToValueTypes(
|
|
MachineIRBuilder &B,
|
|
const ArgInfo &OrigArg, unsigned OrigArgIdx,
|
|
SmallVectorImpl<ArgInfo> &SplitArgs,
|
|
const DataLayout &DL, CallingConv::ID CallConv,
|
|
SplitArgTy PerformArgSplit) const {
|
|
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
|
|
LLVMContext &Ctx = OrigArg.Ty->getContext();
|
|
|
|
if (OrigArg.Ty->isVoidTy())
|
|
return;
|
|
|
|
SmallVector<EVT, 4> SplitVTs;
|
|
ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
|
|
|
|
assert(OrigArg.Regs.size() == SplitVTs.size());
|
|
|
|
int SplitIdx = 0;
|
|
for (EVT VT : SplitVTs) {
|
|
Register Reg = OrigArg.Regs[SplitIdx];
|
|
Type *Ty = VT.getTypeForEVT(Ctx);
|
|
LLT LLTy = getLLTForType(*Ty, DL);
|
|
|
|
if (OrigArgIdx == AttributeList::ReturnIndex && VT.isScalarInteger()) {
|
|
unsigned ExtendOp = TargetOpcode::G_ANYEXT;
|
|
if (OrigArg.Flags[0].isSExt()) {
|
|
assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
|
|
ExtendOp = TargetOpcode::G_SEXT;
|
|
} else if (OrigArg.Flags[0].isZExt()) {
|
|
assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
|
|
ExtendOp = TargetOpcode::G_ZEXT;
|
|
}
|
|
|
|
EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
|
|
extOpcodeToISDExtOpcode(ExtendOp));
|
|
if (ExtVT != VT) {
|
|
VT = ExtVT;
|
|
Ty = ExtVT.getTypeForEVT(Ctx);
|
|
LLTy = getLLTForType(*Ty, DL);
|
|
Reg = B.buildInstr(ExtendOp, {LLTy}, {Reg}).getReg(0);
|
|
}
|
|
}
|
|
|
|
unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
|
|
MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
|
|
|
|
if (NumParts == 1) {
|
|
// Fixup EVTs to an MVT.
|
|
//
|
|
// FIXME: This is pretty hacky. Why do we have to split the type
|
|
// legalization logic between here and handleAssignments?
|
|
if (OrigArgIdx != AttributeList::ReturnIndex && VT != RegVT) {
|
|
assert(VT.getSizeInBits() < 32 &&
|
|
"unexpected illegal type");
|
|
Ty = Type::getInt32Ty(Ctx);
|
|
Register OrigReg = Reg;
|
|
Reg = B.getMRI()->createGenericVirtualRegister(LLT::scalar(32));
|
|
B.buildTrunc(OrigReg, Reg);
|
|
}
|
|
|
|
// No splitting to do, but we want to replace the original type (e.g. [1 x
|
|
// double] -> double).
|
|
SplitArgs.emplace_back(Reg, Ty, OrigArg.Flags, OrigArg.IsFixed);
|
|
|
|
++SplitIdx;
|
|
continue;
|
|
}
|
|
|
|
SmallVector<Register, 8> SplitRegs;
|
|
Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx);
|
|
LLT PartLLT = getLLTForType(*PartTy, DL);
|
|
MachineRegisterInfo &MRI = *B.getMRI();
|
|
|
|
// FIXME: Should we be reporting all of the part registers for a single
|
|
// argument, and let handleAssignments take care of the repacking?
|
|
for (unsigned i = 0; i < NumParts; ++i) {
|
|
Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
|
|
SplitRegs.push_back(PartReg);
|
|
SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
|
|
}
|
|
|
|
PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx);
|
|
|
|
++SplitIdx;
|
|
}
|
|
}
|
|
|
|
// Get the appropriate type to make \p OrigTy \p Factor times bigger.
|
|
static LLT getMultipleType(LLT OrigTy, int Factor) {
|
|
if (OrigTy.isVector()) {
|
|
return LLT::vector(OrigTy.getNumElements() * Factor,
|
|
OrigTy.getElementType());
|
|
}
|
|
|
|
return LLT::scalar(OrigTy.getSizeInBits() * Factor);
|
|
}
|
|
|
|
// TODO: Move to generic code
|
|
static void unpackRegsToOrigType(MachineIRBuilder &B,
|
|
ArrayRef<Register> DstRegs,
|
|
Register SrcReg,
|
|
const CallLowering::ArgInfo &Info,
|
|
LLT SrcTy,
|
|
LLT PartTy) {
|
|
assert(DstRegs.size() > 1 && "Nothing to unpack");
|
|
|
|
const unsigned SrcSize = SrcTy.getSizeInBits();
|
|
const unsigned PartSize = PartTy.getSizeInBits();
|
|
|
|
if (SrcTy.isVector() && !PartTy.isVector() &&
|
|
PartSize > SrcTy.getElementType().getSizeInBits()) {
|
|
// Vector was scalarized, and the elements extended.
|
|
auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(),
|
|
SrcReg);
|
|
for (int i = 0, e = DstRegs.size(); i != e; ++i)
|
|
B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
|
|
return;
|
|
}
|
|
|
|
if (SrcSize % PartSize == 0) {
|
|
B.buildUnmerge(DstRegs, SrcReg);
|
|
return;
|
|
}
|
|
|
|
const int NumRoundedParts = (SrcSize + PartSize - 1) / PartSize;
|
|
|
|
LLT BigTy = getMultipleType(PartTy, NumRoundedParts);
|
|
auto ImpDef = B.buildUndef(BigTy);
|
|
|
|
auto Big = B.buildInsert(BigTy, ImpDef.getReg(0), SrcReg, 0).getReg(0);
|
|
|
|
int64_t Offset = 0;
|
|
for (unsigned i = 0, e = DstRegs.size(); i != e; ++i, Offset += PartSize)
|
|
B.buildExtract(DstRegs[i], Big, Offset);
|
|
}
|
|
|
|
/// Lower the return value for the already existing \p Ret. This assumes that
|
|
/// \p B's insertion point is correct.
|
|
bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
|
|
const Value *Val, ArrayRef<Register> VRegs,
|
|
MachineInstrBuilder &Ret) const {
|
|
if (!Val)
|
|
return true;
|
|
|
|
auto &MF = B.getMF();
|
|
const auto &F = MF.getFunction();
|
|
const DataLayout &DL = MF.getDataLayout();
|
|
MachineRegisterInfo *MRI = B.getMRI();
|
|
|
|
CallingConv::ID CC = F.getCallingConv();
|
|
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
|
|
|
|
ArgInfo OrigRetInfo(VRegs, Val->getType());
|
|
setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
|
|
SmallVector<ArgInfo, 4> SplitRetInfos;
|
|
|
|
splitToValueTypes(
|
|
B, OrigRetInfo, AttributeList::ReturnIndex, SplitRetInfos, DL, CC,
|
|
[&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
|
|
int VTSplitIdx) {
|
|
unpackRegsToOrigType(B, Regs, SrcReg,
|
|
SplitRetInfos[VTSplitIdx],
|
|
LLTy, PartLLT);
|
|
});
|
|
|
|
CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
|
|
OutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
|
|
return handleAssignments(B, SplitRetInfos, RetHandler);
|
|
}
|
|
|
|
bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B,
|
|
const Value *Val,
|
|
ArrayRef<Register> VRegs) const {
|
|
|
|
MachineFunction &MF = B.getMF();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
MFI->setIfReturnsVoid(!Val);
|
|
|
|
assert(!Val == VRegs.empty() && "Return value without a vreg");
|
|
|
|
CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
|
|
const bool IsShader = AMDGPU::isShader(CC);
|
|
const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) ||
|
|
AMDGPU::isKernel(CC);
|
|
if (IsWaveEnd) {
|
|
B.buildInstr(AMDGPU::S_ENDPGM)
|
|
.addImm(0);
|
|
return true;
|
|
}
|
|
|
|
auto const &ST = MF.getSubtarget<GCNSubtarget>();
|
|
|
|
unsigned ReturnOpc =
|
|
IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
|
|
|
|
auto Ret = B.buildInstrNoInsert(ReturnOpc);
|
|
Register ReturnAddrVReg;
|
|
if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
|
|
ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
|
|
Ret.addUse(ReturnAddrVReg);
|
|
}
|
|
|
|
if (!lowerReturnVal(B, Val, VRegs, Ret))
|
|
return false;
|
|
|
|
if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
|
|
&AMDGPU::SGPR_64RegClass);
|
|
B.buildCopy(ReturnAddrVReg, LiveInReturn);
|
|
}
|
|
|
|
// TODO: Handle CalleeSavedRegsViaCopy.
|
|
|
|
B.insertInstr(Ret);
|
|
return true;
|
|
}
|
|
|
|
Register AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &B,
|
|
Type *ParamTy,
|
|
uint64_t Offset) const {
|
|
|
|
MachineFunction &MF = B.getMF();
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const Function &F = MF.getFunction();
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
|
|
LLT PtrType = getLLTForType(*PtrTy, DL);
|
|
Register KernArgSegmentPtr =
|
|
MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
|
|
Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
|
|
|
|
auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
|
|
|
|
return B.buildPtrAdd(PtrType, KernArgSegmentVReg, OffsetReg).getReg(0);
|
|
}
|
|
|
|
void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
|
|
uint64_t Offset, Align Alignment,
|
|
Register DstReg) const {
|
|
MachineFunction &MF = B.getMF();
|
|
const Function &F = MF.getFunction();
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
|
|
unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
|
|
Register PtrReg = lowerParameterPtr(B, ParamTy, Offset);
|
|
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
PtrInfo,
|
|
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant,
|
|
TypeSize, Alignment);
|
|
|
|
B.buildLoad(DstReg, PtrReg, *MMO);
|
|
}
|
|
|
|
// Allocate special inputs passed in user SGPRs.
|
|
static void allocateHSAUserSGPRs(CCState &CCInfo,
|
|
MachineIRBuilder &B,
|
|
MachineFunction &MF,
|
|
const SIRegisterInfo &TRI,
|
|
SIMachineFunctionInfo &Info) {
|
|
// FIXME: How should these inputs interact with inreg / custom SGPR inputs?
|
|
if (Info.hasPrivateSegmentBuffer()) {
|
|
Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
|
|
MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
|
|
CCInfo.AllocateReg(PrivateSegmentBufferReg);
|
|
}
|
|
|
|
if (Info.hasDispatchPtr()) {
|
|
Register DispatchPtrReg = Info.addDispatchPtr(TRI);
|
|
MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(DispatchPtrReg);
|
|
}
|
|
|
|
if (Info.hasQueuePtr()) {
|
|
Register QueuePtrReg = Info.addQueuePtr(TRI);
|
|
MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(QueuePtrReg);
|
|
}
|
|
|
|
if (Info.hasKernargSegmentPtr()) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
|
|
const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
|
|
Register VReg = MRI.createGenericVirtualRegister(P4);
|
|
MRI.addLiveIn(InputPtrReg, VReg);
|
|
B.getMBB().addLiveIn(InputPtrReg);
|
|
B.buildCopy(VReg, InputPtrReg);
|
|
CCInfo.AllocateReg(InputPtrReg);
|
|
}
|
|
|
|
if (Info.hasDispatchID()) {
|
|
Register DispatchIDReg = Info.addDispatchID(TRI);
|
|
MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(DispatchIDReg);
|
|
}
|
|
|
|
if (Info.hasFlatScratchInit()) {
|
|
Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
|
|
MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(FlatScratchInitReg);
|
|
}
|
|
|
|
// TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
|
|
// these from the dispatch pointer.
|
|
}
|
|
|
|
bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
|
|
MachineIRBuilder &B, const Function &F,
|
|
ArrayRef<ArrayRef<Register>> VRegs) const {
|
|
MachineFunction &MF = B.getMF();
|
|
const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
|
|
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
|
|
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
|
|
|
|
allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
|
|
|
|
unsigned i = 0;
|
|
const Align KernArgBaseAlign(16);
|
|
const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
|
|
uint64_t ExplicitArgOffset = 0;
|
|
|
|
// TODO: Align down to dword alignment and extract bits for extending loads.
|
|
for (auto &Arg : F.args()) {
|
|
Type *ArgTy = Arg.getType();
|
|
unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
|
|
if (AllocSize == 0)
|
|
continue;
|
|
|
|
Align ABIAlign = DL.getABITypeAlign(ArgTy);
|
|
|
|
uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
|
|
ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
|
|
|
|
ArrayRef<Register> OrigArgRegs = VRegs[i];
|
|
Register ArgReg =
|
|
OrigArgRegs.size() == 1
|
|
? OrigArgRegs[0]
|
|
: MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
|
|
|
|
Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
|
|
lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
|
|
if (OrigArgRegs.size() > 1)
|
|
unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
|
|
++i;
|
|
}
|
|
|
|
TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
|
|
TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
|
|
return true;
|
|
}
|
|
|
|
/// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
|
|
static MachineInstrBuilder mergeVectorRegsToResultRegs(
|
|
MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) {
|
|
MachineRegisterInfo &MRI = *B.getMRI();
|
|
LLT LLTy = MRI.getType(DstRegs[0]);
|
|
LLT PartLLT = MRI.getType(SrcRegs[0]);
|
|
|
|
// Deal with v3s16 split into v2s16
|
|
LLT LCMTy = getLCMType(LLTy, PartLLT);
|
|
if (LCMTy == LLTy) {
|
|
// Common case where no padding is needed.
|
|
assert(DstRegs.size() == 1);
|
|
return B.buildConcatVectors(DstRegs[0], SrcRegs);
|
|
}
|
|
|
|
const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
|
|
Register Undef = B.buildUndef(PartLLT).getReg(0);
|
|
|
|
// Build vector of undefs.
|
|
SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
|
|
|
|
// Replace the first sources with the real registers.
|
|
std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
|
|
|
|
auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
|
|
int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
|
|
|
|
SmallVector<Register, 8> PadDstRegs(NumDst);
|
|
std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
|
|
|
|
// Create the excess dead defs for the unmerge.
|
|
for (int I = DstRegs.size(); I != NumDst; ++I)
|
|
PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
|
|
|
|
return B.buildUnmerge(PadDstRegs, Widened);
|
|
}
|
|
|
|
// TODO: Move this to generic code
|
|
static void packSplitRegsToOrigType(MachineIRBuilder &B,
|
|
ArrayRef<Register> OrigRegs,
|
|
ArrayRef<Register> Regs,
|
|
LLT LLTy,
|
|
LLT PartLLT) {
|
|
MachineRegisterInfo &MRI = *B.getMRI();
|
|
|
|
if (!LLTy.isVector() && !PartLLT.isVector()) {
|
|
assert(OrigRegs.size() == 1);
|
|
LLT OrigTy = MRI.getType(OrigRegs[0]);
|
|
|
|
unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
|
|
if (SrcSize == OrigTy.getSizeInBits())
|
|
B.buildMerge(OrigRegs[0], Regs);
|
|
else {
|
|
auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
|
|
B.buildTrunc(OrigRegs[0], Widened);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (LLTy.isVector() && PartLLT.isVector()) {
|
|
assert(OrigRegs.size() == 1);
|
|
assert(LLTy.getElementType() == PartLLT.getElementType());
|
|
mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
|
|
return;
|
|
}
|
|
|
|
assert(LLTy.isVector() && !PartLLT.isVector());
|
|
|
|
LLT DstEltTy = LLTy.getElementType();
|
|
|
|
// Pointer information was discarded. We'll need to coerce some register types
|
|
// to avoid violating type constraints.
|
|
LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
|
|
|
|
assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
|
|
|
|
if (DstEltTy == PartLLT) {
|
|
// Vector was trivially scalarized.
|
|
|
|
if (RealDstEltTy.isPointer()) {
|
|
for (Register Reg : Regs)
|
|
MRI.setType(Reg, RealDstEltTy);
|
|
}
|
|
|
|
B.buildBuildVector(OrigRegs[0], Regs);
|
|
} else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
|
|
// Deal with vector with 64-bit elements decomposed to 32-bit
|
|
// registers. Need to create intermediate 64-bit elements.
|
|
SmallVector<Register, 8> EltMerges;
|
|
int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
|
|
|
|
assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
|
|
|
|
for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
|
|
auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
|
|
// Fix the type in case this is really a vector of pointers.
|
|
MRI.setType(Merge.getReg(0), RealDstEltTy);
|
|
EltMerges.push_back(Merge.getReg(0));
|
|
Regs = Regs.drop_front(PartsPerElt);
|
|
}
|
|
|
|
B.buildBuildVector(OrigRegs[0], EltMerges);
|
|
} else {
|
|
// Vector was split, and elements promoted to a wider type.
|
|
LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
|
|
auto BV = B.buildBuildVector(BVType, Regs);
|
|
B.buildTrunc(OrigRegs[0], BV);
|
|
}
|
|
}
|
|
|
|
bool AMDGPUCallLowering::lowerFormalArguments(
|
|
MachineIRBuilder &B, const Function &F,
|
|
ArrayRef<ArrayRef<Register>> VRegs) const {
|
|
CallingConv::ID CC = F.getCallingConv();
|
|
|
|
// The infrastructure for normal calling convention lowering is essentially
|
|
// useless for kernels. We want to avoid any kind of legalization or argument
|
|
// splitting.
|
|
if (CC == CallingConv::AMDGPU_KERNEL)
|
|
return lowerFormalArgumentsKernel(B, F, VRegs);
|
|
|
|
const bool IsShader = AMDGPU::isShader(CC);
|
|
const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
|
|
|
|
MachineFunction &MF = B.getMF();
|
|
MachineBasicBlock &MBB = B.getMBB();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
|
|
const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
|
|
|
|
if (!IsEntryFunc) {
|
|
Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
|
|
Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
|
|
&AMDGPU::SGPR_64RegClass);
|
|
MBB.addLiveIn(ReturnAddrReg);
|
|
B.buildCopy(LiveInReturn, ReturnAddrReg);
|
|
}
|
|
|
|
if (Info->hasImplicitBufferPtr()) {
|
|
Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
|
|
MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(ImplicitBufferPtrReg);
|
|
}
|
|
|
|
|
|
SmallVector<ArgInfo, 32> SplitArgs;
|
|
unsigned Idx = 0;
|
|
unsigned PSInputNum = 0;
|
|
|
|
for (auto &Arg : F.args()) {
|
|
if (DL.getTypeStoreSize(Arg.getType()) == 0)
|
|
continue;
|
|
|
|
const bool InReg = Arg.hasAttribute(Attribute::InReg);
|
|
|
|
// SGPR arguments to functions not implemented.
|
|
if (!IsShader && InReg)
|
|
return false;
|
|
|
|
if (Arg.hasAttribute(Attribute::SwiftSelf) ||
|
|
Arg.hasAttribute(Attribute::SwiftError) ||
|
|
Arg.hasAttribute(Attribute::Nest))
|
|
return false;
|
|
|
|
if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
|
|
const bool ArgUsed = !Arg.use_empty();
|
|
bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
|
|
|
|
if (!SkipArg) {
|
|
Info->markPSInputAllocated(PSInputNum);
|
|
if (ArgUsed)
|
|
Info->markPSInputEnabled(PSInputNum);
|
|
}
|
|
|
|
++PSInputNum;
|
|
|
|
if (SkipArg) {
|
|
for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
|
|
B.buildUndef(VRegs[Idx][I]);
|
|
|
|
++Idx;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
ArgInfo OrigArg(VRegs[Idx], Arg.getType());
|
|
const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
|
|
setArgFlags(OrigArg, OrigArgIdx, DL, F);
|
|
|
|
splitToValueTypes(
|
|
B, OrigArg, OrigArgIdx, SplitArgs, DL, CC,
|
|
// FIXME: We should probably be passing multiple registers to
|
|
// handleAssignments to do this
|
|
[&](ArrayRef<Register> Regs, Register DstReg,
|
|
LLT LLTy, LLT PartLLT, int VTSplitIdx) {
|
|
assert(DstReg == VRegs[Idx][VTSplitIdx]);
|
|
packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
|
|
LLTy, PartLLT);
|
|
});
|
|
|
|
++Idx;
|
|
}
|
|
|
|
// At least one interpolation mode must be enabled or else the GPU will
|
|
// hang.
|
|
//
|
|
// Check PSInputAddr instead of PSInputEnable. The idea is that if the user
|
|
// set PSInputAddr, the user wants to enable some bits after the compilation
|
|
// based on run-time states. Since we can't know what the final PSInputEna
|
|
// will look like, so we shouldn't do anything here and the user should take
|
|
// responsibility for the correct programming.
|
|
//
|
|
// Otherwise, the following restrictions apply:
|
|
// - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
|
|
// - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
|
|
// enabled too.
|
|
if (CC == CallingConv::AMDGPU_PS) {
|
|
if ((Info->getPSInputAddr() & 0x7F) == 0 ||
|
|
((Info->getPSInputAddr() & 0xF) == 0 &&
|
|
Info->isPSInputAllocated(11))) {
|
|
CCInfo.AllocateReg(AMDGPU::VGPR0);
|
|
CCInfo.AllocateReg(AMDGPU::VGPR1);
|
|
Info->markPSInputAllocated(0);
|
|
Info->markPSInputEnabled(0);
|
|
}
|
|
|
|
if (Subtarget.isAmdPalOS()) {
|
|
// For isAmdPalOS, the user does not enable some bits after compilation
|
|
// based on run-time states; the register values being generated here are
|
|
// the final ones set in hardware. Therefore we need to apply the
|
|
// workaround to PSInputAddr and PSInputEnable together. (The case where
|
|
// a bit is set in PSInputAddr but not PSInputEnable is where the frontend
|
|
// set up an input arg for a particular interpolation mode, but nothing
|
|
// uses that input arg. Really we should have an earlier pass that removes
|
|
// such an arg.)
|
|
unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
|
|
if ((PsInputBits & 0x7F) == 0 ||
|
|
((PsInputBits & 0xF) == 0 &&
|
|
(PsInputBits >> 11 & 1)))
|
|
Info->markPSInputEnabled(
|
|
countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
|
|
}
|
|
}
|
|
|
|
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
|
|
CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
|
|
|
|
if (!MBB.empty())
|
|
B.setInstr(*MBB.begin());
|
|
|
|
if (!IsEntryFunc) {
|
|
// For the fixed ABI, pass workitem IDs in the last argument register.
|
|
if (AMDGPUTargetMachine::EnableFixedFunctionABI)
|
|
TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
|
|
}
|
|
|
|
FormalArgHandler Handler(B, MRI, AssignFn);
|
|
if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
|
|
return false;
|
|
|
|
if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
|
|
// Special inputs come after user arguments.
|
|
TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
|
|
}
|
|
|
|
// Start adding system SGPRs.
|
|
if (IsEntryFunc) {
|
|
TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
|
|
} else {
|
|
CCInfo.AllocateReg(Info->getScratchRSrcReg());
|
|
TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
|
|
}
|
|
|
|
// Move back to the end of the basic block.
|
|
B.setMBB(MBB);
|
|
|
|
return true;
|
|
}
|