forked from OSchip/llvm-project
4743 lines
178 KiB
C++
4743 lines
178 KiB
C++
//===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Driver/Driver.h"
|
|
#include "InputInfo.h"
|
|
#include "ToolChains/AMDGPU.h"
|
|
#include "ToolChains/AVR.h"
|
|
#include "ToolChains/Ananas.h"
|
|
#include "ToolChains/BareMetal.h"
|
|
#include "ToolChains/Clang.h"
|
|
#include "ToolChains/CloudABI.h"
|
|
#include "ToolChains/Contiki.h"
|
|
#include "ToolChains/CrossWindows.h"
|
|
#include "ToolChains/Cuda.h"
|
|
#include "ToolChains/Darwin.h"
|
|
#include "ToolChains/DragonFly.h"
|
|
#include "ToolChains/FreeBSD.h"
|
|
#include "ToolChains/Fuchsia.h"
|
|
#include "ToolChains/Gnu.h"
|
|
#include "ToolChains/HIP.h"
|
|
#include "ToolChains/Haiku.h"
|
|
#include "ToolChains/Hexagon.h"
|
|
#include "ToolChains/Hurd.h"
|
|
#include "ToolChains/Lanai.h"
|
|
#include "ToolChains/Linux.h"
|
|
#include "ToolChains/MSVC.h"
|
|
#include "ToolChains/MinGW.h"
|
|
#include "ToolChains/Minix.h"
|
|
#include "ToolChains/MipsLinux.h"
|
|
#include "ToolChains/Myriad.h"
|
|
#include "ToolChains/NaCl.h"
|
|
#include "ToolChains/NetBSD.h"
|
|
#include "ToolChains/OpenBSD.h"
|
|
#include "ToolChains/PS4CPU.h"
|
|
#include "ToolChains/RISCVToolchain.h"
|
|
#include "ToolChains/Solaris.h"
|
|
#include "ToolChains/TCE.h"
|
|
#include "ToolChains/WebAssembly.h"
|
|
#include "ToolChains/XCore.h"
|
|
#include "clang/Basic/Version.h"
|
|
#include "clang/Config/config.h"
|
|
#include "clang/Driver/Action.h"
|
|
#include "clang/Driver/Compilation.h"
|
|
#include "clang/Driver/DriverDiagnostic.h"
|
|
#include "clang/Driver/Job.h"
|
|
#include "clang/Driver/Options.h"
|
|
#include "clang/Driver/SanitizerArgs.h"
|
|
#include "clang/Driver/Tool.h"
|
|
#include "clang/Driver/ToolChain.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/Option/Arg.h"
|
|
#include "llvm/Option/ArgList.h"
|
|
#include "llvm/Option/OptSpecifier.h"
|
|
#include "llvm/Option/OptTable.h"
|
|
#include "llvm/Option/Option.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/PrettyStackTrace.h"
|
|
#include "llvm/Support/Process.h"
|
|
#include "llvm/Support/Program.h"
|
|
#include "llvm/Support/StringSaver.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/VirtualFileSystem.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <map>
|
|
#include <memory>
|
|
#include <utility>
|
|
#if LLVM_ON_UNIX
|
|
#include <unistd.h> // getpid
|
|
#include <sysexits.h> // EX_IOERR
|
|
#endif
|
|
|
|
using namespace clang::driver;
|
|
using namespace clang;
|
|
using namespace llvm::opt;
|
|
|
|
Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
|
|
DiagnosticsEngine &Diags,
|
|
IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
|
|
: Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)),
|
|
Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
|
|
LTOMode(LTOK_None), ClangExecutable(ClangExecutable),
|
|
SysRoot(DEFAULT_SYSROOT), DriverTitle("clang LLVM compiler"),
|
|
CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr),
|
|
CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false),
|
|
CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false),
|
|
CCGenDiagnostics(false), TargetTriple(TargetTriple),
|
|
CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
|
|
GenReproducer(false), SuppressMissingInputWarning(false) {
|
|
|
|
// Provide a sane fallback if no VFS is specified.
|
|
if (!this->VFS)
|
|
this->VFS = llvm::vfs::getRealFileSystem();
|
|
|
|
Name = llvm::sys::path::filename(ClangExecutable);
|
|
Dir = llvm::sys::path::parent_path(ClangExecutable);
|
|
InstalledDir = Dir; // Provide a sensible default installed dir.
|
|
|
|
#if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
|
|
SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
|
|
#endif
|
|
#if defined(CLANG_CONFIG_FILE_USER_DIR)
|
|
UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
|
|
#endif
|
|
|
|
// Compute the path to the resource directory.
|
|
StringRef ClangResourceDir(CLANG_RESOURCE_DIR);
|
|
SmallString<128> P(Dir);
|
|
if (ClangResourceDir != "") {
|
|
llvm::sys::path::append(P, ClangResourceDir);
|
|
} else {
|
|
StringRef ClangLibdirSuffix(CLANG_LIBDIR_SUFFIX);
|
|
P = llvm::sys::path::parent_path(Dir);
|
|
llvm::sys::path::append(P, Twine("lib") + ClangLibdirSuffix, "clang",
|
|
CLANG_VERSION_STRING);
|
|
}
|
|
ResourceDir = P.str();
|
|
}
|
|
|
|
void Driver::ParseDriverMode(StringRef ProgramName,
|
|
ArrayRef<const char *> Args) {
|
|
if (ClangNameParts.isEmpty())
|
|
ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName);
|
|
setDriverModeFromOption(ClangNameParts.DriverMode);
|
|
|
|
for (const char *ArgPtr : Args) {
|
|
// Ignore nullptrs, they are the response file's EOL markers.
|
|
if (ArgPtr == nullptr)
|
|
continue;
|
|
const StringRef Arg = ArgPtr;
|
|
setDriverModeFromOption(Arg);
|
|
}
|
|
}
|
|
|
|
void Driver::setDriverModeFromOption(StringRef Opt) {
|
|
const std::string OptName =
|
|
getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
|
|
if (!Opt.startswith(OptName))
|
|
return;
|
|
StringRef Value = Opt.drop_front(OptName.size());
|
|
|
|
if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
|
|
.Case("gcc", GCCMode)
|
|
.Case("g++", GXXMode)
|
|
.Case("cpp", CPPMode)
|
|
.Case("cl", CLMode)
|
|
.Default(None))
|
|
Mode = *M;
|
|
else
|
|
Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
|
|
}
|
|
|
|
InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
|
|
bool IsClCompatMode,
|
|
bool &ContainsError) {
|
|
llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
|
|
ContainsError = false;
|
|
|
|
unsigned IncludedFlagsBitmask;
|
|
unsigned ExcludedFlagsBitmask;
|
|
std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
|
|
getIncludeExcludeOptionFlagMasks(IsClCompatMode);
|
|
|
|
unsigned MissingArgIndex, MissingArgCount;
|
|
InputArgList Args =
|
|
getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
|
|
IncludedFlagsBitmask, ExcludedFlagsBitmask);
|
|
|
|
// Check for missing argument error.
|
|
if (MissingArgCount) {
|
|
Diag(diag::err_drv_missing_argument)
|
|
<< Args.getArgString(MissingArgIndex) << MissingArgCount;
|
|
ContainsError |=
|
|
Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
|
|
SourceLocation()) > DiagnosticsEngine::Warning;
|
|
}
|
|
|
|
// Check for unsupported options.
|
|
for (const Arg *A : Args) {
|
|
if (A->getOption().hasFlag(options::Unsupported)) {
|
|
unsigned DiagID;
|
|
auto ArgString = A->getAsString(Args);
|
|
std::string Nearest;
|
|
if (getOpts().findNearest(
|
|
ArgString, Nearest, IncludedFlagsBitmask,
|
|
ExcludedFlagsBitmask | options::Unsupported) > 1) {
|
|
DiagID = diag::err_drv_unsupported_opt;
|
|
Diag(DiagID) << ArgString;
|
|
} else {
|
|
DiagID = diag::err_drv_unsupported_opt_with_suggestion;
|
|
Diag(DiagID) << ArgString << Nearest;
|
|
}
|
|
ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
|
|
DiagnosticsEngine::Warning;
|
|
continue;
|
|
}
|
|
|
|
// Warn about -mcpu= without an argument.
|
|
if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
|
|
Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
|
|
ContainsError |= Diags.getDiagnosticLevel(
|
|
diag::warn_drv_empty_joined_argument,
|
|
SourceLocation()) > DiagnosticsEngine::Warning;
|
|
}
|
|
}
|
|
|
|
for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
|
|
unsigned DiagID;
|
|
auto ArgString = A->getAsString(Args);
|
|
std::string Nearest;
|
|
if (getOpts().findNearest(
|
|
ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
|
|
DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
|
|
: diag::err_drv_unknown_argument;
|
|
Diags.Report(DiagID) << ArgString;
|
|
} else {
|
|
DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
|
|
: diag::err_drv_unknown_argument_with_suggestion;
|
|
Diags.Report(DiagID) << ArgString << Nearest;
|
|
}
|
|
ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
|
|
DiagnosticsEngine::Warning;
|
|
}
|
|
|
|
return Args;
|
|
}
|
|
|
|
// Determine which compilation mode we are in. We look for options which
|
|
// affect the phase, starting with the earliest phases, and record which
|
|
// option we used to determine the final phase.
|
|
phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
|
|
Arg **FinalPhaseArg) const {
|
|
Arg *PhaseArg = nullptr;
|
|
phases::ID FinalPhase;
|
|
|
|
// -{E,EP,P,M,MM} only run the preprocessor.
|
|
if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
|
|
(PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
|
|
(PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
|
|
(PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
|
|
FinalPhase = phases::Preprocess;
|
|
|
|
// --precompile only runs up to precompilation.
|
|
} else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
|
|
FinalPhase = phases::Precompile;
|
|
|
|
// -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
|
|
} else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
|
|
(PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
|
|
(PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
|
|
(PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
|
|
(PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
|
|
(PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
|
|
(PhaseArg = DAL.getLastArg(options::OPT__analyze,
|
|
options::OPT__analyze_auto)) ||
|
|
(PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
|
|
FinalPhase = phases::Compile;
|
|
|
|
// -S only runs up to the backend.
|
|
} else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
|
|
FinalPhase = phases::Backend;
|
|
|
|
// -c compilation only runs up to the assembler.
|
|
} else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
|
|
FinalPhase = phases::Assemble;
|
|
|
|
// Otherwise do everything.
|
|
} else
|
|
FinalPhase = phases::Link;
|
|
|
|
if (FinalPhaseArg)
|
|
*FinalPhaseArg = PhaseArg;
|
|
|
|
return FinalPhase;
|
|
}
|
|
|
|
static Arg *MakeInputArg(DerivedArgList &Args, OptTable &Opts,
|
|
StringRef Value, bool Claim = true) {
|
|
Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
|
|
Args.getBaseArgs().MakeIndex(Value), Value.data());
|
|
Args.AddSynthesizedArg(A);
|
|
if (Claim)
|
|
A->claim();
|
|
return A;
|
|
}
|
|
|
|
DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
|
|
DerivedArgList *DAL = new DerivedArgList(Args);
|
|
|
|
bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
|
|
bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
|
|
bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
|
|
for (Arg *A : Args) {
|
|
// Unfortunately, we have to parse some forwarding options (-Xassembler,
|
|
// -Xlinker, -Xpreprocessor) because we either integrate their functionality
|
|
// (assembler and preprocessor), or bypass a previous driver ('collect2').
|
|
|
|
// Rewrite linker options, to replace --no-demangle with a custom internal
|
|
// option.
|
|
if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
|
|
A->getOption().matches(options::OPT_Xlinker)) &&
|
|
A->containsValue("--no-demangle")) {
|
|
// Add the rewritten no-demangle argument.
|
|
DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle));
|
|
|
|
// Add the remaining values as Xlinker arguments.
|
|
for (StringRef Val : A->getValues())
|
|
if (Val != "--no-demangle")
|
|
DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val);
|
|
|
|
continue;
|
|
}
|
|
|
|
// Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
|
|
// some build systems. We don't try to be complete here because we don't
|
|
// care to encourage this usage model.
|
|
if (A->getOption().matches(options::OPT_Wp_COMMA) &&
|
|
(A->getValue(0) == StringRef("-MD") ||
|
|
A->getValue(0) == StringRef("-MMD"))) {
|
|
// Rewrite to -MD/-MMD along with -MF.
|
|
if (A->getValue(0) == StringRef("-MD"))
|
|
DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD));
|
|
else
|
|
DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD));
|
|
if (A->getNumValues() == 2)
|
|
DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF),
|
|
A->getValue(1));
|
|
continue;
|
|
}
|
|
|
|
// Rewrite reserved library names.
|
|
if (A->getOption().matches(options::OPT_l)) {
|
|
StringRef Value = A->getValue();
|
|
|
|
// Rewrite unless -nostdlib is present.
|
|
if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
|
|
Value == "stdc++") {
|
|
DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx));
|
|
continue;
|
|
}
|
|
|
|
// Rewrite unconditionally.
|
|
if (Value == "cc_kext") {
|
|
DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Pick up inputs via the -- option.
|
|
if (A->getOption().matches(options::OPT__DASH_DASH)) {
|
|
A->claim();
|
|
for (StringRef Val : A->getValues())
|
|
DAL->append(MakeInputArg(*DAL, *Opts, Val, false));
|
|
continue;
|
|
}
|
|
|
|
DAL->append(A);
|
|
}
|
|
|
|
// Enforce -static if -miamcu is present.
|
|
if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
|
|
DAL->AddFlagArg(0, Opts->getOption(options::OPT_static));
|
|
|
|
// Add a default value of -mlinker-version=, if one was given and the user
|
|
// didn't specify one.
|
|
#if defined(HOST_LINK_VERSION)
|
|
if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
|
|
strlen(HOST_LINK_VERSION) > 0) {
|
|
DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ),
|
|
HOST_LINK_VERSION);
|
|
DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
|
|
}
|
|
#endif
|
|
|
|
return DAL;
|
|
}
|
|
|
|
/// Compute target triple from args.
|
|
///
|
|
/// This routine provides the logic to compute a target triple from various
|
|
/// args passed to the driver and the default triple string.
|
|
static llvm::Triple computeTargetTriple(const Driver &D,
|
|
StringRef TargetTriple,
|
|
const ArgList &Args,
|
|
StringRef DarwinArchName = "") {
|
|
// FIXME: Already done in Compilation *Driver::BuildCompilation
|
|
if (const Arg *A = Args.getLastArg(options::OPT_target))
|
|
TargetTriple = A->getValue();
|
|
|
|
llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
|
|
|
|
// GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
|
|
// -gnu* only, and we can not change this, so we have to detect that case as
|
|
// being the Hurd OS.
|
|
if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
|
|
TargetTriple.find("-pc-gnu") != StringRef::npos)
|
|
Target.setOSName("hurd");
|
|
|
|
// Handle Apple-specific options available here.
|
|
if (Target.isOSBinFormatMachO()) {
|
|
// If an explicit Darwin arch name is given, that trumps all.
|
|
if (!DarwinArchName.empty()) {
|
|
tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
|
|
return Target;
|
|
}
|
|
|
|
// Handle the Darwin '-arch' flag.
|
|
if (Arg *A = Args.getLastArg(options::OPT_arch)) {
|
|
StringRef ArchName = A->getValue();
|
|
tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
|
|
}
|
|
}
|
|
|
|
// Handle pseudo-target flags '-mlittle-endian'/'-EL' and
|
|
// '-mbig-endian'/'-EB'.
|
|
if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
|
|
options::OPT_mbig_endian)) {
|
|
if (A->getOption().matches(options::OPT_mlittle_endian)) {
|
|
llvm::Triple LE = Target.getLittleEndianArchVariant();
|
|
if (LE.getArch() != llvm::Triple::UnknownArch)
|
|
Target = std::move(LE);
|
|
} else {
|
|
llvm::Triple BE = Target.getBigEndianArchVariant();
|
|
if (BE.getArch() != llvm::Triple::UnknownArch)
|
|
Target = std::move(BE);
|
|
}
|
|
}
|
|
|
|
// Skip further flag support on OSes which don't support '-m32' or '-m64'.
|
|
if (Target.getArch() == llvm::Triple::tce ||
|
|
Target.getOS() == llvm::Triple::Minix)
|
|
return Target;
|
|
|
|
// Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
|
|
Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
|
|
options::OPT_m32, options::OPT_m16);
|
|
if (A) {
|
|
llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
|
|
|
|
if (A->getOption().matches(options::OPT_m64)) {
|
|
AT = Target.get64BitArchVariant().getArch();
|
|
if (Target.getEnvironment() == llvm::Triple::GNUX32)
|
|
Target.setEnvironment(llvm::Triple::GNU);
|
|
} else if (A->getOption().matches(options::OPT_mx32) &&
|
|
Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
|
|
AT = llvm::Triple::x86_64;
|
|
Target.setEnvironment(llvm::Triple::GNUX32);
|
|
} else if (A->getOption().matches(options::OPT_m32)) {
|
|
AT = Target.get32BitArchVariant().getArch();
|
|
if (Target.getEnvironment() == llvm::Triple::GNUX32)
|
|
Target.setEnvironment(llvm::Triple::GNU);
|
|
} else if (A->getOption().matches(options::OPT_m16) &&
|
|
Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
|
|
AT = llvm::Triple::x86;
|
|
Target.setEnvironment(llvm::Triple::CODE16);
|
|
}
|
|
|
|
if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
|
|
Target.setArch(AT);
|
|
}
|
|
|
|
// Handle -miamcu flag.
|
|
if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
|
|
if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
|
|
D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
|
|
<< Target.str();
|
|
|
|
if (A && !A->getOption().matches(options::OPT_m32))
|
|
D.Diag(diag::err_drv_argument_not_allowed_with)
|
|
<< "-miamcu" << A->getBaseArg().getAsString(Args);
|
|
|
|
Target.setArch(llvm::Triple::x86);
|
|
Target.setArchName("i586");
|
|
Target.setEnvironment(llvm::Triple::UnknownEnvironment);
|
|
Target.setEnvironmentName("");
|
|
Target.setOS(llvm::Triple::ELFIAMCU);
|
|
Target.setVendor(llvm::Triple::UnknownVendor);
|
|
Target.setVendorName("intel");
|
|
}
|
|
|
|
// If target is MIPS adjust the target triple
|
|
// accordingly to provided ABI name.
|
|
A = Args.getLastArg(options::OPT_mabi_EQ);
|
|
if (A && Target.isMIPS()) {
|
|
StringRef ABIName = A->getValue();
|
|
if (ABIName == "32") {
|
|
Target = Target.get32BitArchVariant();
|
|
if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
|
|
Target.getEnvironment() == llvm::Triple::GNUABIN32)
|
|
Target.setEnvironment(llvm::Triple::GNU);
|
|
} else if (ABIName == "n32") {
|
|
Target = Target.get64BitArchVariant();
|
|
if (Target.getEnvironment() == llvm::Triple::GNU ||
|
|
Target.getEnvironment() == llvm::Triple::GNUABI64)
|
|
Target.setEnvironment(llvm::Triple::GNUABIN32);
|
|
} else if (ABIName == "64") {
|
|
Target = Target.get64BitArchVariant();
|
|
if (Target.getEnvironment() == llvm::Triple::GNU ||
|
|
Target.getEnvironment() == llvm::Triple::GNUABIN32)
|
|
Target.setEnvironment(llvm::Triple::GNUABI64);
|
|
}
|
|
}
|
|
|
|
return Target;
|
|
}
|
|
|
|
// Parse the LTO options and record the type of LTO compilation
|
|
// based on which -f(no-)?lto(=.*)? option occurs last.
|
|
void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
|
|
LTOMode = LTOK_None;
|
|
if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
|
|
options::OPT_fno_lto, false))
|
|
return;
|
|
|
|
StringRef LTOName("full");
|
|
|
|
const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
|
|
if (A)
|
|
LTOName = A->getValue();
|
|
|
|
LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
|
|
.Case("full", LTOK_Full)
|
|
.Case("thin", LTOK_Thin)
|
|
.Default(LTOK_Unknown);
|
|
|
|
if (LTOMode == LTOK_Unknown) {
|
|
assert(A);
|
|
Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
|
|
<< A->getValue();
|
|
}
|
|
}
|
|
|
|
/// Compute the desired OpenMP runtime from the flags provided.
|
|
Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
|
|
StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
|
|
|
|
const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
|
|
if (A)
|
|
RuntimeName = A->getValue();
|
|
|
|
auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
|
|
.Case("libomp", OMPRT_OMP)
|
|
.Case("libgomp", OMPRT_GOMP)
|
|
.Case("libiomp5", OMPRT_IOMP5)
|
|
.Default(OMPRT_Unknown);
|
|
|
|
if (RT == OMPRT_Unknown) {
|
|
if (A)
|
|
Diag(diag::err_drv_unsupported_option_argument)
|
|
<< A->getOption().getName() << A->getValue();
|
|
else
|
|
// FIXME: We could use a nicer diagnostic here.
|
|
Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
|
|
}
|
|
|
|
return RT;
|
|
}
|
|
|
|
void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
|
|
InputList &Inputs) {
|
|
|
|
//
|
|
// CUDA/HIP
|
|
//
|
|
// We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
|
|
// or HIP type. However, mixed CUDA/HIP compilation is not supported.
|
|
bool IsCuda =
|
|
llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
|
|
return types::isCuda(I.first);
|
|
});
|
|
bool IsHIP =
|
|
llvm::any_of(Inputs,
|
|
[](std::pair<types::ID, const llvm::opt::Arg *> &I) {
|
|
return types::isHIP(I.first);
|
|
}) ||
|
|
C.getInputArgs().hasArg(options::OPT_hip_link);
|
|
if (IsCuda && IsHIP) {
|
|
Diag(clang::diag::err_drv_mix_cuda_hip);
|
|
return;
|
|
}
|
|
if (IsCuda) {
|
|
const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
|
|
const llvm::Triple &HostTriple = HostTC->getTriple();
|
|
StringRef DeviceTripleStr;
|
|
auto OFK = Action::OFK_Cuda;
|
|
DeviceTripleStr =
|
|
HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
|
|
llvm::Triple CudaTriple(DeviceTripleStr);
|
|
// Use the CUDA and host triples as the key into the ToolChains map,
|
|
// because the device toolchain we create depends on both.
|
|
auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
|
|
if (!CudaTC) {
|
|
CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
|
|
*this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
|
|
}
|
|
C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
|
|
} else if (IsHIP) {
|
|
const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
|
|
const llvm::Triple &HostTriple = HostTC->getTriple();
|
|
StringRef DeviceTripleStr;
|
|
auto OFK = Action::OFK_HIP;
|
|
DeviceTripleStr = "amdgcn-amd-amdhsa";
|
|
llvm::Triple HIPTriple(DeviceTripleStr);
|
|
// Use the HIP and host triples as the key into the ToolChains map,
|
|
// because the device toolchain we create depends on both.
|
|
auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
|
|
if (!HIPTC) {
|
|
HIPTC = llvm::make_unique<toolchains::HIPToolChain>(
|
|
*this, HIPTriple, *HostTC, C.getInputArgs());
|
|
}
|
|
C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
|
|
}
|
|
|
|
//
|
|
// OpenMP
|
|
//
|
|
// We need to generate an OpenMP toolchain if the user specified targets with
|
|
// the -fopenmp-targets option.
|
|
if (Arg *OpenMPTargets =
|
|
C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
|
|
if (OpenMPTargets->getNumValues()) {
|
|
// We expect that -fopenmp-targets is always used in conjunction with the
|
|
// option -fopenmp specifying a valid runtime with offloading support,
|
|
// i.e. libomp or libiomp.
|
|
bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
|
|
options::OPT_fopenmp, options::OPT_fopenmp_EQ,
|
|
options::OPT_fno_openmp, false);
|
|
if (HasValidOpenMPRuntime) {
|
|
OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
|
|
HasValidOpenMPRuntime =
|
|
OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
|
|
}
|
|
|
|
if (HasValidOpenMPRuntime) {
|
|
llvm::StringMap<const char *> FoundNormalizedTriples;
|
|
for (const char *Val : OpenMPTargets->getValues()) {
|
|
llvm::Triple TT(Val);
|
|
std::string NormalizedName = TT.normalize();
|
|
|
|
// Make sure we don't have a duplicate triple.
|
|
auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
|
|
if (Duplicate != FoundNormalizedTriples.end()) {
|
|
Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
|
|
<< Val << Duplicate->second;
|
|
continue;
|
|
}
|
|
|
|
// Store the current triple so that we can check for duplicates in the
|
|
// following iterations.
|
|
FoundNormalizedTriples[NormalizedName] = Val;
|
|
|
|
// If the specified target is invalid, emit a diagnostic.
|
|
if (TT.getArch() == llvm::Triple::UnknownArch)
|
|
Diag(clang::diag::err_drv_invalid_omp_target) << Val;
|
|
else {
|
|
const ToolChain *TC;
|
|
// CUDA toolchains have to be selected differently. They pair host
|
|
// and device in their implementation.
|
|
if (TT.isNVPTX()) {
|
|
const ToolChain *HostTC =
|
|
C.getSingleOffloadToolChain<Action::OFK_Host>();
|
|
assert(HostTC && "Host toolchain should be always defined.");
|
|
auto &CudaTC =
|
|
ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
|
|
if (!CudaTC)
|
|
CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
|
|
*this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
|
|
TC = CudaTC.get();
|
|
} else
|
|
TC = &getToolChain(C.getInputArgs(), TT);
|
|
C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
|
|
}
|
|
}
|
|
} else
|
|
Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
|
|
} else
|
|
Diag(clang::diag::warn_drv_empty_joined_argument)
|
|
<< OpenMPTargets->getAsString(C.getInputArgs());
|
|
}
|
|
|
|
//
|
|
// TODO: Add support for other offloading programming models here.
|
|
//
|
|
}
|
|
|
|
/// Looks the given directories for the specified file.
|
|
///
|
|
/// \param[out] FilePath File path, if the file was found.
|
|
/// \param[in] Dirs Directories used for the search.
|
|
/// \param[in] FileName Name of the file to search for.
|
|
/// \return True if file was found.
|
|
///
|
|
/// Looks for file specified by FileName sequentially in directories specified
|
|
/// by Dirs.
|
|
///
|
|
static bool searchForFile(SmallVectorImpl<char> &FilePath,
|
|
ArrayRef<std::string> Dirs,
|
|
StringRef FileName) {
|
|
SmallString<128> WPath;
|
|
for (const StringRef &Dir : Dirs) {
|
|
if (Dir.empty())
|
|
continue;
|
|
WPath.clear();
|
|
llvm::sys::path::append(WPath, Dir, FileName);
|
|
llvm::sys::path::native(WPath);
|
|
if (llvm::sys::fs::is_regular_file(WPath)) {
|
|
FilePath = std::move(WPath);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Driver::readConfigFile(StringRef FileName) {
|
|
// Try reading the given file.
|
|
SmallVector<const char *, 32> NewCfgArgs;
|
|
if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
|
|
Diag(diag::err_drv_cannot_read_config_file) << FileName;
|
|
return true;
|
|
}
|
|
|
|
// Read options from config file.
|
|
llvm::SmallString<128> CfgFileName(FileName);
|
|
llvm::sys::path::native(CfgFileName);
|
|
ConfigFile = CfgFileName.str();
|
|
bool ContainErrors;
|
|
CfgOptions = llvm::make_unique<InputArgList>(
|
|
ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
|
|
if (ContainErrors) {
|
|
CfgOptions.reset();
|
|
return true;
|
|
}
|
|
|
|
if (CfgOptions->hasArg(options::OPT_config)) {
|
|
CfgOptions.reset();
|
|
Diag(diag::err_drv_nested_config_file);
|
|
return true;
|
|
}
|
|
|
|
// Claim all arguments that come from a configuration file so that the driver
|
|
// does not warn on any that is unused.
|
|
for (Arg *A : *CfgOptions)
|
|
A->claim();
|
|
return false;
|
|
}
|
|
|
|
bool Driver::loadConfigFile() {
|
|
std::string CfgFileName;
|
|
bool FileSpecifiedExplicitly = false;
|
|
|
|
// Process options that change search path for config files.
|
|
if (CLOptions) {
|
|
if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
|
|
SmallString<128> CfgDir;
|
|
CfgDir.append(
|
|
CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
|
|
if (!CfgDir.empty()) {
|
|
if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
|
|
SystemConfigDir.clear();
|
|
else
|
|
SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
|
|
}
|
|
}
|
|
if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
|
|
SmallString<128> CfgDir;
|
|
CfgDir.append(
|
|
CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
|
|
if (!CfgDir.empty()) {
|
|
if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
|
|
UserConfigDir.clear();
|
|
else
|
|
UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
// First try to find config file specified in command line.
|
|
if (CLOptions) {
|
|
std::vector<std::string> ConfigFiles =
|
|
CLOptions->getAllArgValues(options::OPT_config);
|
|
if (ConfigFiles.size() > 1) {
|
|
Diag(diag::err_drv_duplicate_config);
|
|
return true;
|
|
}
|
|
|
|
if (!ConfigFiles.empty()) {
|
|
CfgFileName = ConfigFiles.front();
|
|
assert(!CfgFileName.empty());
|
|
|
|
// If argument contains directory separator, treat it as a path to
|
|
// configuration file.
|
|
if (llvm::sys::path::has_parent_path(CfgFileName)) {
|
|
SmallString<128> CfgFilePath;
|
|
if (llvm::sys::path::is_relative(CfgFileName))
|
|
llvm::sys::fs::current_path(CfgFilePath);
|
|
llvm::sys::path::append(CfgFilePath, CfgFileName);
|
|
if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
|
|
Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
|
|
return true;
|
|
}
|
|
return readConfigFile(CfgFilePath);
|
|
}
|
|
|
|
FileSpecifiedExplicitly = true;
|
|
}
|
|
}
|
|
|
|
// If config file is not specified explicitly, try to deduce configuration
|
|
// from executable name. For instance, an executable 'armv7l-clang' will
|
|
// search for config file 'armv7l-clang.cfg'.
|
|
if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
|
|
CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
|
|
|
|
if (CfgFileName.empty())
|
|
return false;
|
|
|
|
// Determine architecture part of the file name, if it is present.
|
|
StringRef CfgFileArch = CfgFileName;
|
|
size_t ArchPrefixLen = CfgFileArch.find('-');
|
|
if (ArchPrefixLen == StringRef::npos)
|
|
ArchPrefixLen = CfgFileArch.size();
|
|
llvm::Triple CfgTriple;
|
|
CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
|
|
CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
|
|
if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
|
|
ArchPrefixLen = 0;
|
|
|
|
if (!StringRef(CfgFileName).endswith(".cfg"))
|
|
CfgFileName += ".cfg";
|
|
|
|
// If config file starts with architecture name and command line options
|
|
// redefine architecture (with options like -m32 -LE etc), try finding new
|
|
// config file with that architecture.
|
|
SmallString<128> FixedConfigFile;
|
|
size_t FixedArchPrefixLen = 0;
|
|
if (ArchPrefixLen) {
|
|
// Get architecture name from config file name like 'i386.cfg' or
|
|
// 'armv7l-clang.cfg'.
|
|
// Check if command line options changes effective triple.
|
|
llvm::Triple EffectiveTriple = computeTargetTriple(*this,
|
|
CfgTriple.getTriple(), *CLOptions);
|
|
if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
|
|
FixedConfigFile = EffectiveTriple.getArchName();
|
|
FixedArchPrefixLen = FixedConfigFile.size();
|
|
// Append the rest of original file name so that file name transforms
|
|
// like: i386-clang.cfg -> x86_64-clang.cfg.
|
|
if (ArchPrefixLen < CfgFileName.size())
|
|
FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
|
|
}
|
|
}
|
|
|
|
// Prepare list of directories where config file is searched for.
|
|
SmallVector<std::string, 3> CfgFileSearchDirs;
|
|
CfgFileSearchDirs.push_back(UserConfigDir);
|
|
CfgFileSearchDirs.push_back(SystemConfigDir);
|
|
CfgFileSearchDirs.push_back(Dir);
|
|
|
|
// Try to find config file. First try file with corrected architecture.
|
|
llvm::SmallString<128> CfgFilePath;
|
|
if (!FixedConfigFile.empty()) {
|
|
if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
|
|
return readConfigFile(CfgFilePath);
|
|
// If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
|
|
FixedConfigFile.resize(FixedArchPrefixLen);
|
|
FixedConfigFile.append(".cfg");
|
|
if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
|
|
return readConfigFile(CfgFilePath);
|
|
}
|
|
|
|
// Then try original file name.
|
|
if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
|
|
return readConfigFile(CfgFilePath);
|
|
|
|
// Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
|
|
if (!ClangNameParts.ModeSuffix.empty() &&
|
|
!ClangNameParts.TargetPrefix.empty()) {
|
|
CfgFileName.assign(ClangNameParts.TargetPrefix);
|
|
CfgFileName.append(".cfg");
|
|
if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
|
|
return readConfigFile(CfgFilePath);
|
|
}
|
|
|
|
// Report error but only if config file was specified explicitly, by option
|
|
// --config. If it was deduced from executable name, it is not an error.
|
|
if (FileSpecifiedExplicitly) {
|
|
Diag(diag::err_drv_config_file_not_found) << CfgFileName;
|
|
for (const std::string &SearchDir : CfgFileSearchDirs)
|
|
if (!SearchDir.empty())
|
|
Diag(diag::note_drv_config_file_searched_in) << SearchDir;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
|
|
llvm::PrettyStackTraceString CrashInfo("Compilation construction");
|
|
|
|
// FIXME: Handle environment options which affect driver behavior, somewhere
|
|
// (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
|
|
|
|
if (Optional<std::string> CompilerPathValue =
|
|
llvm::sys::Process::GetEnv("COMPILER_PATH")) {
|
|
StringRef CompilerPath = *CompilerPathValue;
|
|
while (!CompilerPath.empty()) {
|
|
std::pair<StringRef, StringRef> Split =
|
|
CompilerPath.split(llvm::sys::EnvPathSeparator);
|
|
PrefixDirs.push_back(Split.first);
|
|
CompilerPath = Split.second;
|
|
}
|
|
}
|
|
|
|
// We look for the driver mode option early, because the mode can affect
|
|
// how other options are parsed.
|
|
ParseDriverMode(ClangExecutable, ArgList.slice(1));
|
|
|
|
// FIXME: What are we going to do with -V and -b?
|
|
|
|
// Arguments specified in command line.
|
|
bool ContainsError;
|
|
CLOptions = llvm::make_unique<InputArgList>(
|
|
ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
|
|
|
|
// Try parsing configuration file.
|
|
if (!ContainsError)
|
|
ContainsError = loadConfigFile();
|
|
bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
|
|
|
|
// All arguments, from both config file and command line.
|
|
InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
|
|
: std::move(*CLOptions));
|
|
|
|
auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
|
|
unsigned Index = Args.MakeIndex(Opt->getSpelling());
|
|
Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
|
|
Index, BaseArg);
|
|
Copy->getValues() = Opt->getValues();
|
|
if (Opt->isClaimed())
|
|
Copy->claim();
|
|
Args.append(Copy);
|
|
};
|
|
|
|
if (HasConfigFile)
|
|
for (auto *Opt : *CLOptions) {
|
|
if (Opt->getOption().matches(options::OPT_config))
|
|
continue;
|
|
const Arg *BaseArg = &Opt->getBaseArg();
|
|
if (BaseArg == Opt)
|
|
BaseArg = nullptr;
|
|
appendOneArg(Opt, BaseArg);
|
|
}
|
|
|
|
// In CL mode, look for any pass-through arguments
|
|
if (IsCLMode() && !ContainsError) {
|
|
SmallVector<const char *, 16> CLModePassThroughArgList;
|
|
for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
|
|
A->claim();
|
|
CLModePassThroughArgList.push_back(A->getValue());
|
|
}
|
|
|
|
if (!CLModePassThroughArgList.empty()) {
|
|
// Parse any pass through args using default clang processing rather
|
|
// than clang-cl processing.
|
|
auto CLModePassThroughOptions = llvm::make_unique<InputArgList>(
|
|
ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
|
|
|
|
if (!ContainsError)
|
|
for (auto *Opt : *CLModePassThroughOptions) {
|
|
appendOneArg(Opt, nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: This stuff needs to go into the Compilation, not the driver.
|
|
bool CCCPrintPhases;
|
|
|
|
// Silence driver warnings if requested
|
|
Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
|
|
|
|
// -no-canonical-prefixes is used very early in main.
|
|
Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
|
|
|
|
// Ignore -pipe.
|
|
Args.ClaimAllArgs(options::OPT_pipe);
|
|
|
|
// Extract -ccc args.
|
|
//
|
|
// FIXME: We need to figure out where this behavior should live. Most of it
|
|
// should be outside in the client; the parts that aren't should have proper
|
|
// options, either by introducing new ones or by overloading gcc ones like -V
|
|
// or -b.
|
|
CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
|
|
CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
|
|
if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
|
|
CCCGenericGCCName = A->getValue();
|
|
GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
|
|
options::OPT_fno_crash_diagnostics,
|
|
!!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
|
|
// FIXME: TargetTriple is used by the target-prefixed calls to as/ld
|
|
// and getToolChain is const.
|
|
if (IsCLMode()) {
|
|
// clang-cl targets MSVC-style Win32.
|
|
llvm::Triple T(TargetTriple);
|
|
T.setOS(llvm::Triple::Win32);
|
|
T.setVendor(llvm::Triple::PC);
|
|
T.setEnvironment(llvm::Triple::MSVC);
|
|
T.setObjectFormat(llvm::Triple::COFF);
|
|
TargetTriple = T.str();
|
|
}
|
|
if (const Arg *A = Args.getLastArg(options::OPT_target))
|
|
TargetTriple = A->getValue();
|
|
if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
|
|
Dir = InstalledDir = A->getValue();
|
|
for (const Arg *A : Args.filtered(options::OPT_B)) {
|
|
A->claim();
|
|
PrefixDirs.push_back(A->getValue(0));
|
|
}
|
|
if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
|
|
SysRoot = A->getValue();
|
|
if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
|
|
DyldPrefix = A->getValue();
|
|
|
|
if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
|
|
ResourceDir = A->getValue();
|
|
|
|
if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
|
|
SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
|
|
.Case("cwd", SaveTempsCwd)
|
|
.Case("obj", SaveTempsObj)
|
|
.Default(SaveTempsCwd);
|
|
}
|
|
|
|
setLTOMode(Args);
|
|
|
|
// Process -fembed-bitcode= flags.
|
|
if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
|
|
StringRef Name = A->getValue();
|
|
unsigned Model = llvm::StringSwitch<unsigned>(Name)
|
|
.Case("off", EmbedNone)
|
|
.Case("all", EmbedBitcode)
|
|
.Case("bitcode", EmbedBitcode)
|
|
.Case("marker", EmbedMarker)
|
|
.Default(~0U);
|
|
if (Model == ~0U) {
|
|
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
|
|
<< Name;
|
|
} else
|
|
BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
|
|
}
|
|
|
|
std::unique_ptr<llvm::opt::InputArgList> UArgs =
|
|
llvm::make_unique<InputArgList>(std::move(Args));
|
|
|
|
// Perform the default argument translations.
|
|
DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
|
|
|
|
// Owned by the host.
|
|
const ToolChain &TC = getToolChain(
|
|
*UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
|
|
|
|
// The compilation takes ownership of Args.
|
|
Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
|
|
ContainsError);
|
|
|
|
if (!HandleImmediateArgs(*C))
|
|
return C;
|
|
|
|
// Construct the list of inputs.
|
|
InputList Inputs;
|
|
BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
|
|
|
|
// Populate the tool chains for the offloading devices, if any.
|
|
CreateOffloadingDeviceToolChains(*C, Inputs);
|
|
|
|
// Construct the list of abstract actions to perform for this compilation. On
|
|
// MachO targets this uses the driver-driver and universal actions.
|
|
if (TC.getTriple().isOSBinFormatMachO())
|
|
BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
|
|
else
|
|
BuildActions(*C, C->getArgs(), Inputs, C->getActions());
|
|
|
|
if (CCCPrintPhases) {
|
|
PrintActions(*C);
|
|
return C;
|
|
}
|
|
|
|
BuildJobs(*C);
|
|
|
|
return C;
|
|
}
|
|
|
|
static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
|
|
llvm::opt::ArgStringList ASL;
|
|
for (const auto *A : Args)
|
|
A->render(Args, ASL);
|
|
|
|
for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
|
|
if (I != ASL.begin())
|
|
OS << ' ';
|
|
Command::printArg(OS, *I, true);
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
|
|
SmallString<128> &CrashDiagDir) {
|
|
using namespace llvm::sys;
|
|
assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
|
|
"Only knows about .crash files on Darwin");
|
|
|
|
// The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
|
|
// (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
|
|
// clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
|
|
path::home_directory(CrashDiagDir);
|
|
if (CrashDiagDir.startswith("/var/root"))
|
|
CrashDiagDir = "/";
|
|
path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
|
|
int PID =
|
|
#if LLVM_ON_UNIX
|
|
getpid();
|
|
#else
|
|
0;
|
|
#endif
|
|
std::error_code EC;
|
|
fs::file_status FileStatus;
|
|
TimePoint<> LastAccessTime;
|
|
SmallString<128> CrashFilePath;
|
|
// Lookup the .crash files and get the one generated by a subprocess spawned
|
|
// by this driver invocation.
|
|
for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
|
|
File != FileEnd && !EC; File.increment(EC)) {
|
|
StringRef FileName = path::filename(File->path());
|
|
if (!FileName.startswith(Name))
|
|
continue;
|
|
if (fs::status(File->path(), FileStatus))
|
|
continue;
|
|
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
|
|
llvm::MemoryBuffer::getFile(File->path());
|
|
if (!CrashFile)
|
|
continue;
|
|
// The first line should start with "Process:", otherwise this isn't a real
|
|
// .crash file.
|
|
StringRef Data = CrashFile.get()->getBuffer();
|
|
if (!Data.startswith("Process:"))
|
|
continue;
|
|
// Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
|
|
size_t ParentProcPos = Data.find("Parent Process:");
|
|
if (ParentProcPos == StringRef::npos)
|
|
continue;
|
|
size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
|
|
if (LineEnd == StringRef::npos)
|
|
continue;
|
|
StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
|
|
int OpenBracket = -1, CloseBracket = -1;
|
|
for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
|
|
if (ParentProcess[i] == '[')
|
|
OpenBracket = i;
|
|
if (ParentProcess[i] == ']')
|
|
CloseBracket = i;
|
|
}
|
|
// Extract the parent process PID from the .crash file and check whether
|
|
// it matches this driver invocation pid.
|
|
int CrashPID;
|
|
if (OpenBracket < 0 || CloseBracket < 0 ||
|
|
ParentProcess.slice(OpenBracket + 1, CloseBracket)
|
|
.getAsInteger(10, CrashPID) || CrashPID != PID) {
|
|
continue;
|
|
}
|
|
|
|
// Found a .crash file matching the driver pid. To avoid getting an older
|
|
// and misleading crash file, continue looking for the most recent.
|
|
// FIXME: the driver can dispatch multiple cc1 invocations, leading to
|
|
// multiple crashes poiting to the same parent process. Since the driver
|
|
// does not collect pid information for the dispatched invocation there's
|
|
// currently no way to distinguish among them.
|
|
const auto FileAccessTime = FileStatus.getLastModificationTime();
|
|
if (FileAccessTime > LastAccessTime) {
|
|
CrashFilePath.assign(File->path());
|
|
LastAccessTime = FileAccessTime;
|
|
}
|
|
}
|
|
|
|
// If found, copy it over to the location of other reproducer files.
|
|
if (!CrashFilePath.empty()) {
|
|
EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
|
|
if (EC)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// When clang crashes, produce diagnostic information including the fully
|
|
// preprocessed source file(s). Request that the developer attach the
|
|
// diagnostic information to a bug report.
|
|
void Driver::generateCompilationDiagnostics(
|
|
Compilation &C, const Command &FailingCommand,
|
|
StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
|
|
if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
|
|
return;
|
|
|
|
// Don't try to generate diagnostics for link or dsymutil jobs.
|
|
if (FailingCommand.getCreator().isLinkJob() ||
|
|
FailingCommand.getCreator().isDsymutilJob())
|
|
return;
|
|
|
|
// Print the version of the compiler.
|
|
PrintVersion(C, llvm::errs());
|
|
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg)
|
|
<< "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
|
|
"crash backtrace, preprocessed source, and associated run script.";
|
|
|
|
// Suppress driver output and emit preprocessor output to temp file.
|
|
Mode = CPPMode;
|
|
CCGenDiagnostics = true;
|
|
|
|
// Save the original job command(s).
|
|
Command Cmd = FailingCommand;
|
|
|
|
// Keep track of whether we produce any errors while trying to produce
|
|
// preprocessed sources.
|
|
DiagnosticErrorTrap Trap(Diags);
|
|
|
|
// Suppress tool output.
|
|
C.initCompilationForDiagnostics();
|
|
|
|
// Construct the list of inputs.
|
|
InputList Inputs;
|
|
BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
|
|
|
|
for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
|
|
bool IgnoreInput = false;
|
|
|
|
// Ignore input from stdin or any inputs that cannot be preprocessed.
|
|
// Check type first as not all linker inputs have a value.
|
|
if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
|
|
IgnoreInput = true;
|
|
} else if (!strcmp(it->second->getValue(), "-")) {
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg)
|
|
<< "Error generating preprocessed source(s) - "
|
|
"ignoring input from stdin.";
|
|
IgnoreInput = true;
|
|
}
|
|
|
|
if (IgnoreInput) {
|
|
it = Inputs.erase(it);
|
|
ie = Inputs.end();
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
|
|
if (Inputs.empty()) {
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg)
|
|
<< "Error generating preprocessed source(s) - "
|
|
"no preprocessable inputs.";
|
|
return;
|
|
}
|
|
|
|
// Don't attempt to generate preprocessed files if multiple -arch options are
|
|
// used, unless they're all duplicates.
|
|
llvm::StringSet<> ArchNames;
|
|
for (const Arg *A : C.getArgs()) {
|
|
if (A->getOption().matches(options::OPT_arch)) {
|
|
StringRef ArchName = A->getValue();
|
|
ArchNames.insert(ArchName);
|
|
}
|
|
}
|
|
if (ArchNames.size() > 1) {
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg)
|
|
<< "Error generating preprocessed source(s) - cannot generate "
|
|
"preprocessed source with multiple -arch options.";
|
|
return;
|
|
}
|
|
|
|
// Construct the list of abstract actions to perform for this compilation. On
|
|
// Darwin OSes this uses the driver-driver and builds universal actions.
|
|
const ToolChain &TC = C.getDefaultToolChain();
|
|
if (TC.getTriple().isOSBinFormatMachO())
|
|
BuildUniversalActions(C, TC, Inputs);
|
|
else
|
|
BuildActions(C, C.getArgs(), Inputs, C.getActions());
|
|
|
|
BuildJobs(C);
|
|
|
|
// If there were errors building the compilation, quit now.
|
|
if (Trap.hasErrorOccurred()) {
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg)
|
|
<< "Error generating preprocessed source(s).";
|
|
return;
|
|
}
|
|
|
|
// Generate preprocessed output.
|
|
SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
|
|
C.ExecuteJobs(C.getJobs(), FailingCommands);
|
|
|
|
// If any of the preprocessing commands failed, clean up and exit.
|
|
if (!FailingCommands.empty()) {
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg)
|
|
<< "Error generating preprocessed source(s).";
|
|
return;
|
|
}
|
|
|
|
const ArgStringList &TempFiles = C.getTempFiles();
|
|
if (TempFiles.empty()) {
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg)
|
|
<< "Error generating preprocessed source(s).";
|
|
return;
|
|
}
|
|
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg)
|
|
<< "\n********************\n\n"
|
|
"PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
|
|
"Preprocessed source(s) and associated run script(s) are located at:";
|
|
|
|
SmallString<128> VFS;
|
|
SmallString<128> ReproCrashFilename;
|
|
for (const char *TempFile : TempFiles) {
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
|
|
if (Report)
|
|
Report->TemporaryFiles.push_back(TempFile);
|
|
if (ReproCrashFilename.empty()) {
|
|
ReproCrashFilename = TempFile;
|
|
llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
|
|
}
|
|
if (StringRef(TempFile).endswith(".cache")) {
|
|
// In some cases (modules) we'll dump extra data to help with reproducing
|
|
// the crash into a directory next to the output.
|
|
VFS = llvm::sys::path::filename(TempFile);
|
|
llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
|
|
}
|
|
}
|
|
|
|
// Assume associated files are based off of the first temporary file.
|
|
CrashReportInfo CrashInfo(TempFiles[0], VFS);
|
|
|
|
llvm::SmallString<128> Script(CrashInfo.Filename);
|
|
llvm::sys::path::replace_extension(Script, "sh");
|
|
std::error_code EC;
|
|
llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
|
|
if (EC) {
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg)
|
|
<< "Error generating run script: " << Script << " " << EC.message();
|
|
} else {
|
|
ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
|
|
<< "# Driver args: ";
|
|
printArgList(ScriptOS, C.getInputArgs());
|
|
ScriptOS << "# Original command: ";
|
|
Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
|
|
Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
|
|
if (!AdditionalInformation.empty())
|
|
ScriptOS << "\n# Additional information: " << AdditionalInformation
|
|
<< "\n";
|
|
if (Report)
|
|
Report->TemporaryFiles.push_back(Script.str());
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
|
|
}
|
|
|
|
// On darwin, provide information about the .crash diagnostic report.
|
|
if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
|
|
SmallString<128> CrashDiagDir;
|
|
if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg)
|
|
<< ReproCrashFilename.str();
|
|
} else { // Suggest a directory for the user to look for .crash files.
|
|
llvm::sys::path::append(CrashDiagDir, Name);
|
|
CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg)
|
|
<< "Crash backtrace is located in";
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg)
|
|
<< CrashDiagDir.str();
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg)
|
|
<< "(choose the .crash file that corresponds to your crash)";
|
|
}
|
|
}
|
|
|
|
for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
|
|
options::OPT_frewrite_map_file_EQ))
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
|
|
|
|
Diag(clang::diag::note_drv_command_failed_diag_msg)
|
|
<< "\n\n********************";
|
|
}
|
|
|
|
void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
|
|
// Since commandLineFitsWithinSystemLimits() may underestimate system's capacity
|
|
// if the tool does not support response files, there is a chance/ that things
|
|
// will just work without a response file, so we silently just skip it.
|
|
if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None ||
|
|
llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), Cmd.getArguments()))
|
|
return;
|
|
|
|
std::string TmpName = GetTemporaryPath("response", "txt");
|
|
Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
|
|
}
|
|
|
|
int Driver::ExecuteCompilation(
|
|
Compilation &C,
|
|
SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
|
|
// Just print if -### was present.
|
|
if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
|
|
C.getJobs().Print(llvm::errs(), "\n", true);
|
|
return 0;
|
|
}
|
|
|
|
// If there were errors building the compilation, quit now.
|
|
if (Diags.hasErrorOccurred())
|
|
return 1;
|
|
|
|
// Set up response file names for each command, if necessary
|
|
for (auto &Job : C.getJobs())
|
|
setUpResponseFiles(C, Job);
|
|
|
|
C.ExecuteJobs(C.getJobs(), FailingCommands);
|
|
|
|
// If the command succeeded, we are done.
|
|
if (FailingCommands.empty())
|
|
return 0;
|
|
|
|
// Otherwise, remove result files and print extra information about abnormal
|
|
// failures.
|
|
int Res = 0;
|
|
for (const auto &CmdPair : FailingCommands) {
|
|
int CommandRes = CmdPair.first;
|
|
const Command *FailingCommand = CmdPair.second;
|
|
|
|
// Remove result files if we're not saving temps.
|
|
if (!isSaveTempsEnabled()) {
|
|
const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
|
|
C.CleanupFileMap(C.getResultFiles(), JA, true);
|
|
|
|
// Failure result files are valid unless we crashed.
|
|
if (CommandRes < 0)
|
|
C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
|
|
}
|
|
|
|
#if LLVM_ON_UNIX
|
|
// llvm/lib/Support/Unix/Signals.inc will exit with a special return code
|
|
// for SIGPIPE. Do not print diagnostics for this case.
|
|
if (CommandRes == EX_IOERR) {
|
|
Res = CommandRes;
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
// Print extra information about abnormal failures, if possible.
|
|
//
|
|
// This is ad-hoc, but we don't want to be excessively noisy. If the result
|
|
// status was 1, assume the command failed normally. In particular, if it
|
|
// was the compiler then assume it gave a reasonable error code. Failures
|
|
// in other tools are less common, and they generally have worse
|
|
// diagnostics, so always print the diagnostic there.
|
|
const Tool &FailingTool = FailingCommand->getCreator();
|
|
|
|
if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
|
|
// FIXME: See FIXME above regarding result code interpretation.
|
|
if (CommandRes < 0)
|
|
Diag(clang::diag::err_drv_command_signalled)
|
|
<< FailingTool.getShortName();
|
|
else
|
|
Diag(clang::diag::err_drv_command_failed)
|
|
<< FailingTool.getShortName() << CommandRes;
|
|
}
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
void Driver::PrintHelp(bool ShowHidden) const {
|
|
unsigned IncludedFlagsBitmask;
|
|
unsigned ExcludedFlagsBitmask;
|
|
std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
|
|
getIncludeExcludeOptionFlagMasks(IsCLMode());
|
|
|
|
ExcludedFlagsBitmask |= options::NoDriverOption;
|
|
if (!ShowHidden)
|
|
ExcludedFlagsBitmask |= HelpHidden;
|
|
|
|
std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
|
|
getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
|
|
IncludedFlagsBitmask, ExcludedFlagsBitmask,
|
|
/*ShowAllAliases=*/false);
|
|
}
|
|
|
|
void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
|
|
// FIXME: The following handlers should use a callback mechanism, we don't
|
|
// know what the client would like to do.
|
|
OS << getClangFullVersion() << '\n';
|
|
const ToolChain &TC = C.getDefaultToolChain();
|
|
OS << "Target: " << TC.getTripleString() << '\n';
|
|
|
|
// Print the threading model.
|
|
if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
|
|
// Don't print if the ToolChain would have barfed on it already
|
|
if (TC.isThreadModelSupported(A->getValue()))
|
|
OS << "Thread model: " << A->getValue();
|
|
} else
|
|
OS << "Thread model: " << TC.getThreadModel();
|
|
OS << '\n';
|
|
|
|
// Print out the install directory.
|
|
OS << "InstalledDir: " << InstalledDir << '\n';
|
|
|
|
// If configuration file was used, print its path.
|
|
if (!ConfigFile.empty())
|
|
OS << "Configuration file: " << ConfigFile << '\n';
|
|
}
|
|
|
|
/// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
|
|
/// option.
|
|
static void PrintDiagnosticCategories(raw_ostream &OS) {
|
|
// Skip the empty category.
|
|
for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
|
|
++i)
|
|
OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
|
|
}
|
|
|
|
void Driver::HandleAutocompletions(StringRef PassedFlags) const {
|
|
if (PassedFlags == "")
|
|
return;
|
|
// Print out all options that start with a given argument. This is used for
|
|
// shell autocompletion.
|
|
std::vector<std::string> SuggestedCompletions;
|
|
std::vector<std::string> Flags;
|
|
|
|
unsigned short DisableFlags =
|
|
options::NoDriverOption | options::Unsupported | options::Ignored;
|
|
|
|
// Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
|
|
// because the latter indicates that the user put space before pushing tab
|
|
// which should end up in a file completion.
|
|
const bool HasSpace = PassedFlags.endswith(",");
|
|
|
|
// Parse PassedFlags by "," as all the command-line flags are passed to this
|
|
// function separated by ","
|
|
StringRef TargetFlags = PassedFlags;
|
|
while (TargetFlags != "") {
|
|
StringRef CurFlag;
|
|
std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
|
|
Flags.push_back(std::string(CurFlag));
|
|
}
|
|
|
|
// We want to show cc1-only options only when clang is invoked with -cc1 or
|
|
// -Xclang.
|
|
if (std::find(Flags.begin(), Flags.end(), "-Xclang") != Flags.end() ||
|
|
std::find(Flags.begin(), Flags.end(), "-cc1") != Flags.end())
|
|
DisableFlags &= ~options::NoDriverOption;
|
|
|
|
StringRef Cur;
|
|
Cur = Flags.at(Flags.size() - 1);
|
|
StringRef Prev;
|
|
if (Flags.size() >= 2) {
|
|
Prev = Flags.at(Flags.size() - 2);
|
|
SuggestedCompletions = Opts->suggestValueCompletions(Prev, Cur);
|
|
}
|
|
|
|
if (SuggestedCompletions.empty())
|
|
SuggestedCompletions = Opts->suggestValueCompletions(Cur, "");
|
|
|
|
// If Flags were empty, it means the user typed `clang [tab]` where we should
|
|
// list all possible flags. If there was no value completion and the user
|
|
// pressed tab after a space, we should fall back to a file completion.
|
|
// We're printing a newline to be consistent with what we print at the end of
|
|
// this function.
|
|
if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
|
|
llvm::outs() << '\n';
|
|
return;
|
|
}
|
|
|
|
// When flag ends with '=' and there was no value completion, return empty
|
|
// string and fall back to the file autocompletion.
|
|
if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
|
|
// If the flag is in the form of "--autocomplete=-foo",
|
|
// we were requested to print out all option names that start with "-foo".
|
|
// For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
|
|
SuggestedCompletions = Opts->findByPrefix(Cur, DisableFlags);
|
|
|
|
// We have to query the -W flags manually as they're not in the OptTable.
|
|
// TODO: Find a good way to add them to OptTable instead and them remove
|
|
// this code.
|
|
for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
|
|
if (S.startswith(Cur))
|
|
SuggestedCompletions.push_back(S);
|
|
}
|
|
|
|
// Sort the autocomplete candidates so that shells print them out in a
|
|
// deterministic order. We could sort in any way, but we chose
|
|
// case-insensitive sorting for consistency with the -help option
|
|
// which prints out options in the case-insensitive alphabetical order.
|
|
llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
|
|
if (int X = A.compare_lower(B))
|
|
return X < 0;
|
|
return A.compare(B) > 0;
|
|
});
|
|
|
|
llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
|
|
}
|
|
|
|
bool Driver::HandleImmediateArgs(const Compilation &C) {
|
|
// The order these options are handled in gcc is all over the place, but we
|
|
// don't expect inconsistencies w.r.t. that to matter in practice.
|
|
|
|
if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
|
|
llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
|
|
return false;
|
|
}
|
|
|
|
if (C.getArgs().hasArg(options::OPT_dumpversion)) {
|
|
// Since -dumpversion is only implemented for pedantic GCC compatibility, we
|
|
// return an answer which matches our definition of __VERSION__.
|
|
//
|
|
// If we want to return a more correct answer some day, then we should
|
|
// introduce a non-pedantically GCC compatible mode to Clang in which we
|
|
// provide sensible definitions for -dumpversion, __VERSION__, etc.
|
|
llvm::outs() << "4.2.1\n";
|
|
return false;
|
|
}
|
|
|
|
if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
|
|
PrintDiagnosticCategories(llvm::outs());
|
|
return false;
|
|
}
|
|
|
|
if (C.getArgs().hasArg(options::OPT_help) ||
|
|
C.getArgs().hasArg(options::OPT__help_hidden)) {
|
|
PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
|
|
return false;
|
|
}
|
|
|
|
if (C.getArgs().hasArg(options::OPT__version)) {
|
|
// Follow gcc behavior and use stdout for --version and stderr for -v.
|
|
PrintVersion(C, llvm::outs());
|
|
return false;
|
|
}
|
|
|
|
if (C.getArgs().hasArg(options::OPT_v) ||
|
|
C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
|
|
PrintVersion(C, llvm::errs());
|
|
SuppressMissingInputWarning = true;
|
|
}
|
|
|
|
if (C.getArgs().hasArg(options::OPT_v)) {
|
|
if (!SystemConfigDir.empty())
|
|
llvm::errs() << "System configuration file directory: "
|
|
<< SystemConfigDir << "\n";
|
|
if (!UserConfigDir.empty())
|
|
llvm::errs() << "User configuration file directory: "
|
|
<< UserConfigDir << "\n";
|
|
}
|
|
|
|
const ToolChain &TC = C.getDefaultToolChain();
|
|
|
|
if (C.getArgs().hasArg(options::OPT_v))
|
|
TC.printVerboseInfo(llvm::errs());
|
|
|
|
if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
|
|
llvm::outs() << ResourceDir << '\n';
|
|
return false;
|
|
}
|
|
|
|
if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
|
|
llvm::outs() << "programs: =";
|
|
bool separator = false;
|
|
for (const std::string &Path : TC.getProgramPaths()) {
|
|
if (separator)
|
|
llvm::outs() << ':';
|
|
llvm::outs() << Path;
|
|
separator = true;
|
|
}
|
|
llvm::outs() << "\n";
|
|
llvm::outs() << "libraries: =" << ResourceDir;
|
|
|
|
StringRef sysroot = C.getSysRoot();
|
|
|
|
for (const std::string &Path : TC.getFilePaths()) {
|
|
// Always print a separator. ResourceDir was the first item shown.
|
|
llvm::outs() << ':';
|
|
// Interpretation of leading '=' is needed only for NetBSD.
|
|
if (Path[0] == '=')
|
|
llvm::outs() << sysroot << Path.substr(1);
|
|
else
|
|
llvm::outs() << Path;
|
|
}
|
|
llvm::outs() << "\n";
|
|
return false;
|
|
}
|
|
|
|
// FIXME: The following handlers should use a callback mechanism, we don't
|
|
// know what the client would like to do.
|
|
if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
|
|
llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
|
|
return false;
|
|
}
|
|
|
|
if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
|
|
StringRef ProgName = A->getValue();
|
|
|
|
// Null program name cannot have a path.
|
|
if (! ProgName.empty())
|
|
llvm::outs() << GetProgramPath(ProgName, TC);
|
|
|
|
llvm::outs() << "\n";
|
|
return false;
|
|
}
|
|
|
|
if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
|
|
StringRef PassedFlags = A->getValue();
|
|
HandleAutocompletions(PassedFlags);
|
|
return false;
|
|
}
|
|
|
|
if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
|
|
ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
|
|
const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
|
|
RegisterEffectiveTriple TripleRAII(TC, Triple);
|
|
switch (RLT) {
|
|
case ToolChain::RLT_CompilerRT:
|
|
llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
|
|
break;
|
|
case ToolChain::RLT_Libgcc:
|
|
llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
|
|
for (const Multilib &Multilib : TC.getMultilibs())
|
|
llvm::outs() << Multilib << "\n";
|
|
return false;
|
|
}
|
|
|
|
if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
|
|
const Multilib &Multilib = TC.getMultilib();
|
|
if (Multilib.gccSuffix().empty())
|
|
llvm::outs() << ".\n";
|
|
else {
|
|
StringRef Suffix(Multilib.gccSuffix());
|
|
assert(Suffix.front() == '/');
|
|
llvm::outs() << Suffix.substr(1) << "\n";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
|
|
llvm::outs() << TC.getTripleString() << "\n";
|
|
return false;
|
|
}
|
|
|
|
if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
|
|
const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
|
|
llvm::outs() << Triple.getTriple() << "\n";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Display an action graph human-readably. Action A is the "sink" node
|
|
// and latest-occuring action. Traversal is in pre-order, visiting the
|
|
// inputs to each action before printing the action itself.
|
|
static unsigned PrintActions1(const Compilation &C, Action *A,
|
|
std::map<Action *, unsigned> &Ids) {
|
|
if (Ids.count(A)) // A was already visited.
|
|
return Ids[A];
|
|
|
|
std::string str;
|
|
llvm::raw_string_ostream os(str);
|
|
|
|
os << Action::getClassName(A->getKind()) << ", ";
|
|
if (InputAction *IA = dyn_cast<InputAction>(A)) {
|
|
os << "\"" << IA->getInputArg().getValue() << "\"";
|
|
} else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
|
|
os << '"' << BIA->getArchName() << '"' << ", {"
|
|
<< PrintActions1(C, *BIA->input_begin(), Ids) << "}";
|
|
} else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
|
|
bool IsFirst = true;
|
|
OA->doOnEachDependence(
|
|
[&](Action *A, const ToolChain *TC, const char *BoundArch) {
|
|
// E.g. for two CUDA device dependences whose bound arch is sm_20 and
|
|
// sm_35 this will generate:
|
|
// "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
|
|
// (nvptx64-nvidia-cuda:sm_35) {#ID}
|
|
if (!IsFirst)
|
|
os << ", ";
|
|
os << '"';
|
|
if (TC)
|
|
os << A->getOffloadingKindPrefix();
|
|
else
|
|
os << "host";
|
|
os << " (";
|
|
os << TC->getTriple().normalize();
|
|
|
|
if (BoundArch)
|
|
os << ":" << BoundArch;
|
|
os << ")";
|
|
os << '"';
|
|
os << " {" << PrintActions1(C, A, Ids) << "}";
|
|
IsFirst = false;
|
|
});
|
|
} else {
|
|
const ActionList *AL = &A->getInputs();
|
|
|
|
if (AL->size()) {
|
|
const char *Prefix = "{";
|
|
for (Action *PreRequisite : *AL) {
|
|
os << Prefix << PrintActions1(C, PreRequisite, Ids);
|
|
Prefix = ", ";
|
|
}
|
|
os << "}";
|
|
} else
|
|
os << "{}";
|
|
}
|
|
|
|
// Append offload info for all options other than the offloading action
|
|
// itself (e.g. (cuda-device, sm_20) or (cuda-host)).
|
|
std::string offload_str;
|
|
llvm::raw_string_ostream offload_os(offload_str);
|
|
if (!isa<OffloadAction>(A)) {
|
|
auto S = A->getOffloadingKindPrefix();
|
|
if (!S.empty()) {
|
|
offload_os << ", (" << S;
|
|
if (A->getOffloadingArch())
|
|
offload_os << ", " << A->getOffloadingArch();
|
|
offload_os << ")";
|
|
}
|
|
}
|
|
|
|
unsigned Id = Ids.size();
|
|
Ids[A] = Id;
|
|
llvm::errs() << Id << ": " << os.str() << ", "
|
|
<< types::getTypeName(A->getType()) << offload_os.str() << "\n";
|
|
|
|
return Id;
|
|
}
|
|
|
|
// Print the action graphs in a compilation C.
|
|
// For example "clang -c file1.c file2.c" is composed of two subgraphs.
|
|
void Driver::PrintActions(const Compilation &C) const {
|
|
std::map<Action *, unsigned> Ids;
|
|
for (Action *A : C.getActions())
|
|
PrintActions1(C, A, Ids);
|
|
}
|
|
|
|
/// Check whether the given input tree contains any compilation or
|
|
/// assembly actions.
|
|
static bool ContainsCompileOrAssembleAction(const Action *A) {
|
|
if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
|
|
isa<AssembleJobAction>(A))
|
|
return true;
|
|
|
|
for (const Action *Input : A->inputs())
|
|
if (ContainsCompileOrAssembleAction(Input))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
|
|
const InputList &BAInputs) const {
|
|
DerivedArgList &Args = C.getArgs();
|
|
ActionList &Actions = C.getActions();
|
|
llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
|
|
// Collect the list of architectures. Duplicates are allowed, but should only
|
|
// be handled once (in the order seen).
|
|
llvm::StringSet<> ArchNames;
|
|
SmallVector<const char *, 4> Archs;
|
|
for (Arg *A : Args) {
|
|
if (A->getOption().matches(options::OPT_arch)) {
|
|
// Validate the option here; we don't save the type here because its
|
|
// particular spelling may participate in other driver choices.
|
|
llvm::Triple::ArchType Arch =
|
|
tools::darwin::getArchTypeForMachOArchName(A->getValue());
|
|
if (Arch == llvm::Triple::UnknownArch) {
|
|
Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
|
|
continue;
|
|
}
|
|
|
|
A->claim();
|
|
if (ArchNames.insert(A->getValue()).second)
|
|
Archs.push_back(A->getValue());
|
|
}
|
|
}
|
|
|
|
// When there is no explicit arch for this platform, make sure we still bind
|
|
// the architecture (to the default) so that -Xarch_ is handled correctly.
|
|
if (!Archs.size())
|
|
Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
|
|
|
|
ActionList SingleActions;
|
|
BuildActions(C, Args, BAInputs, SingleActions);
|
|
|
|
// Add in arch bindings for every top level action, as well as lipo and
|
|
// dsymutil steps if needed.
|
|
for (Action* Act : SingleActions) {
|
|
// Make sure we can lipo this kind of output. If not (and it is an actual
|
|
// output) then we disallow, since we can't create an output file with the
|
|
// right name without overwriting it. We could remove this oddity by just
|
|
// changing the output names to include the arch, which would also fix
|
|
// -save-temps. Compatibility wins for now.
|
|
|
|
if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
|
|
Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
|
|
<< types::getTypeName(Act->getType());
|
|
|
|
ActionList Inputs;
|
|
for (unsigned i = 0, e = Archs.size(); i != e; ++i)
|
|
Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
|
|
|
|
// Lipo if necessary, we do it this way because we need to set the arch flag
|
|
// so that -Xarch_ gets overwritten.
|
|
if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
|
|
Actions.append(Inputs.begin(), Inputs.end());
|
|
else
|
|
Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
|
|
|
|
// Handle debug info queries.
|
|
Arg *A = Args.getLastArg(options::OPT_g_Group);
|
|
if (A && !A->getOption().matches(options::OPT_g0) &&
|
|
!A->getOption().matches(options::OPT_gstabs) &&
|
|
ContainsCompileOrAssembleAction(Actions.back())) {
|
|
|
|
// Add a 'dsymutil' step if necessary, when debug info is enabled and we
|
|
// have a compile input. We need to run 'dsymutil' ourselves in such cases
|
|
// because the debug info will refer to a temporary object file which
|
|
// will be removed at the end of the compilation process.
|
|
if (Act->getType() == types::TY_Image) {
|
|
ActionList Inputs;
|
|
Inputs.push_back(Actions.back());
|
|
Actions.pop_back();
|
|
Actions.push_back(
|
|
C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
|
|
}
|
|
|
|
// Verify the debug info output.
|
|
if (Args.hasArg(options::OPT_verify_debug_info)) {
|
|
Action* LastAction = Actions.back();
|
|
Actions.pop_back();
|
|
Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
|
|
LastAction, types::TY_Nothing));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check that the file referenced by Value exists. If it doesn't,
|
|
/// issue a diagnostic and return false.
|
|
static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args,
|
|
StringRef Value, types::ID Ty) {
|
|
if (!D.getCheckInputsExist())
|
|
return true;
|
|
|
|
// stdin always exists.
|
|
if (Value == "-")
|
|
return true;
|
|
|
|
SmallString<64> Path(Value);
|
|
if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) {
|
|
if (!llvm::sys::path::is_absolute(Path)) {
|
|
SmallString<64> Directory(WorkDir->getValue());
|
|
llvm::sys::path::append(Directory, Value);
|
|
Path.assign(Directory);
|
|
}
|
|
}
|
|
|
|
if (D.getVFS().exists(Path))
|
|
return true;
|
|
|
|
if (D.IsCLMode()) {
|
|
if (!llvm::sys::path::is_absolute(Twine(Path)) &&
|
|
llvm::sys::Process::FindInEnvPath("LIB", Value))
|
|
return true;
|
|
|
|
if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
|
|
// Arguments to the /link flag might cause the linker to search for object
|
|
// and library files in paths we don't know about. Don't error in such
|
|
// cases.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
D.Diag(clang::diag::err_drv_no_such_file) << Path;
|
|
return false;
|
|
}
|
|
|
|
// Construct a the list of inputs and their types.
|
|
void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
|
|
InputList &Inputs) const {
|
|
// Track the current user specified (-x) input. We also explicitly track the
|
|
// argument used to set the type; we only want to claim the type when we
|
|
// actually use it, so we warn about unused -x arguments.
|
|
types::ID InputType = types::TY_Nothing;
|
|
Arg *InputTypeArg = nullptr;
|
|
|
|
// The last /TC or /TP option sets the input type to C or C++ globally.
|
|
if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
|
|
options::OPT__SLASH_TP)) {
|
|
InputTypeArg = TCTP;
|
|
InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
|
|
? types::TY_C
|
|
: types::TY_CXX;
|
|
|
|
Arg *Previous = nullptr;
|
|
bool ShowNote = false;
|
|
for (Arg *A : Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
|
|
if (Previous) {
|
|
Diag(clang::diag::warn_drv_overriding_flag_option)
|
|
<< Previous->getSpelling() << A->getSpelling();
|
|
ShowNote = true;
|
|
}
|
|
Previous = A;
|
|
}
|
|
if (ShowNote)
|
|
Diag(clang::diag::note_drv_t_option_is_global);
|
|
|
|
// No driver mode exposes -x and /TC or /TP; we don't support mixing them.
|
|
assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
|
|
}
|
|
|
|
for (Arg *A : Args) {
|
|
if (A->getOption().getKind() == Option::InputClass) {
|
|
const char *Value = A->getValue();
|
|
types::ID Ty = types::TY_INVALID;
|
|
|
|
// Infer the input type if necessary.
|
|
if (InputType == types::TY_Nothing) {
|
|
// If there was an explicit arg for this, claim it.
|
|
if (InputTypeArg)
|
|
InputTypeArg->claim();
|
|
|
|
// stdin must be handled specially.
|
|
if (memcmp(Value, "-", 2) == 0) {
|
|
// If running with -E, treat as a C input (this changes the builtin
|
|
// macros, for example). This may be overridden by -ObjC below.
|
|
//
|
|
// Otherwise emit an error but still use a valid type to avoid
|
|
// spurious errors (e.g., no inputs).
|
|
if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
|
|
Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
|
|
: clang::diag::err_drv_unknown_stdin_type);
|
|
Ty = types::TY_C;
|
|
} else {
|
|
// Otherwise lookup by extension.
|
|
// Fallback is C if invoked as C preprocessor, C++ if invoked with
|
|
// clang-cl /E, or Object otherwise.
|
|
// We use a host hook here because Darwin at least has its own
|
|
// idea of what .s is.
|
|
if (const char *Ext = strrchr(Value, '.'))
|
|
Ty = TC.LookupTypeForExtension(Ext + 1);
|
|
|
|
if (Ty == types::TY_INVALID) {
|
|
if (CCCIsCPP())
|
|
Ty = types::TY_C;
|
|
else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
|
|
Ty = types::TY_CXX;
|
|
else
|
|
Ty = types::TY_Object;
|
|
}
|
|
|
|
// If the driver is invoked as C++ compiler (like clang++ or c++) it
|
|
// should autodetect some input files as C++ for g++ compatibility.
|
|
if (CCCIsCXX()) {
|
|
types::ID OldTy = Ty;
|
|
Ty = types::lookupCXXTypeForCType(Ty);
|
|
|
|
if (Ty != OldTy)
|
|
Diag(clang::diag::warn_drv_treating_input_as_cxx)
|
|
<< getTypeName(OldTy) << getTypeName(Ty);
|
|
}
|
|
}
|
|
|
|
// -ObjC and -ObjC++ override the default language, but only for "source
|
|
// files". We just treat everything that isn't a linker input as a
|
|
// source file.
|
|
//
|
|
// FIXME: Clean this up if we move the phase sequence into the type.
|
|
if (Ty != types::TY_Object) {
|
|
if (Args.hasArg(options::OPT_ObjC))
|
|
Ty = types::TY_ObjC;
|
|
else if (Args.hasArg(options::OPT_ObjCXX))
|
|
Ty = types::TY_ObjCXX;
|
|
}
|
|
} else {
|
|
assert(InputTypeArg && "InputType set w/o InputTypeArg");
|
|
if (!InputTypeArg->getOption().matches(options::OPT_x)) {
|
|
// If emulating cl.exe, make sure that /TC and /TP don't affect input
|
|
// object files.
|
|
const char *Ext = strrchr(Value, '.');
|
|
if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
|
|
Ty = types::TY_Object;
|
|
}
|
|
if (Ty == types::TY_INVALID) {
|
|
Ty = InputType;
|
|
InputTypeArg->claim();
|
|
}
|
|
}
|
|
|
|
if (DiagnoseInputExistence(*this, Args, Value, Ty))
|
|
Inputs.push_back(std::make_pair(Ty, A));
|
|
|
|
} else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
|
|
StringRef Value = A->getValue();
|
|
if (DiagnoseInputExistence(*this, Args, Value, types::TY_C)) {
|
|
Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
|
|
Inputs.push_back(std::make_pair(types::TY_C, InputArg));
|
|
}
|
|
A->claim();
|
|
} else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
|
|
StringRef Value = A->getValue();
|
|
if (DiagnoseInputExistence(*this, Args, Value, types::TY_CXX)) {
|
|
Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
|
|
Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
|
|
}
|
|
A->claim();
|
|
} else if (A->getOption().hasFlag(options::LinkerInput)) {
|
|
// Just treat as object type, we could make a special type for this if
|
|
// necessary.
|
|
Inputs.push_back(std::make_pair(types::TY_Object, A));
|
|
|
|
} else if (A->getOption().matches(options::OPT_x)) {
|
|
InputTypeArg = A;
|
|
InputType = types::lookupTypeForTypeSpecifier(A->getValue());
|
|
A->claim();
|
|
|
|
// Follow gcc behavior and treat as linker input for invalid -x
|
|
// options. Its not clear why we shouldn't just revert to unknown; but
|
|
// this isn't very important, we might as well be bug compatible.
|
|
if (!InputType) {
|
|
Diag(clang::diag::err_drv_unknown_language) << A->getValue();
|
|
InputType = types::TY_Object;
|
|
}
|
|
} else if (A->getOption().getID() == options::OPT__SLASH_U) {
|
|
assert(A->getNumValues() == 1 && "The /U option has one value.");
|
|
StringRef Val = A->getValue(0);
|
|
if (Val.find_first_of("/\\") != StringRef::npos) {
|
|
// Warn about e.g. "/Users/me/myfile.c".
|
|
Diag(diag::warn_slash_u_filename) << Val;
|
|
Diag(diag::note_use_dashdash);
|
|
}
|
|
}
|
|
}
|
|
if (CCCIsCPP() && Inputs.empty()) {
|
|
// If called as standalone preprocessor, stdin is processed
|
|
// if no other input is present.
|
|
Arg *A = MakeInputArg(Args, *Opts, "-");
|
|
Inputs.push_back(std::make_pair(types::TY_C, A));
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// Provides a convenient interface for different programming models to generate
|
|
/// the required device actions.
|
|
class OffloadingActionBuilder final {
|
|
/// Flag used to trace errors in the builder.
|
|
bool IsValid = false;
|
|
|
|
/// The compilation that is using this builder.
|
|
Compilation &C;
|
|
|
|
/// Map between an input argument and the offload kinds used to process it.
|
|
std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
|
|
|
|
/// Builder interface. It doesn't build anything or keep any state.
|
|
class DeviceActionBuilder {
|
|
public:
|
|
typedef llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PhasesTy;
|
|
|
|
enum ActionBuilderReturnCode {
|
|
// The builder acted successfully on the current action.
|
|
ABRT_Success,
|
|
// The builder didn't have to act on the current action.
|
|
ABRT_Inactive,
|
|
// The builder was successful and requested the host action to not be
|
|
// generated.
|
|
ABRT_Ignore_Host,
|
|
};
|
|
|
|
protected:
|
|
/// Compilation associated with this builder.
|
|
Compilation &C;
|
|
|
|
/// Tool chains associated with this builder. The same programming
|
|
/// model may have associated one or more tool chains.
|
|
SmallVector<const ToolChain *, 2> ToolChains;
|
|
|
|
/// The derived arguments associated with this builder.
|
|
DerivedArgList &Args;
|
|
|
|
/// The inputs associated with this builder.
|
|
const Driver::InputList &Inputs;
|
|
|
|
/// The associated offload kind.
|
|
Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
|
|
|
|
public:
|
|
DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
|
|
const Driver::InputList &Inputs,
|
|
Action::OffloadKind AssociatedOffloadKind)
|
|
: C(C), Args(Args), Inputs(Inputs),
|
|
AssociatedOffloadKind(AssociatedOffloadKind) {}
|
|
virtual ~DeviceActionBuilder() {}
|
|
|
|
/// Fill up the array \a DA with all the device dependences that should be
|
|
/// added to the provided host action \a HostAction. By default it is
|
|
/// inactive.
|
|
virtual ActionBuilderReturnCode
|
|
getDeviceDependences(OffloadAction::DeviceDependences &DA,
|
|
phases::ID CurPhase, phases::ID FinalPhase,
|
|
PhasesTy &Phases) {
|
|
return ABRT_Inactive;
|
|
}
|
|
|
|
/// Update the state to include the provided host action \a HostAction as a
|
|
/// dependency of the current device action. By default it is inactive.
|
|
virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
|
|
return ABRT_Inactive;
|
|
}
|
|
|
|
/// Append top level actions generated by the builder. Return true if errors
|
|
/// were found.
|
|
virtual void appendTopLevelActions(ActionList &AL) {}
|
|
|
|
/// Append linker actions generated by the builder. Return true if errors
|
|
/// were found.
|
|
virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
|
|
|
|
/// Initialize the builder. Return true if any initialization errors are
|
|
/// found.
|
|
virtual bool initialize() { return false; }
|
|
|
|
/// Return true if the builder can use bundling/unbundling.
|
|
virtual bool canUseBundlerUnbundler() const { return false; }
|
|
|
|
/// Return true if this builder is valid. We have a valid builder if we have
|
|
/// associated device tool chains.
|
|
bool isValid() { return !ToolChains.empty(); }
|
|
|
|
/// Return the associated offload kind.
|
|
Action::OffloadKind getAssociatedOffloadKind() {
|
|
return AssociatedOffloadKind;
|
|
}
|
|
};
|
|
|
|
/// Base class for CUDA/HIP action builder. It injects device code in
|
|
/// the host backend action.
|
|
class CudaActionBuilderBase : public DeviceActionBuilder {
|
|
protected:
|
|
/// Flags to signal if the user requested host-only or device-only
|
|
/// compilation.
|
|
bool CompileHostOnly = false;
|
|
bool CompileDeviceOnly = false;
|
|
|
|
/// List of GPU architectures to use in this compilation.
|
|
SmallVector<CudaArch, 4> GpuArchList;
|
|
|
|
/// The CUDA actions for the current input.
|
|
ActionList CudaDeviceActions;
|
|
|
|
/// The CUDA fat binary if it was generated for the current input.
|
|
Action *CudaFatBinary = nullptr;
|
|
|
|
/// Flag that is set to true if this builder acted on the current input.
|
|
bool IsActive = false;
|
|
public:
|
|
CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
|
|
const Driver::InputList &Inputs,
|
|
Action::OffloadKind OFKind)
|
|
: DeviceActionBuilder(C, Args, Inputs, OFKind) {}
|
|
|
|
ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
|
|
// While generating code for CUDA, we only depend on the host input action
|
|
// to trigger the creation of all the CUDA device actions.
|
|
|
|
// If we are dealing with an input action, replicate it for each GPU
|
|
// architecture. If we are in host-only mode we return 'success' so that
|
|
// the host uses the CUDA offload kind.
|
|
if (auto *IA = dyn_cast<InputAction>(HostAction)) {
|
|
assert(!GpuArchList.empty() &&
|
|
"We should have at least one GPU architecture.");
|
|
|
|
// If the host input is not CUDA or HIP, we don't need to bother about
|
|
// this input.
|
|
if (IA->getType() != types::TY_CUDA &&
|
|
IA->getType() != types::TY_HIP) {
|
|
// The builder will ignore this input.
|
|
IsActive = false;
|
|
return ABRT_Inactive;
|
|
}
|
|
|
|
// Set the flag to true, so that the builder acts on the current input.
|
|
IsActive = true;
|
|
|
|
if (CompileHostOnly)
|
|
return ABRT_Success;
|
|
|
|
// Replicate inputs for each GPU architecture.
|
|
auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
|
|
: types::TY_CUDA_DEVICE;
|
|
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
|
|
CudaDeviceActions.push_back(
|
|
C.MakeAction<InputAction>(IA->getInputArg(), Ty));
|
|
}
|
|
|
|
return ABRT_Success;
|
|
}
|
|
|
|
// If this is an unbundling action use it as is for each CUDA toolchain.
|
|
if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
|
|
CudaDeviceActions.clear();
|
|
for (auto Arch : GpuArchList) {
|
|
CudaDeviceActions.push_back(UA);
|
|
UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
|
|
AssociatedOffloadKind);
|
|
}
|
|
return ABRT_Success;
|
|
}
|
|
|
|
return IsActive ? ABRT_Success : ABRT_Inactive;
|
|
}
|
|
|
|
void appendTopLevelActions(ActionList &AL) override {
|
|
// Utility to append actions to the top level list.
|
|
auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
|
|
OffloadAction::DeviceDependences Dep;
|
|
Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
|
|
AssociatedOffloadKind);
|
|
AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
|
|
};
|
|
|
|
// If we have a fat binary, add it to the list.
|
|
if (CudaFatBinary) {
|
|
AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
|
|
CudaDeviceActions.clear();
|
|
CudaFatBinary = nullptr;
|
|
return;
|
|
}
|
|
|
|
if (CudaDeviceActions.empty())
|
|
return;
|
|
|
|
// If we have CUDA actions at this point, that's because we have a have
|
|
// partial compilation, so we should have an action for each GPU
|
|
// architecture.
|
|
assert(CudaDeviceActions.size() == GpuArchList.size() &&
|
|
"Expecting one action per GPU architecture.");
|
|
assert(ToolChains.size() == 1 &&
|
|
"Expecting to have a sing CUDA toolchain.");
|
|
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
|
|
AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
|
|
|
|
CudaDeviceActions.clear();
|
|
}
|
|
|
|
bool initialize() override {
|
|
assert(AssociatedOffloadKind == Action::OFK_Cuda ||
|
|
AssociatedOffloadKind == Action::OFK_HIP);
|
|
|
|
// We don't need to support CUDA.
|
|
if (AssociatedOffloadKind == Action::OFK_Cuda &&
|
|
!C.hasOffloadToolChain<Action::OFK_Cuda>())
|
|
return false;
|
|
|
|
// We don't need to support HIP.
|
|
if (AssociatedOffloadKind == Action::OFK_HIP &&
|
|
!C.hasOffloadToolChain<Action::OFK_HIP>())
|
|
return false;
|
|
|
|
const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
|
|
assert(HostTC && "No toolchain for host compilation.");
|
|
if (HostTC->getTriple().isNVPTX() ||
|
|
HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
|
|
// We do not support targeting NVPTX/AMDGCN for host compilation. Throw
|
|
// an error and abort pipeline construction early so we don't trip
|
|
// asserts that assume device-side compilation.
|
|
C.getDriver().Diag(diag::err_drv_cuda_host_arch)
|
|
<< HostTC->getTriple().getArchName();
|
|
return true;
|
|
}
|
|
|
|
ToolChains.push_back(
|
|
AssociatedOffloadKind == Action::OFK_Cuda
|
|
? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
|
|
: C.getSingleOffloadToolChain<Action::OFK_HIP>());
|
|
|
|
Arg *PartialCompilationArg = Args.getLastArg(
|
|
options::OPT_cuda_host_only, options::OPT_cuda_device_only,
|
|
options::OPT_cuda_compile_host_device);
|
|
CompileHostOnly = PartialCompilationArg &&
|
|
PartialCompilationArg->getOption().matches(
|
|
options::OPT_cuda_host_only);
|
|
CompileDeviceOnly = PartialCompilationArg &&
|
|
PartialCompilationArg->getOption().matches(
|
|
options::OPT_cuda_device_only);
|
|
|
|
// Collect all cuda_gpu_arch parameters, removing duplicates.
|
|
std::set<CudaArch> GpuArchs;
|
|
bool Error = false;
|
|
for (Arg *A : Args) {
|
|
if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) ||
|
|
A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)))
|
|
continue;
|
|
A->claim();
|
|
|
|
const StringRef ArchStr = A->getValue();
|
|
if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) &&
|
|
ArchStr == "all") {
|
|
GpuArchs.clear();
|
|
continue;
|
|
}
|
|
CudaArch Arch = StringToCudaArch(ArchStr);
|
|
if (Arch == CudaArch::UNKNOWN) {
|
|
C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
|
|
Error = true;
|
|
} else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
|
|
GpuArchs.insert(Arch);
|
|
else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))
|
|
GpuArchs.erase(Arch);
|
|
else
|
|
llvm_unreachable("Unexpected option.");
|
|
}
|
|
|
|
// Collect list of GPUs remaining in the set.
|
|
for (CudaArch Arch : GpuArchs)
|
|
GpuArchList.push_back(Arch);
|
|
|
|
// Default to sm_20 which is the lowest common denominator for
|
|
// supported GPUs. sm_20 code should work correctly, if
|
|
// suboptimally, on all newer GPUs.
|
|
if (GpuArchList.empty())
|
|
GpuArchList.push_back(CudaArch::SM_20);
|
|
|
|
return Error;
|
|
}
|
|
};
|
|
|
|
/// \brief CUDA action builder. It injects device code in the host backend
|
|
/// action.
|
|
class CudaActionBuilder final : public CudaActionBuilderBase {
|
|
public:
|
|
CudaActionBuilder(Compilation &C, DerivedArgList &Args,
|
|
const Driver::InputList &Inputs)
|
|
: CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {}
|
|
|
|
ActionBuilderReturnCode
|
|
getDeviceDependences(OffloadAction::DeviceDependences &DA,
|
|
phases::ID CurPhase, phases::ID FinalPhase,
|
|
PhasesTy &Phases) override {
|
|
if (!IsActive)
|
|
return ABRT_Inactive;
|
|
|
|
// If we don't have more CUDA actions, we don't have any dependences to
|
|
// create for the host.
|
|
if (CudaDeviceActions.empty())
|
|
return ABRT_Success;
|
|
|
|
assert(CudaDeviceActions.size() == GpuArchList.size() &&
|
|
"Expecting one action per GPU architecture.");
|
|
assert(!CompileHostOnly &&
|
|
"Not expecting CUDA actions in host-only compilation.");
|
|
|
|
// If we are generating code for the device or we are in a backend phase,
|
|
// we attempt to generate the fat binary. We compile each arch to ptx and
|
|
// assemble to cubin, then feed the cubin *and* the ptx into a device
|
|
// "link" action, which uses fatbinary to combine these cubins into one
|
|
// fatbin. The fatbin is then an input to the host action if not in
|
|
// device-only mode.
|
|
if (CompileDeviceOnly || CurPhase == phases::Backend) {
|
|
ActionList DeviceActions;
|
|
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
|
|
// Produce the device action from the current phase up to the assemble
|
|
// phase.
|
|
for (auto Ph : Phases) {
|
|
// Skip the phases that were already dealt with.
|
|
if (Ph < CurPhase)
|
|
continue;
|
|
// We have to be consistent with the host final phase.
|
|
if (Ph > FinalPhase)
|
|
break;
|
|
|
|
CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
|
|
C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
|
|
|
|
if (Ph == phases::Assemble)
|
|
break;
|
|
}
|
|
|
|
// If we didn't reach the assemble phase, we can't generate the fat
|
|
// binary. We don't need to generate the fat binary if we are not in
|
|
// device-only mode.
|
|
if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
|
|
CompileDeviceOnly)
|
|
continue;
|
|
|
|
Action *AssembleAction = CudaDeviceActions[I];
|
|
assert(AssembleAction->getType() == types::TY_Object);
|
|
assert(AssembleAction->getInputs().size() == 1);
|
|
|
|
Action *BackendAction = AssembleAction->getInputs()[0];
|
|
assert(BackendAction->getType() == types::TY_PP_Asm);
|
|
|
|
for (auto &A : {AssembleAction, BackendAction}) {
|
|
OffloadAction::DeviceDependences DDep;
|
|
DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
|
|
Action::OFK_Cuda);
|
|
DeviceActions.push_back(
|
|
C.MakeAction<OffloadAction>(DDep, A->getType()));
|
|
}
|
|
}
|
|
|
|
// We generate the fat binary if we have device input actions.
|
|
if (!DeviceActions.empty()) {
|
|
CudaFatBinary =
|
|
C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
|
|
|
|
if (!CompileDeviceOnly) {
|
|
DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
|
|
Action::OFK_Cuda);
|
|
// Clear the fat binary, it is already a dependence to an host
|
|
// action.
|
|
CudaFatBinary = nullptr;
|
|
}
|
|
|
|
// Remove the CUDA actions as they are already connected to an host
|
|
// action or fat binary.
|
|
CudaDeviceActions.clear();
|
|
}
|
|
|
|
// We avoid creating host action in device-only mode.
|
|
return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
|
|
} else if (CurPhase > phases::Backend) {
|
|
// If we are past the backend phase and still have a device action, we
|
|
// don't have to do anything as this action is already a device
|
|
// top-level action.
|
|
return ABRT_Success;
|
|
}
|
|
|
|
assert(CurPhase < phases::Backend && "Generating single CUDA "
|
|
"instructions should only occur "
|
|
"before the backend phase!");
|
|
|
|
// By default, we produce an action for each device arch.
|
|
for (Action *&A : CudaDeviceActions)
|
|
A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
|
|
|
|
return ABRT_Success;
|
|
}
|
|
};
|
|
/// \brief HIP action builder. It injects device code in the host backend
|
|
/// action.
|
|
class HIPActionBuilder final : public CudaActionBuilderBase {
|
|
/// The linker inputs obtained for each device arch.
|
|
SmallVector<ActionList, 8> DeviceLinkerInputs;
|
|
bool Relocatable;
|
|
|
|
public:
|
|
HIPActionBuilder(Compilation &C, DerivedArgList &Args,
|
|
const Driver::InputList &Inputs)
|
|
: CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP),
|
|
Relocatable(false) {}
|
|
|
|
bool canUseBundlerUnbundler() const override { return true; }
|
|
|
|
ActionBuilderReturnCode
|
|
getDeviceDependences(OffloadAction::DeviceDependences &DA,
|
|
phases::ID CurPhase, phases::ID FinalPhase,
|
|
PhasesTy &Phases) override {
|
|
// amdgcn does not support linking of object files, therefore we skip
|
|
// backend and assemble phases to output LLVM IR. Except for generating
|
|
// non-relocatable device coee, where we generate fat binary for device
|
|
// code and pass to host in Backend phase.
|
|
if (CudaDeviceActions.empty() ||
|
|
(CurPhase == phases::Backend && Relocatable) ||
|
|
CurPhase == phases::Assemble)
|
|
return ABRT_Success;
|
|
|
|
assert(((CurPhase == phases::Link && Relocatable) ||
|
|
CudaDeviceActions.size() == GpuArchList.size()) &&
|
|
"Expecting one action per GPU architecture.");
|
|
assert(!CompileHostOnly &&
|
|
"Not expecting CUDA actions in host-only compilation.");
|
|
|
|
if (!Relocatable && CurPhase == phases::Backend) {
|
|
// If we are in backend phase, we attempt to generate the fat binary.
|
|
// We compile each arch to IR and use a link action to generate code
|
|
// object containing ISA. Then we use a special "link" action to create
|
|
// a fat binary containing all the code objects for different GPU's.
|
|
// The fat binary is then an input to the host action.
|
|
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
|
|
// Create a link action to link device IR with device library
|
|
// and generate ISA.
|
|
ActionList AL;
|
|
AL.push_back(CudaDeviceActions[I]);
|
|
CudaDeviceActions[I] =
|
|
C.MakeAction<LinkJobAction>(AL, types::TY_Image);
|
|
|
|
// OffloadingActionBuilder propagates device arch until an offload
|
|
// action. Since the next action for creating fatbin does
|
|
// not have device arch, whereas the above link action and its input
|
|
// have device arch, an offload action is needed to stop the null
|
|
// device arch of the next action being propagated to the above link
|
|
// action.
|
|
OffloadAction::DeviceDependences DDep;
|
|
DDep.add(*CudaDeviceActions[I], *ToolChains.front(),
|
|
CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
|
|
CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
|
|
DDep, CudaDeviceActions[I]->getType());
|
|
}
|
|
// Create HIP fat binary with a special "link" action.
|
|
CudaFatBinary =
|
|
C.MakeAction<LinkJobAction>(CudaDeviceActions,
|
|
types::TY_HIP_FATBIN);
|
|
|
|
if (!CompileDeviceOnly) {
|
|
DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
|
|
AssociatedOffloadKind);
|
|
// Clear the fat binary, it is already a dependence to an host
|
|
// action.
|
|
CudaFatBinary = nullptr;
|
|
}
|
|
|
|
// Remove the CUDA actions as they are already connected to an host
|
|
// action or fat binary.
|
|
CudaDeviceActions.clear();
|
|
|
|
return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
|
|
} else if (CurPhase == phases::Link) {
|
|
// Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
|
|
// This happens to each device action originated from each input file.
|
|
// Later on, device actions in DeviceLinkerInputs are used to create
|
|
// device link actions in appendLinkDependences and the created device
|
|
// link actions are passed to the offload action as device dependence.
|
|
DeviceLinkerInputs.resize(CudaDeviceActions.size());
|
|
auto LI = DeviceLinkerInputs.begin();
|
|
for (auto *A : CudaDeviceActions) {
|
|
LI->push_back(A);
|
|
++LI;
|
|
}
|
|
|
|
// We will pass the device action as a host dependence, so we don't
|
|
// need to do anything else with them.
|
|
CudaDeviceActions.clear();
|
|
return ABRT_Success;
|
|
}
|
|
|
|
// By default, we produce an action for each device arch.
|
|
for (Action *&A : CudaDeviceActions)
|
|
A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
|
|
AssociatedOffloadKind);
|
|
|
|
return ABRT_Success;
|
|
}
|
|
|
|
void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
|
|
// Append a new link action for each device.
|
|
unsigned I = 0;
|
|
for (auto &LI : DeviceLinkerInputs) {
|
|
auto *DeviceLinkAction =
|
|
C.MakeAction<LinkJobAction>(LI, types::TY_Image);
|
|
DA.add(*DeviceLinkAction, *ToolChains[0],
|
|
CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
|
|
++I;
|
|
}
|
|
}
|
|
|
|
bool initialize() override {
|
|
Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
|
|
options::OPT_fno_gpu_rdc, /*Default=*/false);
|
|
|
|
return CudaActionBuilderBase::initialize();
|
|
}
|
|
};
|
|
|
|
/// OpenMP action builder. The host bitcode is passed to the device frontend
|
|
/// and all the device linked images are passed to the host link phase.
|
|
class OpenMPActionBuilder final : public DeviceActionBuilder {
|
|
/// The OpenMP actions for the current input.
|
|
ActionList OpenMPDeviceActions;
|
|
|
|
/// The linker inputs obtained for each toolchain.
|
|
SmallVector<ActionList, 8> DeviceLinkerInputs;
|
|
|
|
public:
|
|
OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
|
|
const Driver::InputList &Inputs)
|
|
: DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
|
|
|
|
ActionBuilderReturnCode
|
|
getDeviceDependences(OffloadAction::DeviceDependences &DA,
|
|
phases::ID CurPhase, phases::ID FinalPhase,
|
|
PhasesTy &Phases) override {
|
|
if (OpenMPDeviceActions.empty())
|
|
return ABRT_Inactive;
|
|
|
|
// We should always have an action for each input.
|
|
assert(OpenMPDeviceActions.size() == ToolChains.size() &&
|
|
"Number of OpenMP actions and toolchains do not match.");
|
|
|
|
// The host only depends on device action in the linking phase, when all
|
|
// the device images have to be embedded in the host image.
|
|
if (CurPhase == phases::Link) {
|
|
assert(ToolChains.size() == DeviceLinkerInputs.size() &&
|
|
"Toolchains and linker inputs sizes do not match.");
|
|
auto LI = DeviceLinkerInputs.begin();
|
|
for (auto *A : OpenMPDeviceActions) {
|
|
LI->push_back(A);
|
|
++LI;
|
|
}
|
|
|
|
// We passed the device action as a host dependence, so we don't need to
|
|
// do anything else with them.
|
|
OpenMPDeviceActions.clear();
|
|
return ABRT_Success;
|
|
}
|
|
|
|
// By default, we produce an action for each device arch.
|
|
for (Action *&A : OpenMPDeviceActions)
|
|
A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
|
|
|
|
return ABRT_Success;
|
|
}
|
|
|
|
ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
|
|
|
|
// If this is an input action replicate it for each OpenMP toolchain.
|
|
if (auto *IA = dyn_cast<InputAction>(HostAction)) {
|
|
OpenMPDeviceActions.clear();
|
|
for (unsigned I = 0; I < ToolChains.size(); ++I)
|
|
OpenMPDeviceActions.push_back(
|
|
C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
|
|
return ABRT_Success;
|
|
}
|
|
|
|
// If this is an unbundling action use it as is for each OpenMP toolchain.
|
|
if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
|
|
OpenMPDeviceActions.clear();
|
|
auto *IA = cast<InputAction>(UA->getInputs().back());
|
|
std::string FileName = IA->getInputArg().getAsString(Args);
|
|
// Check if the type of the file is the same as the action. Do not
|
|
// unbundle it if it is not. Do not unbundle .so files, for example,
|
|
// which are not object files.
|
|
if (IA->getType() == types::TY_Object &&
|
|
(!llvm::sys::path::has_extension(FileName) ||
|
|
types::lookupTypeForExtension(
|
|
llvm::sys::path::extension(FileName).drop_front()) !=
|
|
types::TY_Object))
|
|
return ABRT_Inactive;
|
|
for (unsigned I = 0; I < ToolChains.size(); ++I) {
|
|
OpenMPDeviceActions.push_back(UA);
|
|
UA->registerDependentActionInfo(
|
|
ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
|
|
}
|
|
return ABRT_Success;
|
|
}
|
|
|
|
// When generating code for OpenMP we use the host compile phase result as
|
|
// a dependence to the device compile phase so that it can learn what
|
|
// declarations should be emitted. However, this is not the only use for
|
|
// the host action, so we prevent it from being collapsed.
|
|
if (isa<CompileJobAction>(HostAction)) {
|
|
HostAction->setCannotBeCollapsedWithNextDependentAction();
|
|
assert(ToolChains.size() == OpenMPDeviceActions.size() &&
|
|
"Toolchains and device action sizes do not match.");
|
|
OffloadAction::HostDependence HDep(
|
|
*HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
|
|
/*BoundArch=*/nullptr, Action::OFK_OpenMP);
|
|
auto TC = ToolChains.begin();
|
|
for (Action *&A : OpenMPDeviceActions) {
|
|
assert(isa<CompileJobAction>(A));
|
|
OffloadAction::DeviceDependences DDep;
|
|
DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
|
|
A = C.MakeAction<OffloadAction>(HDep, DDep);
|
|
++TC;
|
|
}
|
|
}
|
|
return ABRT_Success;
|
|
}
|
|
|
|
void appendTopLevelActions(ActionList &AL) override {
|
|
if (OpenMPDeviceActions.empty())
|
|
return;
|
|
|
|
// We should always have an action for each input.
|
|
assert(OpenMPDeviceActions.size() == ToolChains.size() &&
|
|
"Number of OpenMP actions and toolchains do not match.");
|
|
|
|
// Append all device actions followed by the proper offload action.
|
|
auto TI = ToolChains.begin();
|
|
for (auto *A : OpenMPDeviceActions) {
|
|
OffloadAction::DeviceDependences Dep;
|
|
Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
|
|
AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
|
|
++TI;
|
|
}
|
|
// We no longer need the action stored in this builder.
|
|
OpenMPDeviceActions.clear();
|
|
}
|
|
|
|
void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
|
|
assert(ToolChains.size() == DeviceLinkerInputs.size() &&
|
|
"Toolchains and linker inputs sizes do not match.");
|
|
|
|
// Append a new link action for each device.
|
|
auto TC = ToolChains.begin();
|
|
for (auto &LI : DeviceLinkerInputs) {
|
|
auto *DeviceLinkAction =
|
|
C.MakeAction<LinkJobAction>(LI, types::TY_Image);
|
|
DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
|
|
Action::OFK_OpenMP);
|
|
++TC;
|
|
}
|
|
}
|
|
|
|
bool initialize() override {
|
|
// Get the OpenMP toolchains. If we don't get any, the action builder will
|
|
// know there is nothing to do related to OpenMP offloading.
|
|
auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
|
|
for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
|
|
++TI)
|
|
ToolChains.push_back(TI->second);
|
|
|
|
DeviceLinkerInputs.resize(ToolChains.size());
|
|
return false;
|
|
}
|
|
|
|
bool canUseBundlerUnbundler() const override {
|
|
// OpenMP should use bundled files whenever possible.
|
|
return true;
|
|
}
|
|
};
|
|
|
|
///
|
|
/// TODO: Add the implementation for other specialized builders here.
|
|
///
|
|
|
|
/// Specialized builders being used by this offloading action builder.
|
|
SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
|
|
|
|
/// Flag set to true if all valid builders allow file bundling/unbundling.
|
|
bool CanUseBundler;
|
|
|
|
public:
|
|
OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
|
|
const Driver::InputList &Inputs)
|
|
: C(C) {
|
|
// Create a specialized builder for each device toolchain.
|
|
|
|
IsValid = true;
|
|
|
|
// Create a specialized builder for CUDA.
|
|
SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
|
|
|
|
// Create a specialized builder for HIP.
|
|
SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
|
|
|
|
// Create a specialized builder for OpenMP.
|
|
SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
|
|
|
|
//
|
|
// TODO: Build other specialized builders here.
|
|
//
|
|
|
|
// Initialize all the builders, keeping track of errors. If all valid
|
|
// builders agree that we can use bundling, set the flag to true.
|
|
unsigned ValidBuilders = 0u;
|
|
unsigned ValidBuildersSupportingBundling = 0u;
|
|
for (auto *SB : SpecializedBuilders) {
|
|
IsValid = IsValid && !SB->initialize();
|
|
|
|
// Update the counters if the builder is valid.
|
|
if (SB->isValid()) {
|
|
++ValidBuilders;
|
|
if (SB->canUseBundlerUnbundler())
|
|
++ValidBuildersSupportingBundling;
|
|
}
|
|
}
|
|
CanUseBundler =
|
|
ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
|
|
}
|
|
|
|
~OffloadingActionBuilder() {
|
|
for (auto *SB : SpecializedBuilders)
|
|
delete SB;
|
|
}
|
|
|
|
/// Generate an action that adds device dependences (if any) to a host action.
|
|
/// If no device dependence actions exist, just return the host action \a
|
|
/// HostAction. If an error is found or if no builder requires the host action
|
|
/// to be generated, return nullptr.
|
|
Action *
|
|
addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
|
|
phases::ID CurPhase, phases::ID FinalPhase,
|
|
DeviceActionBuilder::PhasesTy &Phases) {
|
|
if (!IsValid)
|
|
return nullptr;
|
|
|
|
if (SpecializedBuilders.empty())
|
|
return HostAction;
|
|
|
|
assert(HostAction && "Invalid host action!");
|
|
|
|
OffloadAction::DeviceDependences DDeps;
|
|
// Check if all the programming models agree we should not emit the host
|
|
// action. Also, keep track of the offloading kinds employed.
|
|
auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
|
|
unsigned InactiveBuilders = 0u;
|
|
unsigned IgnoringBuilders = 0u;
|
|
for (auto *SB : SpecializedBuilders) {
|
|
if (!SB->isValid()) {
|
|
++InactiveBuilders;
|
|
continue;
|
|
}
|
|
|
|
auto RetCode =
|
|
SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
|
|
|
|
// If the builder explicitly says the host action should be ignored,
|
|
// we need to increment the variable that tracks the builders that request
|
|
// the host object to be ignored.
|
|
if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
|
|
++IgnoringBuilders;
|
|
|
|
// Unless the builder was inactive for this action, we have to record the
|
|
// offload kind because the host will have to use it.
|
|
if (RetCode != DeviceActionBuilder::ABRT_Inactive)
|
|
OffloadKind |= SB->getAssociatedOffloadKind();
|
|
}
|
|
|
|
// If all builders agree that the host object should be ignored, just return
|
|
// nullptr.
|
|
if (IgnoringBuilders &&
|
|
SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
|
|
return nullptr;
|
|
|
|
if (DDeps.getActions().empty())
|
|
return HostAction;
|
|
|
|
// We have dependences we need to bundle together. We use an offload action
|
|
// for that.
|
|
OffloadAction::HostDependence HDep(
|
|
*HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
|
|
/*BoundArch=*/nullptr, DDeps);
|
|
return C.MakeAction<OffloadAction>(HDep, DDeps);
|
|
}
|
|
|
|
/// Generate an action that adds a host dependence to a device action. The
|
|
/// results will be kept in this action builder. Return true if an error was
|
|
/// found.
|
|
bool addHostDependenceToDeviceActions(Action *&HostAction,
|
|
const Arg *InputArg) {
|
|
if (!IsValid)
|
|
return true;
|
|
|
|
// If we are supporting bundling/unbundling and the current action is an
|
|
// input action of non-source file, we replace the host action by the
|
|
// unbundling action. The bundler tool has the logic to detect if an input
|
|
// is a bundle or not and if the input is not a bundle it assumes it is a
|
|
// host file. Therefore it is safe to create an unbundling action even if
|
|
// the input is not a bundle.
|
|
if (CanUseBundler && isa<InputAction>(HostAction) &&
|
|
InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
|
|
!types::isSrcFile(HostAction->getType())) {
|
|
auto UnbundlingHostAction =
|
|
C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
|
|
UnbundlingHostAction->registerDependentActionInfo(
|
|
C.getSingleOffloadToolChain<Action::OFK_Host>(),
|
|
/*BoundArch=*/StringRef(), Action::OFK_Host);
|
|
HostAction = UnbundlingHostAction;
|
|
}
|
|
|
|
assert(HostAction && "Invalid host action!");
|
|
|
|
// Register the offload kinds that are used.
|
|
auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
|
|
for (auto *SB : SpecializedBuilders) {
|
|
if (!SB->isValid())
|
|
continue;
|
|
|
|
auto RetCode = SB->addDeviceDepences(HostAction);
|
|
|
|
// Host dependences for device actions are not compatible with that same
|
|
// action being ignored.
|
|
assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
|
|
"Host dependence not expected to be ignored.!");
|
|
|
|
// Unless the builder was inactive for this action, we have to record the
|
|
// offload kind because the host will have to use it.
|
|
if (RetCode != DeviceActionBuilder::ABRT_Inactive)
|
|
OffloadKind |= SB->getAssociatedOffloadKind();
|
|
}
|
|
|
|
// Do not use unbundler if the Host does not depend on device action.
|
|
if (OffloadKind == Action::OFK_None && CanUseBundler)
|
|
if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
|
|
HostAction = UA->getInputs().back();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Add the offloading top level actions to the provided action list. This
|
|
/// function can replace the host action by a bundling action if the
|
|
/// programming models allow it.
|
|
bool appendTopLevelActions(ActionList &AL, Action *HostAction,
|
|
const Arg *InputArg) {
|
|
// Get the device actions to be appended.
|
|
ActionList OffloadAL;
|
|
for (auto *SB : SpecializedBuilders) {
|
|
if (!SB->isValid())
|
|
continue;
|
|
SB->appendTopLevelActions(OffloadAL);
|
|
}
|
|
|
|
// If we can use the bundler, replace the host action by the bundling one in
|
|
// the resulting list. Otherwise, just append the device actions. For
|
|
// device only compilation, HostAction is a null pointer, therefore only do
|
|
// this when HostAction is not a null pointer.
|
|
if (CanUseBundler && HostAction && !OffloadAL.empty()) {
|
|
// Add the host action to the list in order to create the bundling action.
|
|
OffloadAL.push_back(HostAction);
|
|
|
|
// We expect that the host action was just appended to the action list
|
|
// before this method was called.
|
|
assert(HostAction == AL.back() && "Host action not in the list??");
|
|
HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
|
|
AL.back() = HostAction;
|
|
} else
|
|
AL.append(OffloadAL.begin(), OffloadAL.end());
|
|
|
|
// Propagate to the current host action (if any) the offload information
|
|
// associated with the current input.
|
|
if (HostAction)
|
|
HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
|
|
/*BoundArch=*/nullptr);
|
|
return false;
|
|
}
|
|
|
|
/// Processes the host linker action. This currently consists of replacing it
|
|
/// with an offload action if there are device link objects and propagate to
|
|
/// the host action all the offload kinds used in the current compilation. The
|
|
/// resulting action is returned.
|
|
Action *processHostLinkAction(Action *HostAction) {
|
|
// Add all the dependences from the device linking actions.
|
|
OffloadAction::DeviceDependences DDeps;
|
|
for (auto *SB : SpecializedBuilders) {
|
|
if (!SB->isValid())
|
|
continue;
|
|
|
|
SB->appendLinkDependences(DDeps);
|
|
}
|
|
|
|
// Calculate all the offload kinds used in the current compilation.
|
|
unsigned ActiveOffloadKinds = 0u;
|
|
for (auto &I : InputArgToOffloadKindMap)
|
|
ActiveOffloadKinds |= I.second;
|
|
|
|
// If we don't have device dependencies, we don't have to create an offload
|
|
// action.
|
|
if (DDeps.getActions().empty()) {
|
|
// Propagate all the active kinds to host action. Given that it is a link
|
|
// action it is assumed to depend on all actions generated so far.
|
|
HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
|
|
/*BoundArch=*/nullptr);
|
|
return HostAction;
|
|
}
|
|
|
|
// Create the offload action with all dependences. When an offload action
|
|
// is created the kinds are propagated to the host action, so we don't have
|
|
// to do that explicitly here.
|
|
OffloadAction::HostDependence HDep(
|
|
*HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
|
|
/*BoundArch*/ nullptr, ActiveOffloadKinds);
|
|
return C.MakeAction<OffloadAction>(HDep, DDeps);
|
|
}
|
|
};
|
|
} // anonymous namespace.
|
|
|
|
void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
|
|
const InputList &Inputs, ActionList &Actions) const {
|
|
llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
|
|
|
|
if (!SuppressMissingInputWarning && Inputs.empty()) {
|
|
Diag(clang::diag::err_drv_no_input_files);
|
|
return;
|
|
}
|
|
|
|
Arg *FinalPhaseArg;
|
|
phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
|
|
|
|
if (FinalPhase == phases::Link) {
|
|
if (Args.hasArg(options::OPT_emit_llvm))
|
|
Diag(clang::diag::err_drv_emit_llvm_link);
|
|
if (IsCLMode() && LTOMode != LTOK_None &&
|
|
!Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
|
|
Diag(clang::diag::err_drv_lto_without_lld);
|
|
}
|
|
|
|
// Reject -Z* at the top level, these options should never have been exposed
|
|
// by gcc.
|
|
if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
|
|
Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
|
|
|
|
// Diagnose misuse of /Fo.
|
|
if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
|
|
StringRef V = A->getValue();
|
|
if (Inputs.size() > 1 && !V.empty() &&
|
|
!llvm::sys::path::is_separator(V.back())) {
|
|
// Check whether /Fo tries to name an output file for multiple inputs.
|
|
Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
|
|
<< A->getSpelling() << V;
|
|
Args.eraseArg(options::OPT__SLASH_Fo);
|
|
}
|
|
}
|
|
|
|
// Diagnose misuse of /Fa.
|
|
if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
|
|
StringRef V = A->getValue();
|
|
if (Inputs.size() > 1 && !V.empty() &&
|
|
!llvm::sys::path::is_separator(V.back())) {
|
|
// Check whether /Fa tries to name an asm file for multiple inputs.
|
|
Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
|
|
<< A->getSpelling() << V;
|
|
Args.eraseArg(options::OPT__SLASH_Fa);
|
|
}
|
|
}
|
|
|
|
// Diagnose misuse of /o.
|
|
if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
|
|
if (A->getValue()[0] == '\0') {
|
|
// It has to have a value.
|
|
Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
|
|
Args.eraseArg(options::OPT__SLASH_o);
|
|
}
|
|
}
|
|
|
|
// Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
|
|
Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
|
|
Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
|
|
if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
|
|
Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
|
|
Args.eraseArg(options::OPT__SLASH_Yc);
|
|
Args.eraseArg(options::OPT__SLASH_Yu);
|
|
YcArg = YuArg = nullptr;
|
|
}
|
|
if (YcArg && Inputs.size() > 1) {
|
|
Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
|
|
Args.eraseArg(options::OPT__SLASH_Yc);
|
|
YcArg = nullptr;
|
|
}
|
|
if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
|
|
// If only preprocessing or /Y- is used, all pch handling is disabled.
|
|
// Rather than check for it everywhere, just remove clang-cl pch-related
|
|
// flags here.
|
|
Args.eraseArg(options::OPT__SLASH_Fp);
|
|
Args.eraseArg(options::OPT__SLASH_Yc);
|
|
Args.eraseArg(options::OPT__SLASH_Yu);
|
|
YcArg = YuArg = nullptr;
|
|
}
|
|
|
|
// Builder to be used to build offloading actions.
|
|
OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
|
|
|
|
// Construct the actions to perform.
|
|
HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
|
|
ActionList LinkerInputs;
|
|
|
|
llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL;
|
|
for (auto &I : Inputs) {
|
|
types::ID InputType = I.first;
|
|
const Arg *InputArg = I.second;
|
|
|
|
PL.clear();
|
|
types::getCompilationPhases(InputType, PL);
|
|
|
|
// If the first step comes after the final phase we are doing as part of
|
|
// this compilation, warn the user about it.
|
|
phases::ID InitialPhase = PL[0];
|
|
if (InitialPhase > FinalPhase) {
|
|
if (InputArg->isClaimed())
|
|
continue;
|
|
|
|
// Claim here to avoid the more general unused warning.
|
|
InputArg->claim();
|
|
|
|
// Suppress all unused style warnings with -Qunused-arguments
|
|
if (Args.hasArg(options::OPT_Qunused_arguments))
|
|
continue;
|
|
|
|
// Special case when final phase determined by binary name, rather than
|
|
// by a command-line argument with a corresponding Arg.
|
|
if (CCCIsCPP())
|
|
Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
|
|
<< InputArg->getAsString(Args) << getPhaseName(InitialPhase);
|
|
// Special case '-E' warning on a previously preprocessed file to make
|
|
// more sense.
|
|
else if (InitialPhase == phases::Compile &&
|
|
FinalPhase == phases::Preprocess &&
|
|
getPreprocessedType(InputType) == types::TY_INVALID)
|
|
Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
|
|
<< InputArg->getAsString(Args) << !!FinalPhaseArg
|
|
<< (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
|
|
else
|
|
Diag(clang::diag::warn_drv_input_file_unused)
|
|
<< InputArg->getAsString(Args) << getPhaseName(InitialPhase)
|
|
<< !!FinalPhaseArg
|
|
<< (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
|
|
continue;
|
|
}
|
|
|
|
if (YcArg) {
|
|
// Add a separate precompile phase for the compile phase.
|
|
if (FinalPhase >= phases::Compile) {
|
|
const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
|
|
llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL;
|
|
types::getCompilationPhases(HeaderType, PCHPL);
|
|
// Build the pipeline for the pch file.
|
|
Action *ClangClPch =
|
|
C.MakeAction<InputAction>(*InputArg, HeaderType);
|
|
for (phases::ID Phase : PCHPL)
|
|
ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
|
|
assert(ClangClPch);
|
|
Actions.push_back(ClangClPch);
|
|
// The driver currently exits after the first failed command. This
|
|
// relies on that behavior, to make sure if the pch generation fails,
|
|
// the main compilation won't run.
|
|
// FIXME: If the main compilation fails, the PCH generation should
|
|
// probably not be considered successful either.
|
|
}
|
|
}
|
|
|
|
// Build the pipeline for this file.
|
|
Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
|
|
|
|
// Use the current host action in any of the offloading actions, if
|
|
// required.
|
|
if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
|
|
break;
|
|
|
|
for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end();
|
|
i != e; ++i) {
|
|
phases::ID Phase = *i;
|
|
|
|
// We are done if this step is past what the user requested.
|
|
if (Phase > FinalPhase)
|
|
break;
|
|
|
|
// Add any offload action the host action depends on.
|
|
Current = OffloadBuilder.addDeviceDependencesToHostAction(
|
|
Current, InputArg, Phase, FinalPhase, PL);
|
|
if (!Current)
|
|
break;
|
|
|
|
// Queue linker inputs.
|
|
if (Phase == phases::Link) {
|
|
assert((i + 1) == e && "linking must be final compilation step.");
|
|
LinkerInputs.push_back(Current);
|
|
Current = nullptr;
|
|
break;
|
|
}
|
|
|
|
// Each precompiled header file after a module file action is a module
|
|
// header of that same module file, rather than being compiled to a
|
|
// separate PCH.
|
|
if (Phase == phases::Precompile && HeaderModuleAction &&
|
|
getPrecompiledType(InputType) == types::TY_PCH) {
|
|
HeaderModuleAction->addModuleHeaderInput(Current);
|
|
Current = nullptr;
|
|
break;
|
|
}
|
|
|
|
// FIXME: Should we include any prior module file outputs as inputs of
|
|
// later actions in the same command line?
|
|
|
|
// Otherwise construct the appropriate action.
|
|
Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
|
|
|
|
// We didn't create a new action, so we will just move to the next phase.
|
|
if (NewCurrent == Current)
|
|
continue;
|
|
|
|
if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
|
|
HeaderModuleAction = HMA;
|
|
|
|
Current = NewCurrent;
|
|
|
|
// Use the current host action in any of the offloading actions, if
|
|
// required.
|
|
if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
|
|
break;
|
|
|
|
if (Current->getType() == types::TY_Nothing)
|
|
break;
|
|
}
|
|
|
|
// If we ended with something, add to the output list.
|
|
if (Current)
|
|
Actions.push_back(Current);
|
|
|
|
// Add any top level actions generated for offloading.
|
|
OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
|
|
}
|
|
|
|
// Add a link action if necessary.
|
|
if (!LinkerInputs.empty()) {
|
|
Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
|
|
LA = OffloadBuilder.processHostLinkAction(LA);
|
|
Actions.push_back(LA);
|
|
}
|
|
|
|
// If we are linking, claim any options which are obviously only used for
|
|
// compilation.
|
|
if (FinalPhase == phases::Link && PL.size() == 1) {
|
|
Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
|
|
Args.ClaimAllArgs(options::OPT_cl_compile_Group);
|
|
}
|
|
|
|
// Claim ignored clang-cl options.
|
|
Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
|
|
|
|
// Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
|
|
// to non-CUDA compilations and should not trigger warnings there.
|
|
Args.ClaimAllArgs(options::OPT_cuda_host_only);
|
|
Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
|
|
}
|
|
|
|
Action *Driver::ConstructPhaseAction(
|
|
Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
|
|
Action::OffloadKind TargetDeviceOffloadKind) const {
|
|
llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
|
|
|
|
// Some types skip the assembler phase (e.g., llvm-bc), but we can't
|
|
// encode this in the steps because the intermediate type depends on
|
|
// arguments. Just special case here.
|
|
if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
|
|
return Input;
|
|
|
|
// Build the appropriate action.
|
|
switch (Phase) {
|
|
case phases::Link:
|
|
llvm_unreachable("link action invalid here.");
|
|
case phases::Preprocess: {
|
|
types::ID OutputTy;
|
|
// -{M, MM} alter the output type.
|
|
if (Args.hasArg(options::OPT_M, options::OPT_MM)) {
|
|
OutputTy = types::TY_Dependencies;
|
|
} else {
|
|
OutputTy = Input->getType();
|
|
if (!Args.hasFlag(options::OPT_frewrite_includes,
|
|
options::OPT_fno_rewrite_includes, false) &&
|
|
!Args.hasFlag(options::OPT_frewrite_imports,
|
|
options::OPT_fno_rewrite_imports, false) &&
|
|
!CCGenDiagnostics)
|
|
OutputTy = types::getPreprocessedType(OutputTy);
|
|
assert(OutputTy != types::TY_INVALID &&
|
|
"Cannot preprocess this input type!");
|
|
}
|
|
return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
|
|
}
|
|
case phases::Precompile: {
|
|
types::ID OutputTy = getPrecompiledType(Input->getType());
|
|
assert(OutputTy != types::TY_INVALID &&
|
|
"Cannot precompile this input type!");
|
|
|
|
// If we're given a module name, precompile header file inputs as a
|
|
// module, not as a precompiled header.
|
|
const char *ModName = nullptr;
|
|
if (OutputTy == types::TY_PCH) {
|
|
if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
|
|
ModName = A->getValue();
|
|
if (ModName)
|
|
OutputTy = types::TY_ModuleFile;
|
|
}
|
|
|
|
if (Args.hasArg(options::OPT_fsyntax_only)) {
|
|
// Syntax checks should not emit a PCH file
|
|
OutputTy = types::TY_Nothing;
|
|
}
|
|
|
|
if (ModName)
|
|
return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
|
|
ModName);
|
|
return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
|
|
}
|
|
case phases::Compile: {
|
|
if (Args.hasArg(options::OPT_fsyntax_only))
|
|
return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
|
|
if (Args.hasArg(options::OPT_rewrite_objc))
|
|
return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
|
|
if (Args.hasArg(options::OPT_rewrite_legacy_objc))
|
|
return C.MakeAction<CompileJobAction>(Input,
|
|
types::TY_RewrittenLegacyObjC);
|
|
if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto))
|
|
return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
|
|
if (Args.hasArg(options::OPT__migrate))
|
|
return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
|
|
if (Args.hasArg(options::OPT_emit_ast))
|
|
return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
|
|
if (Args.hasArg(options::OPT_module_file_info))
|
|
return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
|
|
if (Args.hasArg(options::OPT_verify_pch))
|
|
return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
|
|
return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
|
|
}
|
|
case phases::Backend: {
|
|
if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
|
|
types::ID Output =
|
|
Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
|
|
return C.MakeAction<BackendJobAction>(Input, Output);
|
|
}
|
|
if (Args.hasArg(options::OPT_emit_llvm)) {
|
|
types::ID Output =
|
|
Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
|
|
return C.MakeAction<BackendJobAction>(Input, Output);
|
|
}
|
|
return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
|
|
}
|
|
case phases::Assemble:
|
|
return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
|
|
}
|
|
|
|
llvm_unreachable("invalid phase in ConstructPhaseAction");
|
|
}
|
|
|
|
void Driver::BuildJobs(Compilation &C) const {
|
|
llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
|
|
|
|
Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
|
|
|
|
// It is an error to provide a -o option if we are making multiple output
|
|
// files.
|
|
if (FinalOutput) {
|
|
unsigned NumOutputs = 0;
|
|
for (const Action *A : C.getActions())
|
|
if (A->getType() != types::TY_Nothing)
|
|
++NumOutputs;
|
|
|
|
if (NumOutputs > 1) {
|
|
Diag(clang::diag::err_drv_output_argument_with_multiple_files);
|
|
FinalOutput = nullptr;
|
|
}
|
|
}
|
|
|
|
// Collect the list of architectures.
|
|
llvm::StringSet<> ArchNames;
|
|
if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
|
|
for (const Arg *A : C.getArgs())
|
|
if (A->getOption().matches(options::OPT_arch))
|
|
ArchNames.insert(A->getValue());
|
|
|
|
// Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
|
|
std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
|
|
for (Action *A : C.getActions()) {
|
|
// If we are linking an image for multiple archs then the linker wants
|
|
// -arch_multiple and -final_output <final image name>. Unfortunately, this
|
|
// doesn't fit in cleanly because we have to pass this information down.
|
|
//
|
|
// FIXME: This is a hack; find a cleaner way to integrate this into the
|
|
// process.
|
|
const char *LinkingOutput = nullptr;
|
|
if (isa<LipoJobAction>(A)) {
|
|
if (FinalOutput)
|
|
LinkingOutput = FinalOutput->getValue();
|
|
else
|
|
LinkingOutput = getDefaultImageName();
|
|
}
|
|
|
|
BuildJobsForAction(C, A, &C.getDefaultToolChain(),
|
|
/*BoundArch*/ StringRef(),
|
|
/*AtTopLevel*/ true,
|
|
/*MultipleArchs*/ ArchNames.size() > 1,
|
|
/*LinkingOutput*/ LinkingOutput, CachedResults,
|
|
/*TargetDeviceOffloadKind*/ Action::OFK_None);
|
|
}
|
|
|
|
// If the user passed -Qunused-arguments or there were errors, don't warn
|
|
// about any unused arguments.
|
|
if (Diags.hasErrorOccurred() ||
|
|
C.getArgs().hasArg(options::OPT_Qunused_arguments))
|
|
return;
|
|
|
|
// Claim -### here.
|
|
(void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
|
|
|
|
// Claim --driver-mode, --rsp-quoting, it was handled earlier.
|
|
(void)C.getArgs().hasArg(options::OPT_driver_mode);
|
|
(void)C.getArgs().hasArg(options::OPT_rsp_quoting);
|
|
|
|
for (Arg *A : C.getArgs()) {
|
|
// FIXME: It would be nice to be able to send the argument to the
|
|
// DiagnosticsEngine, so that extra values, position, and so on could be
|
|
// printed.
|
|
if (!A->isClaimed()) {
|
|
if (A->getOption().hasFlag(options::NoArgumentUnused))
|
|
continue;
|
|
|
|
// Suppress the warning automatically if this is just a flag, and it is an
|
|
// instance of an argument we already claimed.
|
|
const Option &Opt = A->getOption();
|
|
if (Opt.getKind() == Option::FlagClass) {
|
|
bool DuplicateClaimed = false;
|
|
|
|
for (const Arg *AA : C.getArgs().filtered(&Opt)) {
|
|
if (AA->isClaimed()) {
|
|
DuplicateClaimed = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (DuplicateClaimed)
|
|
continue;
|
|
}
|
|
|
|
// In clang-cl, don't mention unknown arguments here since they have
|
|
// already been warned about.
|
|
if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
|
|
Diag(clang::diag::warn_drv_unused_argument)
|
|
<< A->getAsString(C.getArgs());
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// Utility class to control the collapse of dependent actions and select the
|
|
/// tools accordingly.
|
|
class ToolSelector final {
|
|
/// The tool chain this selector refers to.
|
|
const ToolChain &TC;
|
|
|
|
/// The compilation this selector refers to.
|
|
const Compilation &C;
|
|
|
|
/// The base action this selector refers to.
|
|
const JobAction *BaseAction;
|
|
|
|
/// Set to true if the current toolchain refers to host actions.
|
|
bool IsHostSelector;
|
|
|
|
/// Set to true if save-temps and embed-bitcode functionalities are active.
|
|
bool SaveTemps;
|
|
bool EmbedBitcode;
|
|
|
|
/// Get previous dependent action or null if that does not exist. If
|
|
/// \a CanBeCollapsed is false, that action must be legal to collapse or
|
|
/// null will be returned.
|
|
const JobAction *getPrevDependentAction(const ActionList &Inputs,
|
|
ActionList &SavedOffloadAction,
|
|
bool CanBeCollapsed = true) {
|
|
// An option can be collapsed only if it has a single input.
|
|
if (Inputs.size() != 1)
|
|
return nullptr;
|
|
|
|
Action *CurAction = *Inputs.begin();
|
|
if (CanBeCollapsed &&
|
|
!CurAction->isCollapsingWithNextDependentActionLegal())
|
|
return nullptr;
|
|
|
|
// If the input action is an offload action. Look through it and save any
|
|
// offload action that can be dropped in the event of a collapse.
|
|
if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
|
|
// If the dependent action is a device action, we will attempt to collapse
|
|
// only with other device actions. Otherwise, we would do the same but
|
|
// with host actions only.
|
|
if (!IsHostSelector) {
|
|
if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
|
|
CurAction =
|
|
OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
|
|
if (CanBeCollapsed &&
|
|
!CurAction->isCollapsingWithNextDependentActionLegal())
|
|
return nullptr;
|
|
SavedOffloadAction.push_back(OA);
|
|
return dyn_cast<JobAction>(CurAction);
|
|
}
|
|
} else if (OA->hasHostDependence()) {
|
|
CurAction = OA->getHostDependence();
|
|
if (CanBeCollapsed &&
|
|
!CurAction->isCollapsingWithNextDependentActionLegal())
|
|
return nullptr;
|
|
SavedOffloadAction.push_back(OA);
|
|
return dyn_cast<JobAction>(CurAction);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
return dyn_cast<JobAction>(CurAction);
|
|
}
|
|
|
|
/// Return true if an assemble action can be collapsed.
|
|
bool canCollapseAssembleAction() const {
|
|
return TC.useIntegratedAs() && !SaveTemps &&
|
|
!C.getArgs().hasArg(options::OPT_via_file_asm) &&
|
|
!C.getArgs().hasArg(options::OPT__SLASH_FA) &&
|
|
!C.getArgs().hasArg(options::OPT__SLASH_Fa);
|
|
}
|
|
|
|
/// Return true if a preprocessor action can be collapsed.
|
|
bool canCollapsePreprocessorAction() const {
|
|
return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
|
|
!C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
|
|
!C.getArgs().hasArg(options::OPT_rewrite_objc);
|
|
}
|
|
|
|
/// Struct that relates an action with the offload actions that would be
|
|
/// collapsed with it.
|
|
struct JobActionInfo final {
|
|
/// The action this info refers to.
|
|
const JobAction *JA = nullptr;
|
|
/// The offload actions we need to take care off if this action is
|
|
/// collapsed.
|
|
ActionList SavedOffloadAction;
|
|
};
|
|
|
|
/// Append collapsed offload actions from the give nnumber of elements in the
|
|
/// action info array.
|
|
static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
|
|
ArrayRef<JobActionInfo> &ActionInfo,
|
|
unsigned ElementNum) {
|
|
assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
|
|
for (unsigned I = 0; I < ElementNum; ++I)
|
|
CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
|
|
ActionInfo[I].SavedOffloadAction.end());
|
|
}
|
|
|
|
/// Functions that attempt to perform the combining. They detect if that is
|
|
/// legal, and if so they update the inputs \a Inputs and the offload action
|
|
/// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
|
|
/// the combined action is returned. If the combining is not legal or if the
|
|
/// tool does not exist, null is returned.
|
|
/// Currently three kinds of collapsing are supported:
|
|
/// - Assemble + Backend + Compile;
|
|
/// - Assemble + Backend ;
|
|
/// - Backend + Compile.
|
|
const Tool *
|
|
combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
|
|
ActionList &Inputs,
|
|
ActionList &CollapsedOffloadAction) {
|
|
if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
|
|
return nullptr;
|
|
auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
|
|
auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
|
|
auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
|
|
if (!AJ || !BJ || !CJ)
|
|
return nullptr;
|
|
|
|
// Get compiler tool.
|
|
const Tool *T = TC.SelectTool(*CJ);
|
|
if (!T)
|
|
return nullptr;
|
|
|
|
// When using -fembed-bitcode, it is required to have the same tool (clang)
|
|
// for both CompilerJA and BackendJA. Otherwise, combine two stages.
|
|
if (EmbedBitcode) {
|
|
const Tool *BT = TC.SelectTool(*BJ);
|
|
if (BT == T)
|
|
return nullptr;
|
|
}
|
|
|
|
if (!T->hasIntegratedAssembler())
|
|
return nullptr;
|
|
|
|
Inputs = CJ->getInputs();
|
|
AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
|
|
/*NumElements=*/3);
|
|
return T;
|
|
}
|
|
const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
|
|
ActionList &Inputs,
|
|
ActionList &CollapsedOffloadAction) {
|
|
if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
|
|
return nullptr;
|
|
auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
|
|
auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
|
|
if (!AJ || !BJ)
|
|
return nullptr;
|
|
|
|
// Retrieve the compile job, backend action must always be preceded by one.
|
|
ActionList CompileJobOffloadActions;
|
|
auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions,
|
|
/*CanBeCollapsed=*/false);
|
|
if (!AJ || !BJ || !CJ)
|
|
return nullptr;
|
|
|
|
assert(isa<CompileJobAction>(CJ) &&
|
|
"Expecting compile job preceding backend job.");
|
|
|
|
// Get compiler tool.
|
|
const Tool *T = TC.SelectTool(*CJ);
|
|
if (!T)
|
|
return nullptr;
|
|
|
|
if (!T->hasIntegratedAssembler())
|
|
return nullptr;
|
|
|
|
Inputs = BJ->getInputs();
|
|
AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
|
|
/*NumElements=*/2);
|
|
return T;
|
|
}
|
|
const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
|
|
ActionList &Inputs,
|
|
ActionList &CollapsedOffloadAction) {
|
|
if (ActionInfo.size() < 2)
|
|
return nullptr;
|
|
auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
|
|
auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
|
|
if (!BJ || !CJ)
|
|
return nullptr;
|
|
|
|
// Check if the initial input (to the compile job or its predessor if one
|
|
// exists) is LLVM bitcode. In that case, no preprocessor step is required
|
|
// and we can still collapse the compile and backend jobs when we have
|
|
// -save-temps. I.e. there is no need for a separate compile job just to
|
|
// emit unoptimized bitcode.
|
|
bool InputIsBitcode = true;
|
|
for (size_t i = 1; i < ActionInfo.size(); i++)
|
|
if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
|
|
ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
|
|
InputIsBitcode = false;
|
|
break;
|
|
}
|
|
if (!InputIsBitcode && !canCollapsePreprocessorAction())
|
|
return nullptr;
|
|
|
|
// Get compiler tool.
|
|
const Tool *T = TC.SelectTool(*CJ);
|
|
if (!T)
|
|
return nullptr;
|
|
|
|
if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
|
|
return nullptr;
|
|
|
|
Inputs = CJ->getInputs();
|
|
AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
|
|
/*NumElements=*/2);
|
|
return T;
|
|
}
|
|
|
|
/// Updates the inputs if the obtained tool supports combining with
|
|
/// preprocessor action, and the current input is indeed a preprocessor
|
|
/// action. If combining results in the collapse of offloading actions, those
|
|
/// are appended to \a CollapsedOffloadAction.
|
|
void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
|
|
ActionList &CollapsedOffloadAction) {
|
|
if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
|
|
return;
|
|
|
|
// Attempt to get a preprocessor action dependence.
|
|
ActionList PreprocessJobOffloadActions;
|
|
ActionList NewInputs;
|
|
for (Action *A : Inputs) {
|
|
auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
|
|
if (!PJ || !isa<PreprocessJobAction>(PJ)) {
|
|
NewInputs.push_back(A);
|
|
continue;
|
|
}
|
|
|
|
// This is legal to combine. Append any offload action we found and add the
|
|
// current input to preprocessor inputs.
|
|
CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
|
|
PreprocessJobOffloadActions.end());
|
|
NewInputs.append(PJ->input_begin(), PJ->input_end());
|
|
}
|
|
Inputs = NewInputs;
|
|
}
|
|
|
|
public:
|
|
ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
|
|
const Compilation &C, bool SaveTemps, bool EmbedBitcode)
|
|
: TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
|
|
EmbedBitcode(EmbedBitcode) {
|
|
assert(BaseAction && "Invalid base action.");
|
|
IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
|
|
}
|
|
|
|
/// Check if a chain of actions can be combined and return the tool that can
|
|
/// handle the combination of actions. The pointer to the current inputs \a
|
|
/// Inputs and the list of offload actions \a CollapsedOffloadActions
|
|
/// connected to collapsed actions are updated accordingly. The latter enables
|
|
/// the caller of the selector to process them afterwards instead of just
|
|
/// dropping them. If no suitable tool is found, null will be returned.
|
|
const Tool *getTool(ActionList &Inputs,
|
|
ActionList &CollapsedOffloadAction) {
|
|
//
|
|
// Get the largest chain of actions that we could combine.
|
|
//
|
|
|
|
SmallVector<JobActionInfo, 5> ActionChain(1);
|
|
ActionChain.back().JA = BaseAction;
|
|
while (ActionChain.back().JA) {
|
|
const Action *CurAction = ActionChain.back().JA;
|
|
|
|
// Grow the chain by one element.
|
|
ActionChain.resize(ActionChain.size() + 1);
|
|
JobActionInfo &AI = ActionChain.back();
|
|
|
|
// Attempt to fill it with the
|
|
AI.JA =
|
|
getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
|
|
}
|
|
|
|
// Pop the last action info as it could not be filled.
|
|
ActionChain.pop_back();
|
|
|
|
//
|
|
// Attempt to combine actions. If all combining attempts failed, just return
|
|
// the tool of the provided action. At the end we attempt to combine the
|
|
// action with any preprocessor action it may depend on.
|
|
//
|
|
|
|
const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
|
|
CollapsedOffloadAction);
|
|
if (!T)
|
|
T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
|
|
if (!T)
|
|
T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
|
|
if (!T) {
|
|
Inputs = BaseAction->getInputs();
|
|
T = TC.SelectTool(*BaseAction);
|
|
}
|
|
|
|
combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
|
|
return T;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Return a string that uniquely identifies the result of a job. The bound arch
|
|
/// is not necessarily represented in the toolchain's triple -- for example,
|
|
/// armv7 and armv7s both map to the same triple -- so we need both in our map.
|
|
/// Also, we need to add the offloading device kind, as the same tool chain can
|
|
/// be used for host and device for some programming models, e.g. OpenMP.
|
|
static std::string GetTriplePlusArchString(const ToolChain *TC,
|
|
StringRef BoundArch,
|
|
Action::OffloadKind OffloadKind) {
|
|
std::string TriplePlusArch = TC->getTriple().normalize();
|
|
if (!BoundArch.empty()) {
|
|
TriplePlusArch += "-";
|
|
TriplePlusArch += BoundArch;
|
|
}
|
|
TriplePlusArch += "-";
|
|
TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
|
|
return TriplePlusArch;
|
|
}
|
|
|
|
InputInfo Driver::BuildJobsForAction(
|
|
Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
|
|
bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
|
|
std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
|
|
Action::OffloadKind TargetDeviceOffloadKind) const {
|
|
std::pair<const Action *, std::string> ActionTC = {
|
|
A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
|
|
auto CachedResult = CachedResults.find(ActionTC);
|
|
if (CachedResult != CachedResults.end()) {
|
|
return CachedResult->second;
|
|
}
|
|
InputInfo Result = BuildJobsForActionNoCache(
|
|
C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
|
|
CachedResults, TargetDeviceOffloadKind);
|
|
CachedResults[ActionTC] = Result;
|
|
return Result;
|
|
}
|
|
|
|
InputInfo Driver::BuildJobsForActionNoCache(
|
|
Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
|
|
bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
|
|
std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
|
|
Action::OffloadKind TargetDeviceOffloadKind) const {
|
|
llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
|
|
|
|
InputInfoList OffloadDependencesInputInfo;
|
|
bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
|
|
if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
|
|
// The 'Darwin' toolchain is initialized only when its arguments are
|
|
// computed. Get the default arguments for OFK_None to ensure that
|
|
// initialization is performed before processing the offload action.
|
|
// FIXME: Remove when darwin's toolchain is initialized during construction.
|
|
C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
|
|
|
|
// The offload action is expected to be used in four different situations.
|
|
//
|
|
// a) Set a toolchain/architecture/kind for a host action:
|
|
// Host Action 1 -> OffloadAction -> Host Action 2
|
|
//
|
|
// b) Set a toolchain/architecture/kind for a device action;
|
|
// Device Action 1 -> OffloadAction -> Device Action 2
|
|
//
|
|
// c) Specify a device dependence to a host action;
|
|
// Device Action 1 _
|
|
// \
|
|
// Host Action 1 ---> OffloadAction -> Host Action 2
|
|
//
|
|
// d) Specify a host dependence to a device action.
|
|
// Host Action 1 _
|
|
// \
|
|
// Device Action 1 ---> OffloadAction -> Device Action 2
|
|
//
|
|
// For a) and b), we just return the job generated for the dependence. For
|
|
// c) and d) we override the current action with the host/device dependence
|
|
// if the current toolchain is host/device and set the offload dependences
|
|
// info with the jobs obtained from the device/host dependence(s).
|
|
|
|
// If there is a single device option, just generate the job for it.
|
|
if (OA->hasSingleDeviceDependence()) {
|
|
InputInfo DevA;
|
|
OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
|
|
const char *DepBoundArch) {
|
|
DevA =
|
|
BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
|
|
/*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
|
|
CachedResults, DepA->getOffloadingDeviceKind());
|
|
});
|
|
return DevA;
|
|
}
|
|
|
|
// If 'Action 2' is host, we generate jobs for the device dependences and
|
|
// override the current action with the host dependence. Otherwise, we
|
|
// generate the host dependences and override the action with the device
|
|
// dependence. The dependences can't therefore be a top-level action.
|
|
OA->doOnEachDependence(
|
|
/*IsHostDependence=*/BuildingForOffloadDevice,
|
|
[&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
|
|
OffloadDependencesInputInfo.push_back(BuildJobsForAction(
|
|
C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
|
|
/*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
|
|
DepA->getOffloadingDeviceKind()));
|
|
});
|
|
|
|
A = BuildingForOffloadDevice
|
|
? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
|
|
: OA->getHostDependence();
|
|
}
|
|
|
|
if (const InputAction *IA = dyn_cast<InputAction>(A)) {
|
|
// FIXME: It would be nice to not claim this here; maybe the old scheme of
|
|
// just using Args was better?
|
|
const Arg &Input = IA->getInputArg();
|
|
Input.claim();
|
|
if (Input.getOption().matches(options::OPT_INPUT)) {
|
|
const char *Name = Input.getValue();
|
|
return InputInfo(A, Name, /* BaseInput = */ Name);
|
|
}
|
|
return InputInfo(A, &Input, /* BaseInput = */ "");
|
|
}
|
|
|
|
if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
|
|
const ToolChain *TC;
|
|
StringRef ArchName = BAA->getArchName();
|
|
|
|
if (!ArchName.empty())
|
|
TC = &getToolChain(C.getArgs(),
|
|
computeTargetTriple(*this, TargetTriple,
|
|
C.getArgs(), ArchName));
|
|
else
|
|
TC = &C.getDefaultToolChain();
|
|
|
|
return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
|
|
MultipleArchs, LinkingOutput, CachedResults,
|
|
TargetDeviceOffloadKind);
|
|
}
|
|
|
|
|
|
ActionList Inputs = A->getInputs();
|
|
|
|
const JobAction *JA = cast<JobAction>(A);
|
|
ActionList CollapsedOffloadActions;
|
|
|
|
ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
|
|
embedBitcodeInObject() && !isUsingLTO());
|
|
const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
|
|
|
|
if (!T)
|
|
return InputInfo();
|
|
|
|
// If we've collapsed action list that contained OffloadAction we
|
|
// need to build jobs for host/device-side inputs it may have held.
|
|
for (const auto *OA : CollapsedOffloadActions)
|
|
cast<OffloadAction>(OA)->doOnEachDependence(
|
|
/*IsHostDependence=*/BuildingForOffloadDevice,
|
|
[&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
|
|
OffloadDependencesInputInfo.push_back(BuildJobsForAction(
|
|
C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
|
|
/*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
|
|
DepA->getOffloadingDeviceKind()));
|
|
});
|
|
|
|
// Only use pipes when there is exactly one input.
|
|
InputInfoList InputInfos;
|
|
for (const Action *Input : Inputs) {
|
|
// Treat dsymutil and verify sub-jobs as being at the top-level too, they
|
|
// shouldn't get temporary output names.
|
|
// FIXME: Clean this up.
|
|
bool SubJobAtTopLevel =
|
|
AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
|
|
InputInfos.push_back(BuildJobsForAction(
|
|
C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
|
|
CachedResults, A->getOffloadingDeviceKind()));
|
|
}
|
|
|
|
// Always use the first input as the base input.
|
|
const char *BaseInput = InputInfos[0].getBaseInput();
|
|
|
|
// ... except dsymutil actions, which use their actual input as the base
|
|
// input.
|
|
if (JA->getType() == types::TY_dSYM)
|
|
BaseInput = InputInfos[0].getFilename();
|
|
|
|
// ... and in header module compilations, which use the module name.
|
|
if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
|
|
BaseInput = ModuleJA->getModuleName();
|
|
|
|
// Append outputs of offload device jobs to the input list
|
|
if (!OffloadDependencesInputInfo.empty())
|
|
InputInfos.append(OffloadDependencesInputInfo.begin(),
|
|
OffloadDependencesInputInfo.end());
|
|
|
|
// Set the effective triple of the toolchain for the duration of this job.
|
|
llvm::Triple EffectiveTriple;
|
|
const ToolChain &ToolTC = T->getToolChain();
|
|
const ArgList &Args =
|
|
C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
|
|
if (InputInfos.size() != 1) {
|
|
EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
|
|
} else {
|
|
// Pass along the input type if it can be unambiguously determined.
|
|
EffectiveTriple = llvm::Triple(
|
|
ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
|
|
}
|
|
RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
|
|
|
|
// Determine the place to write output to, if any.
|
|
InputInfo Result;
|
|
InputInfoList UnbundlingResults;
|
|
if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
|
|
// If we have an unbundling job, we need to create results for all the
|
|
// outputs. We also update the results cache so that other actions using
|
|
// this unbundling action can get the right results.
|
|
for (auto &UI : UA->getDependentActionsInfo()) {
|
|
assert(UI.DependentOffloadKind != Action::OFK_None &&
|
|
"Unbundling with no offloading??");
|
|
|
|
// Unbundling actions are never at the top level. When we generate the
|
|
// offloading prefix, we also do that for the host file because the
|
|
// unbundling action does not change the type of the output which can
|
|
// cause a overwrite.
|
|
std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
|
|
UI.DependentOffloadKind,
|
|
UI.DependentToolChain->getTriple().normalize(),
|
|
/*CreatePrefixForHost=*/true);
|
|
auto CurI = InputInfo(
|
|
UA,
|
|
GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
|
|
/*AtTopLevel=*/false,
|
|
MultipleArchs ||
|
|
UI.DependentOffloadKind == Action::OFK_HIP,
|
|
OffloadingPrefix),
|
|
BaseInput);
|
|
// Save the unbundling result.
|
|
UnbundlingResults.push_back(CurI);
|
|
|
|
// Get the unique string identifier for this dependence and cache the
|
|
// result.
|
|
StringRef Arch;
|
|
if (TargetDeviceOffloadKind == Action::OFK_HIP) {
|
|
if (UI.DependentOffloadKind == Action::OFK_Host)
|
|
Arch = StringRef();
|
|
else
|
|
Arch = UI.DependentBoundArch;
|
|
} else
|
|
Arch = BoundArch;
|
|
|
|
CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
|
|
UI.DependentOffloadKind)}] =
|
|
CurI;
|
|
}
|
|
|
|
// Now that we have all the results generated, select the one that should be
|
|
// returned for the current depending action.
|
|
std::pair<const Action *, std::string> ActionTC = {
|
|
A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
|
|
assert(CachedResults.find(ActionTC) != CachedResults.end() &&
|
|
"Result does not exist??");
|
|
Result = CachedResults[ActionTC];
|
|
} else if (JA->getType() == types::TY_Nothing)
|
|
Result = InputInfo(A, BaseInput);
|
|
else {
|
|
// We only have to generate a prefix for the host if this is not a top-level
|
|
// action.
|
|
std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
|
|
A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
|
|
/*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
|
|
!AtTopLevel);
|
|
Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
|
|
AtTopLevel, MultipleArchs,
|
|
OffloadingPrefix),
|
|
BaseInput);
|
|
}
|
|
|
|
if (CCCPrintBindings && !CCGenDiagnostics) {
|
|
llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
|
|
<< " - \"" << T->getName() << "\", inputs: [";
|
|
for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
|
|
llvm::errs() << InputInfos[i].getAsString();
|
|
if (i + 1 != e)
|
|
llvm::errs() << ", ";
|
|
}
|
|
if (UnbundlingResults.empty())
|
|
llvm::errs() << "], output: " << Result.getAsString() << "\n";
|
|
else {
|
|
llvm::errs() << "], outputs: [";
|
|
for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
|
|
llvm::errs() << UnbundlingResults[i].getAsString();
|
|
if (i + 1 != e)
|
|
llvm::errs() << ", ";
|
|
}
|
|
llvm::errs() << "] \n";
|
|
}
|
|
} else {
|
|
if (UnbundlingResults.empty())
|
|
T->ConstructJob(
|
|
C, *JA, Result, InputInfos,
|
|
C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
|
|
LinkingOutput);
|
|
else
|
|
T->ConstructJobMultipleOutputs(
|
|
C, *JA, UnbundlingResults, InputInfos,
|
|
C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
|
|
LinkingOutput);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
const char *Driver::getDefaultImageName() const {
|
|
llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
|
|
return Target.isOSWindows() ? "a.exe" : "a.out";
|
|
}
|
|
|
|
/// Create output filename based on ArgValue, which could either be a
|
|
/// full filename, filename without extension, or a directory. If ArgValue
|
|
/// does not provide a filename, then use BaseName, and use the extension
|
|
/// suitable for FileType.
|
|
static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
|
|
StringRef BaseName,
|
|
types::ID FileType) {
|
|
SmallString<128> Filename = ArgValue;
|
|
|
|
if (ArgValue.empty()) {
|
|
// If the argument is empty, output to BaseName in the current dir.
|
|
Filename = BaseName;
|
|
} else if (llvm::sys::path::is_separator(Filename.back())) {
|
|
// If the argument is a directory, output to BaseName in that dir.
|
|
llvm::sys::path::append(Filename, BaseName);
|
|
}
|
|
|
|
if (!llvm::sys::path::has_extension(ArgValue)) {
|
|
// If the argument didn't provide an extension, then set it.
|
|
const char *Extension = types::getTypeTempSuffix(FileType, true);
|
|
|
|
if (FileType == types::TY_Image &&
|
|
Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
|
|
// The output file is a dll.
|
|
Extension = "dll";
|
|
}
|
|
|
|
llvm::sys::path::replace_extension(Filename, Extension);
|
|
}
|
|
|
|
return Args.MakeArgString(Filename.c_str());
|
|
}
|
|
|
|
const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
|
|
const char *BaseInput,
|
|
StringRef BoundArch, bool AtTopLevel,
|
|
bool MultipleArchs,
|
|
StringRef OffloadingPrefix) const {
|
|
llvm::PrettyStackTraceString CrashInfo("Computing output path");
|
|
// Output to a user requested destination?
|
|
if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
|
|
if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
|
|
return C.addResultFile(FinalOutput->getValue(), &JA);
|
|
}
|
|
|
|
// For /P, preprocess to file named after BaseInput.
|
|
if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
|
|
assert(AtTopLevel && isa<PreprocessJobAction>(JA));
|
|
StringRef BaseName = llvm::sys::path::filename(BaseInput);
|
|
StringRef NameArg;
|
|
if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
|
|
NameArg = A->getValue();
|
|
return C.addResultFile(
|
|
MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
|
|
&JA);
|
|
}
|
|
|
|
// Default to writing to stdout?
|
|
if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
|
|
return "-";
|
|
|
|
// Is this the assembly listing for /FA?
|
|
if (JA.getType() == types::TY_PP_Asm &&
|
|
(C.getArgs().hasArg(options::OPT__SLASH_FA) ||
|
|
C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
|
|
// Use /Fa and the input filename to determine the asm file name.
|
|
StringRef BaseName = llvm::sys::path::filename(BaseInput);
|
|
StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
|
|
return C.addResultFile(
|
|
MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
|
|
&JA);
|
|
}
|
|
|
|
// Output to a temporary file?
|
|
if ((!AtTopLevel && !isSaveTempsEnabled() &&
|
|
!C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
|
|
CCGenDiagnostics) {
|
|
StringRef Name = llvm::sys::path::filename(BaseInput);
|
|
std::pair<StringRef, StringRef> Split = Name.split('.');
|
|
SmallString<128> TmpName;
|
|
const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
|
|
Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
|
|
if (CCGenDiagnostics && A) {
|
|
SmallString<128> CrashDirectory(A->getValue());
|
|
llvm::sys::path::append(CrashDirectory, Split.first);
|
|
const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
|
|
std::error_code EC =
|
|
llvm::sys::fs::createUniqueFile(CrashDirectory + Middle + Suffix, TmpName);
|
|
if (EC) {
|
|
Diag(clang::diag::err_unable_to_make_temp) << EC.message();
|
|
return "";
|
|
}
|
|
} else {
|
|
TmpName = GetTemporaryPath(Split.first, Suffix);
|
|
}
|
|
return C.addTempFile(C.getArgs().MakeArgString(TmpName));
|
|
}
|
|
|
|
SmallString<128> BasePath(BaseInput);
|
|
StringRef BaseName;
|
|
|
|
// Dsymutil actions should use the full path.
|
|
if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
|
|
BaseName = BasePath;
|
|
else
|
|
BaseName = llvm::sys::path::filename(BasePath);
|
|
|
|
// Determine what the derived output name should be.
|
|
const char *NamedOutput;
|
|
|
|
if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
|
|
C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
|
|
// The /Fo or /o flag decides the object filename.
|
|
StringRef Val =
|
|
C.getArgs()
|
|
.getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
|
|
->getValue();
|
|
NamedOutput =
|
|
MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
|
|
} else if (JA.getType() == types::TY_Image &&
|
|
C.getArgs().hasArg(options::OPT__SLASH_Fe,
|
|
options::OPT__SLASH_o)) {
|
|
// The /Fe or /o flag names the linked file.
|
|
StringRef Val =
|
|
C.getArgs()
|
|
.getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
|
|
->getValue();
|
|
NamedOutput =
|
|
MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
|
|
} else if (JA.getType() == types::TY_Image) {
|
|
if (IsCLMode()) {
|
|
// clang-cl uses BaseName for the executable name.
|
|
NamedOutput =
|
|
MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
|
|
} else {
|
|
SmallString<128> Output(getDefaultImageName());
|
|
Output += OffloadingPrefix;
|
|
if (MultipleArchs && !BoundArch.empty()) {
|
|
Output += "-";
|
|
Output.append(BoundArch);
|
|
}
|
|
NamedOutput = C.getArgs().MakeArgString(Output.c_str());
|
|
}
|
|
} else if (JA.getType() == types::TY_PCH && IsCLMode()) {
|
|
NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
|
|
} else {
|
|
const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
|
|
assert(Suffix && "All types used for output should have a suffix.");
|
|
|
|
std::string::size_type End = std::string::npos;
|
|
if (!types::appendSuffixForType(JA.getType()))
|
|
End = BaseName.rfind('.');
|
|
SmallString<128> Suffixed(BaseName.substr(0, End));
|
|
Suffixed += OffloadingPrefix;
|
|
if (MultipleArchs && !BoundArch.empty()) {
|
|
Suffixed += "-";
|
|
Suffixed.append(BoundArch);
|
|
}
|
|
// When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
|
|
// the unoptimized bitcode so that it does not get overwritten by the ".bc"
|
|
// optimized bitcode output.
|
|
if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
|
|
JA.getType() == types::TY_LLVM_BC)
|
|
Suffixed += ".tmp";
|
|
Suffixed += '.';
|
|
Suffixed += Suffix;
|
|
NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
|
|
}
|
|
|
|
// Prepend object file path if -save-temps=obj
|
|
if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
|
|
JA.getType() != types::TY_PCH) {
|
|
Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
|
|
SmallString<128> TempPath(FinalOutput->getValue());
|
|
llvm::sys::path::remove_filename(TempPath);
|
|
StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
|
|
llvm::sys::path::append(TempPath, OutputFileName);
|
|
NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
|
|
}
|
|
|
|
// If we're saving temps and the temp file conflicts with the input file,
|
|
// then avoid overwriting input file.
|
|
if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
|
|
bool SameFile = false;
|
|
SmallString<256> Result;
|
|
llvm::sys::fs::current_path(Result);
|
|
llvm::sys::path::append(Result, BaseName);
|
|
llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
|
|
// Must share the same path to conflict.
|
|
if (SameFile) {
|
|
StringRef Name = llvm::sys::path::filename(BaseInput);
|
|
std::pair<StringRef, StringRef> Split = Name.split('.');
|
|
std::string TmpName = GetTemporaryPath(
|
|
Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
|
|
return C.addTempFile(C.getArgs().MakeArgString(TmpName));
|
|
}
|
|
}
|
|
|
|
// As an annoying special case, PCH generation doesn't strip the pathname.
|
|
if (JA.getType() == types::TY_PCH && !IsCLMode()) {
|
|
llvm::sys::path::remove_filename(BasePath);
|
|
if (BasePath.empty())
|
|
BasePath = NamedOutput;
|
|
else
|
|
llvm::sys::path::append(BasePath, NamedOutput);
|
|
return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
|
|
} else {
|
|
return C.addResultFile(NamedOutput, &JA);
|
|
}
|
|
}
|
|
|
|
std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
|
|
// Search for Name in a list of paths.
|
|
auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
|
|
-> llvm::Optional<std::string> {
|
|
// Respect a limited subset of the '-Bprefix' functionality in GCC by
|
|
// attempting to use this prefix when looking for file paths.
|
|
for (const auto &Dir : P) {
|
|
if (Dir.empty())
|
|
continue;
|
|
SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
|
|
llvm::sys::path::append(P, Name);
|
|
if (llvm::sys::fs::exists(Twine(P)))
|
|
return P.str().str();
|
|
}
|
|
return None;
|
|
};
|
|
|
|
if (auto P = SearchPaths(PrefixDirs))
|
|
return *P;
|
|
|
|
SmallString<128> R(ResourceDir);
|
|
llvm::sys::path::append(R, Name);
|
|
if (llvm::sys::fs::exists(Twine(R)))
|
|
return R.str();
|
|
|
|
SmallString<128> P(TC.getCompilerRTPath());
|
|
llvm::sys::path::append(P, Name);
|
|
if (llvm::sys::fs::exists(Twine(P)))
|
|
return P.str();
|
|
|
|
if (auto P = SearchPaths(TC.getLibraryPaths()))
|
|
return *P;
|
|
|
|
if (auto P = SearchPaths(TC.getFilePaths()))
|
|
return *P;
|
|
|
|
return Name;
|
|
}
|
|
|
|
void Driver::generatePrefixedToolNames(
|
|
StringRef Tool, const ToolChain &TC,
|
|
SmallVectorImpl<std::string> &Names) const {
|
|
// FIXME: Needs a better variable than TargetTriple
|
|
Names.emplace_back((TargetTriple + "-" + Tool).str());
|
|
Names.emplace_back(Tool);
|
|
|
|
// Allow the discovery of tools prefixed with LLVM's default target triple.
|
|
std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
|
|
if (DefaultTargetTriple != TargetTriple)
|
|
Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
|
|
}
|
|
|
|
static bool ScanDirForExecutable(SmallString<128> &Dir,
|
|
ArrayRef<std::string> Names) {
|
|
for (const auto &Name : Names) {
|
|
llvm::sys::path::append(Dir, Name);
|
|
if (llvm::sys::fs::can_execute(Twine(Dir)))
|
|
return true;
|
|
llvm::sys::path::remove_filename(Dir);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
|
|
SmallVector<std::string, 2> TargetSpecificExecutables;
|
|
generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
|
|
|
|
// Respect a limited subset of the '-Bprefix' functionality in GCC by
|
|
// attempting to use this prefix when looking for program paths.
|
|
for (const auto &PrefixDir : PrefixDirs) {
|
|
if (llvm::sys::fs::is_directory(PrefixDir)) {
|
|
SmallString<128> P(PrefixDir);
|
|
if (ScanDirForExecutable(P, TargetSpecificExecutables))
|
|
return P.str();
|
|
} else {
|
|
SmallString<128> P((PrefixDir + Name).str());
|
|
if (llvm::sys::fs::can_execute(Twine(P)))
|
|
return P.str();
|
|
}
|
|
}
|
|
|
|
const ToolChain::path_list &List = TC.getProgramPaths();
|
|
for (const auto &Path : List) {
|
|
SmallString<128> P(Path);
|
|
if (ScanDirForExecutable(P, TargetSpecificExecutables))
|
|
return P.str();
|
|
}
|
|
|
|
// If all else failed, search the path.
|
|
for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
|
|
if (llvm::ErrorOr<std::string> P =
|
|
llvm::sys::findProgramByName(TargetSpecificExecutable))
|
|
return *P;
|
|
|
|
return Name;
|
|
}
|
|
|
|
std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
|
|
SmallString<128> Path;
|
|
std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
|
|
if (EC) {
|
|
Diag(clang::diag::err_unable_to_make_temp) << EC.message();
|
|
return "";
|
|
}
|
|
|
|
return Path.str();
|
|
}
|
|
|
|
std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
|
|
SmallString<128> Output;
|
|
if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
|
|
// FIXME: If anybody needs it, implement this obscure rule:
|
|
// "If you specify a directory without a file name, the default file name
|
|
// is VCx0.pch., where x is the major version of Visual C++ in use."
|
|
Output = FpArg->getValue();
|
|
|
|
// "If you do not specify an extension as part of the path name, an
|
|
// extension of .pch is assumed. "
|
|
if (!llvm::sys::path::has_extension(Output))
|
|
Output += ".pch";
|
|
} else {
|
|
if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
|
|
Output = YcArg->getValue();
|
|
if (Output.empty())
|
|
Output = BaseName;
|
|
llvm::sys::path::replace_extension(Output, ".pch");
|
|
}
|
|
return Output.str();
|
|
}
|
|
|
|
const ToolChain &Driver::getToolChain(const ArgList &Args,
|
|
const llvm::Triple &Target) const {
|
|
|
|
auto &TC = ToolChains[Target.str()];
|
|
if (!TC) {
|
|
switch (Target.getOS()) {
|
|
case llvm::Triple::Haiku:
|
|
TC = llvm::make_unique<toolchains::Haiku>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::Ananas:
|
|
TC = llvm::make_unique<toolchains::Ananas>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::CloudABI:
|
|
TC = llvm::make_unique<toolchains::CloudABI>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::Darwin:
|
|
case llvm::Triple::MacOSX:
|
|
case llvm::Triple::IOS:
|
|
case llvm::Triple::TvOS:
|
|
case llvm::Triple::WatchOS:
|
|
TC = llvm::make_unique<toolchains::DarwinClang>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::DragonFly:
|
|
TC = llvm::make_unique<toolchains::DragonFly>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::OpenBSD:
|
|
TC = llvm::make_unique<toolchains::OpenBSD>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::NetBSD:
|
|
TC = llvm::make_unique<toolchains::NetBSD>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::FreeBSD:
|
|
TC = llvm::make_unique<toolchains::FreeBSD>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::Minix:
|
|
TC = llvm::make_unique<toolchains::Minix>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::Linux:
|
|
case llvm::Triple::ELFIAMCU:
|
|
if (Target.getArch() == llvm::Triple::hexagon)
|
|
TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
|
|
Args);
|
|
else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
|
|
!Target.hasEnvironment())
|
|
TC = llvm::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
|
|
Args);
|
|
else
|
|
TC = llvm::make_unique<toolchains::Linux>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::NaCl:
|
|
TC = llvm::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::Fuchsia:
|
|
TC = llvm::make_unique<toolchains::Fuchsia>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::Solaris:
|
|
TC = llvm::make_unique<toolchains::Solaris>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::AMDHSA:
|
|
TC = llvm::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::Win32:
|
|
switch (Target.getEnvironment()) {
|
|
default:
|
|
if (Target.isOSBinFormatELF())
|
|
TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
|
|
else if (Target.isOSBinFormatMachO())
|
|
TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
|
|
else
|
|
TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::GNU:
|
|
TC = llvm::make_unique<toolchains::MinGW>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::Itanium:
|
|
TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
|
|
Args);
|
|
break;
|
|
case llvm::Triple::MSVC:
|
|
case llvm::Triple::UnknownEnvironment:
|
|
if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
|
|
.startswith_lower("bfd"))
|
|
TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(
|
|
*this, Target, Args);
|
|
else
|
|
TC =
|
|
llvm::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
|
|
break;
|
|
}
|
|
break;
|
|
case llvm::Triple::PS4:
|
|
TC = llvm::make_unique<toolchains::PS4CPU>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::Contiki:
|
|
TC = llvm::make_unique<toolchains::Contiki>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::Hurd:
|
|
TC = llvm::make_unique<toolchains::Hurd>(*this, Target, Args);
|
|
break;
|
|
default:
|
|
// Of these targets, Hexagon is the only one that might have
|
|
// an OS of Linux, in which case it got handled above already.
|
|
switch (Target.getArch()) {
|
|
case llvm::Triple::tce:
|
|
TC = llvm::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::tcele:
|
|
TC = llvm::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::hexagon:
|
|
TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
|
|
Args);
|
|
break;
|
|
case llvm::Triple::lanai:
|
|
TC = llvm::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::xcore:
|
|
TC = llvm::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::wasm32:
|
|
case llvm::Triple::wasm64:
|
|
TC = llvm::make_unique<toolchains::WebAssembly>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::avr:
|
|
TC = llvm::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
|
|
break;
|
|
case llvm::Triple::riscv32:
|
|
case llvm::Triple::riscv64:
|
|
TC = llvm::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
|
|
break;
|
|
default:
|
|
if (Target.getVendor() == llvm::Triple::Myriad)
|
|
TC = llvm::make_unique<toolchains::MyriadToolChain>(*this, Target,
|
|
Args);
|
|
else if (toolchains::BareMetal::handlesTarget(Target))
|
|
TC = llvm::make_unique<toolchains::BareMetal>(*this, Target, Args);
|
|
else if (Target.isOSBinFormatELF())
|
|
TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
|
|
else if (Target.isOSBinFormatMachO())
|
|
TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
|
|
else
|
|
TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
|
|
// compiles always need two toolchains, the CUDA toolchain and the host
|
|
// toolchain. So the only valid way to create a CUDA toolchain is via
|
|
// CreateOffloadingDeviceToolChains.
|
|
|
|
return *TC;
|
|
}
|
|
|
|
bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
|
|
// Say "no" if there is not exactly one input of a type clang understands.
|
|
if (JA.size() != 1 ||
|
|
!types::isAcceptedByClang((*JA.input_begin())->getType()))
|
|
return false;
|
|
|
|
// And say "no" if this is not a kind of action clang understands.
|
|
if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
|
|
!isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
|
|
/// grouped values as integers. Numbers which are not provided are set to 0.
|
|
///
|
|
/// \return True if the entire string was parsed (9.2), or all groups were
|
|
/// parsed (10.3.5extrastuff).
|
|
bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
|
|
unsigned &Micro, bool &HadExtra) {
|
|
HadExtra = false;
|
|
|
|
Major = Minor = Micro = 0;
|
|
if (Str.empty())
|
|
return false;
|
|
|
|
if (Str.consumeInteger(10, Major))
|
|
return false;
|
|
if (Str.empty())
|
|
return true;
|
|
if (Str[0] != '.')
|
|
return false;
|
|
|
|
Str = Str.drop_front(1);
|
|
|
|
if (Str.consumeInteger(10, Minor))
|
|
return false;
|
|
if (Str.empty())
|
|
return true;
|
|
if (Str[0] != '.')
|
|
return false;
|
|
Str = Str.drop_front(1);
|
|
|
|
if (Str.consumeInteger(10, Micro))
|
|
return false;
|
|
if (!Str.empty())
|
|
HadExtra = true;
|
|
return true;
|
|
}
|
|
|
|
/// Parse digits from a string \p Str and fulfill \p Digits with
|
|
/// the parsed numbers. This method assumes that the max number of
|
|
/// digits to look for is equal to Digits.size().
|
|
///
|
|
/// \return True if the entire string was parsed and there are
|
|
/// no extra characters remaining at the end.
|
|
bool Driver::GetReleaseVersion(StringRef Str,
|
|
MutableArrayRef<unsigned> Digits) {
|
|
if (Str.empty())
|
|
return false;
|
|
|
|
unsigned CurDigit = 0;
|
|
while (CurDigit < Digits.size()) {
|
|
unsigned Digit;
|
|
if (Str.consumeInteger(10, Digit))
|
|
return false;
|
|
Digits[CurDigit] = Digit;
|
|
if (Str.empty())
|
|
return true;
|
|
if (Str[0] != '.')
|
|
return false;
|
|
Str = Str.drop_front(1);
|
|
CurDigit++;
|
|
}
|
|
|
|
// More digits than requested, bail out...
|
|
return false;
|
|
}
|
|
|
|
std::pair<unsigned, unsigned> Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
|
|
unsigned IncludedFlagsBitmask = 0;
|
|
unsigned ExcludedFlagsBitmask = options::NoDriverOption;
|
|
|
|
if (IsClCompatMode) {
|
|
// Include CL and Core options.
|
|
IncludedFlagsBitmask |= options::CLOption;
|
|
IncludedFlagsBitmask |= options::CoreOption;
|
|
} else {
|
|
ExcludedFlagsBitmask |= options::CLOption;
|
|
}
|
|
|
|
return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
|
|
}
|
|
|
|
bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
|
|
return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
|
|
}
|