llvm-project/mlir/lib/Dialect/SPIRV/SPIRVOps.cpp

3211 lines
118 KiB
C++

//===- SPIRVOps.cpp - MLIR SPIR-V operations ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the operations in the SPIR-V dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "mlir/Analysis/CallInterfaces.h"
#include "mlir/Dialect/CommonFolders.h"
#include "mlir/Dialect/SPIRV/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/SPIRVTypes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/Functional.h"
#include "mlir/Support/StringExtras.h"
#include "llvm/ADT/bit.h"
using namespace mlir;
// TODO(antiagainst): generate these strings using ODS.
static constexpr const char kAlignmentAttrName[] = "alignment";
static constexpr const char kBranchWeightAttrName[] = "branch_weights";
static constexpr const char kCallee[] = "callee";
static constexpr const char kClusterSize[] = "cluster_size";
static constexpr const char kDefaultValueAttrName[] = "default_value";
static constexpr const char kExecutionScopeAttrName[] = "execution_scope";
static constexpr const char kEqualSemanticsAttrName[] = "equal_semantics";
static constexpr const char kFnNameAttrName[] = "fn";
static constexpr const char kGroupOperationAttrName[] = "group_operation";
static constexpr const char kIndicesAttrName[] = "indices";
static constexpr const char kInitializerAttrName[] = "initializer";
static constexpr const char kInterfaceAttrName[] = "interface";
static constexpr const char kMemoryScopeAttrName[] = "memory_scope";
static constexpr const char kSemanticsAttrName[] = "semantics";
static constexpr const char kSpecConstAttrName[] = "spec_const";
static constexpr const char kSpecIdAttrName[] = "spec_id";
static constexpr const char kTypeAttrName[] = "type";
static constexpr const char kUnequalSemanticsAttrName[] = "unequal_semantics";
static constexpr const char kValueAttrName[] = "value";
static constexpr const char kValuesAttrName[] = "values";
static constexpr const char kVariableAttrName[] = "variable";
//===----------------------------------------------------------------------===//
// Common utility functions
//===----------------------------------------------------------------------===//
/// Returns true if the given op is a function-like op or nested in a
/// function-like op without a module-like op in the middle.
static bool isNestedInFunctionLikeOp(Operation *op) {
if (!op)
return false;
if (op->hasTrait<OpTrait::SymbolTable>())
return false;
if (op->hasTrait<OpTrait::FunctionLike>())
return true;
return isNestedInFunctionLikeOp(op->getParentOp());
}
/// Returns true if the given op is an module-like op that maintains a symbol
/// table.
static bool isDirectInModuleLikeOp(Operation *op) {
return op && op->hasTrait<OpTrait::SymbolTable>();
}
static LogicalResult extractValueFromConstOp(Operation *op, int32_t &value) {
auto constOp = dyn_cast_or_null<spirv::ConstantOp>(op);
if (!constOp) {
return failure();
}
auto valueAttr = constOp.value();
auto integerValueAttr = valueAttr.dyn_cast<IntegerAttr>();
if (!integerValueAttr) {
return failure();
}
value = integerValueAttr.getInt();
return success();
}
template <typename Ty>
static ArrayAttr
getStrArrayAttrForEnumList(Builder &builder, ArrayRef<Ty> enumValues,
function_ref<StringRef(Ty)> stringifyFn) {
if (enumValues.empty()) {
return nullptr;
}
SmallVector<StringRef, 1> enumValStrs;
enumValStrs.reserve(enumValues.size());
for (auto val : enumValues) {
enumValStrs.emplace_back(stringifyFn(val));
}
return builder.getStrArrayAttr(enumValStrs);
}
template <typename EnumClass>
static ParseResult
parseEnumAttribute(EnumClass &value, OpAsmParser &parser,
StringRef attrName = spirv::attributeName<EnumClass>()) {
Attribute attrVal;
SmallVector<NamedAttribute, 1> attr;
auto loc = parser.getCurrentLocation();
if (parser.parseAttribute(attrVal, parser.getBuilder().getNoneType(),
attrName, attr)) {
return failure();
}
if (!attrVal.isa<StringAttr>()) {
return parser.emitError(loc, "expected ")
<< attrName << " attribute specified as string";
}
auto attrOptional =
spirv::symbolizeEnum<EnumClass>()(attrVal.cast<StringAttr>().getValue());
if (!attrOptional) {
return parser.emitError(loc, "invalid ")
<< attrName << " attribute specification: " << attrVal;
}
value = attrOptional.getValue();
return success();
}
template <typename EnumClass>
static ParseResult
parseEnumAttribute(EnumClass &value, OpAsmParser &parser, OperationState &state,
StringRef attrName = spirv::attributeName<EnumClass>()) {
if (parseEnumAttribute(value, parser)) {
return failure();
}
state.addAttribute(attrName, parser.getBuilder().getI32IntegerAttr(
llvm::bit_cast<int32_t>(value)));
return success();
}
static ParseResult parseMemoryAccessAttributes(OpAsmParser &parser,
OperationState &state) {
// Parse an optional list of attributes staring with '['
if (parser.parseOptionalLSquare()) {
// Nothing to do
return success();
}
spirv::MemoryAccess memoryAccessAttr;
if (parseEnumAttribute(memoryAccessAttr, parser, state)) {
return failure();
}
if (spirv::bitEnumContains(memoryAccessAttr, spirv::MemoryAccess::Aligned)) {
// Parse integer attribute for alignment.
Attribute alignmentAttr;
Type i32Type = parser.getBuilder().getIntegerType(32);
if (parser.parseComma() ||
parser.parseAttribute(alignmentAttr, i32Type, kAlignmentAttrName,
state.attributes)) {
return failure();
}
}
return parser.parseRSquare();
}
template <typename LoadStoreOpTy>
static void
printMemoryAccessAttribute(LoadStoreOpTy loadStoreOp, OpAsmPrinter &printer,
SmallVectorImpl<StringRef> &elidedAttrs) {
// Print optional memory access attribute.
if (auto memAccess = loadStoreOp.memory_access()) {
elidedAttrs.push_back(spirv::attributeName<spirv::MemoryAccess>());
printer << " [\"" << stringifyMemoryAccess(*memAccess) << "\"";
// Print integer alignment attribute.
if (auto alignment = loadStoreOp.alignment()) {
elidedAttrs.push_back(kAlignmentAttrName);
printer << ", " << alignment;
}
printer << "]";
}
elidedAttrs.push_back(spirv::attributeName<spirv::StorageClass>());
}
static LogicalResult verifyCastOp(Operation *op,
bool requireSameBitWidth = true) {
Type operandType = op->getOperand(0).getType();
Type resultType = op->getResult(0).getType();
// ODS checks that result type and operand type have the same shape.
if (auto vectorType = operandType.dyn_cast<VectorType>()) {
operandType = vectorType.getElementType();
resultType = resultType.cast<VectorType>().getElementType();
}
auto operandTypeBitWidth = operandType.getIntOrFloatBitWidth();
auto resultTypeBitWidth = resultType.getIntOrFloatBitWidth();
auto isSameBitWidth = operandTypeBitWidth == resultTypeBitWidth;
if (requireSameBitWidth) {
if (!isSameBitWidth) {
return op->emitOpError(
"expected the same bit widths for operand type and result "
"type, but provided ")
<< operandType << " and " << resultType;
}
return success();
}
if (isSameBitWidth) {
return op->emitOpError(
"expected the different bit widths for operand type and result "
"type, but provided ")
<< operandType << " and " << resultType;
}
return success();
}
template <typename LoadStoreOpTy>
static LogicalResult verifyMemoryAccessAttribute(LoadStoreOpTy loadStoreOp) {
// ODS checks for attributes values. Just need to verify that if the
// memory-access attribute is Aligned, then the alignment attribute must be
// present.
auto *op = loadStoreOp.getOperation();
auto memAccessAttr = op->getAttr(spirv::attributeName<spirv::MemoryAccess>());
if (!memAccessAttr) {
// Alignment attribute shouldn't be present if memory access attribute is
// not present.
if (op->getAttr(kAlignmentAttrName)) {
return loadStoreOp.emitOpError(
"invalid alignment specification without aligned memory access "
"specification");
}
return success();
}
auto memAccessVal = memAccessAttr.template cast<IntegerAttr>();
auto memAccess = spirv::symbolizeMemoryAccess(memAccessVal.getInt());
if (!memAccess) {
return loadStoreOp.emitOpError("invalid memory access specifier: ")
<< memAccessVal;
}
if (spirv::bitEnumContains(*memAccess, spirv::MemoryAccess::Aligned)) {
if (!op->getAttr(kAlignmentAttrName)) {
return loadStoreOp.emitOpError("missing alignment value");
}
} else {
if (op->getAttr(kAlignmentAttrName)) {
return loadStoreOp.emitOpError(
"invalid alignment specification with non-aligned memory access "
"specification");
}
}
return success();
}
template <typename BarrierOp>
static LogicalResult verifyMemorySemantics(BarrierOp op) {
// According to the SPIR-V specification:
// "Despite being a mask and allowing multiple bits to be combined, it is
// invalid for more than one of these four bits to be set: Acquire, Release,
// AcquireRelease, or SequentiallyConsistent. Requesting both Acquire and
// Release semantics is done by setting the AcquireRelease bit, not by setting
// two bits."
auto memorySemantics = op.memory_semantics();
auto atMostOneInSet = spirv::MemorySemantics::Acquire |
spirv::MemorySemantics::Release |
spirv::MemorySemantics::AcquireRelease |
spirv::MemorySemantics::SequentiallyConsistent;
auto bitCount = llvm::countPopulation(
static_cast<uint32_t>(memorySemantics & atMostOneInSet));
if (bitCount > 1) {
return op.emitError("expected at most one of these four memory constraints "
"to be set: `Acquire`, `Release`,"
"`AcquireRelease` or `SequentiallyConsistent`");
}
return success();
}
template <typename LoadStoreOpTy>
static LogicalResult verifyLoadStorePtrAndValTypes(LoadStoreOpTy op, Value ptr,
Value val) {
// ODS already checks ptr is spirv::PointerType. Just check that the pointee
// type of the pointer and the type of the value are the same
//
// TODO(ravishankarm): Check that the value type satisfies restrictions of
// SPIR-V OpLoad/OpStore operations
if (val.getType() !=
ptr.getType().cast<spirv::PointerType>().getPointeeType()) {
return op.emitOpError("mismatch in result type and pointer type");
}
return success();
}
static ParseResult parseVariableDecorations(OpAsmParser &parser,
OperationState &state) {
auto builtInName =
convertToSnakeCase(stringifyDecoration(spirv::Decoration::BuiltIn));
if (succeeded(parser.parseOptionalKeyword("bind"))) {
Attribute set, binding;
// Parse optional descriptor binding
auto descriptorSetName = convertToSnakeCase(
stringifyDecoration(spirv::Decoration::DescriptorSet));
auto bindingName =
convertToSnakeCase(stringifyDecoration(spirv::Decoration::Binding));
Type i32Type = parser.getBuilder().getIntegerType(32);
if (parser.parseLParen() ||
parser.parseAttribute(set, i32Type, descriptorSetName,
state.attributes) ||
parser.parseComma() ||
parser.parseAttribute(binding, i32Type, bindingName,
state.attributes) ||
parser.parseRParen()) {
return failure();
}
} else if (succeeded(parser.parseOptionalKeyword(builtInName))) {
StringAttr builtIn;
if (parser.parseLParen() ||
parser.parseAttribute(builtIn, builtInName, state.attributes) ||
parser.parseRParen()) {
return failure();
}
}
// Parse other attributes
if (parser.parseOptionalAttrDict(state.attributes))
return failure();
return success();
}
static void printVariableDecorations(Operation *op, OpAsmPrinter &printer,
SmallVectorImpl<StringRef> &elidedAttrs) {
// Print optional descriptor binding
auto descriptorSetName =
convertToSnakeCase(stringifyDecoration(spirv::Decoration::DescriptorSet));
auto bindingName =
convertToSnakeCase(stringifyDecoration(spirv::Decoration::Binding));
auto descriptorSet = op->getAttrOfType<IntegerAttr>(descriptorSetName);
auto binding = op->getAttrOfType<IntegerAttr>(bindingName);
if (descriptorSet && binding) {
elidedAttrs.push_back(descriptorSetName);
elidedAttrs.push_back(bindingName);
printer << " bind(" << descriptorSet.getInt() << ", " << binding.getInt()
<< ")";
}
// Print BuiltIn attribute if present
auto builtInName =
convertToSnakeCase(stringifyDecoration(spirv::Decoration::BuiltIn));
if (auto builtin = op->getAttrOfType<StringAttr>(builtInName)) {
printer << " " << builtInName << "(\"" << builtin.getValue() << "\")";
elidedAttrs.push_back(builtInName);
}
printer.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
}
// Extracts an element from the given `composite` by following the given
// `indices`. Returns a null Attribute if error happens.
static Attribute extractCompositeElement(Attribute composite,
ArrayRef<unsigned> indices) {
// Check that given composite is a constant.
if (!composite)
return {};
// Return composite itself if we reach the end of the index chain.
if (indices.empty())
return composite;
if (auto vector = composite.dyn_cast<ElementsAttr>()) {
assert(indices.size() == 1 && "must have exactly one index for a vector");
return vector.getValue({indices[0]});
}
if (auto array = composite.dyn_cast<ArrayAttr>()) {
assert(!indices.empty() && "must have at least one index for an array");
return extractCompositeElement(array.getValue()[indices[0]],
indices.drop_front());
}
return {};
}
// Get bit width of types.
static unsigned getBitWidth(Type type) {
if (type.isa<spirv::PointerType>()) {
// Just return 64 bits for pointer types for now.
// TODO: Make sure not caller relies on the actual pointer width value.
return 64;
}
if (type.isIntOrFloat()) {
return type.getIntOrFloatBitWidth();
}
if (auto vectorType = type.dyn_cast<VectorType>()) {
assert(vectorType.getElementType().isIntOrFloat());
return vectorType.getNumElements() *
vectorType.getElementType().getIntOrFloatBitWidth();
}
llvm_unreachable("unhandled bit width computation for type");
}
/// Walks the given type hierarchy with the given indices, potentially down
/// to component granularity, to select an element type. Returns null type and
/// emits errors with the given loc on failure.
static Type
getElementType(Type type, ArrayRef<int32_t> indices,
function_ref<InFlightDiagnostic(StringRef)> emitErrorFn) {
if (indices.empty()) {
emitErrorFn("expected at least one index for spv.CompositeExtract");
return nullptr;
}
for (auto index : indices) {
if (auto cType = type.dyn_cast<spirv::CompositeType>()) {
if (index < 0 || static_cast<uint64_t>(index) >= cType.getNumElements()) {
emitErrorFn("index ") << index << " out of bounds for " << type;
return nullptr;
}
type = cType.getElementType(index);
} else {
emitErrorFn("cannot extract from non-composite type ")
<< type << " with index " << index;
return nullptr;
}
}
return type;
}
static Type
getElementType(Type type, Attribute indices,
function_ref<InFlightDiagnostic(StringRef)> emitErrorFn) {
auto indicesArrayAttr = indices.dyn_cast<ArrayAttr>();
if (!indicesArrayAttr) {
emitErrorFn("expected a 32-bit integer array attribute for 'indices'");
return nullptr;
}
if (!indicesArrayAttr.size()) {
emitErrorFn("expected at least one index for spv.CompositeExtract");
return nullptr;
}
SmallVector<int32_t, 2> indexVals;
for (auto indexAttr : indicesArrayAttr) {
auto indexIntAttr = indexAttr.dyn_cast<IntegerAttr>();
if (!indexIntAttr) {
emitErrorFn("expected an 32-bit integer for index, but found '")
<< indexAttr << "'";
return nullptr;
}
indexVals.push_back(indexIntAttr.getInt());
}
return getElementType(type, indexVals, emitErrorFn);
}
static Type getElementType(Type type, Attribute indices, Location loc) {
auto errorFn = [&](StringRef err) -> InFlightDiagnostic {
return ::mlir::emitError(loc, err);
};
return getElementType(type, indices, errorFn);
}
static Type getElementType(Type type, Attribute indices, OpAsmParser &parser,
llvm::SMLoc loc) {
auto errorFn = [&](StringRef err) -> InFlightDiagnostic {
return parser.emitError(loc, err);
};
return getElementType(type, indices, errorFn);
}
/// Returns true if the given `block` only contains one `spv._merge` op.
static inline bool isMergeBlock(Block &block) {
return !block.empty() && std::next(block.begin()) == block.end() &&
isa<spirv::MergeOp>(block.front());
}
//===----------------------------------------------------------------------===//
// TableGen'erated canonicalizers
//===----------------------------------------------------------------------===//
namespace {
#include "SPIRVCanonicalization.inc"
}
//===----------------------------------------------------------------------===//
// Common parsers and printers
//===----------------------------------------------------------------------===//
static ParseResult parseBitFieldExtractOp(OpAsmParser &parser,
OperationState &state) {
SmallVector<OpAsmParser::OperandType, 3> operandInfo;
Type baseType;
Type offsetType;
Type countType;
auto loc = parser.getCurrentLocation();
if (parser.parseOperandList(operandInfo, 3) || parser.parseColon() ||
parser.parseType(baseType) || parser.parseComma() ||
parser.parseType(offsetType) || parser.parseComma() ||
parser.parseType(countType) ||
parser.resolveOperands(operandInfo, {baseType, offsetType, countType},
loc, state.operands)) {
return failure();
}
state.addTypes(baseType);
return success();
}
static void printBitFieldExtractOp(Operation *op, OpAsmPrinter &printer) {
printer << op->getName() << ' ' << op->getOperands() << " : "
<< op->getOperandTypes();
}
static LogicalResult verifyBitFieldExtractOp(Operation *op) {
if (op->getOperand(0).getType() != op->getResult(0).getType()) {
return op->emitError("expected the same type for the first operand and "
"result, but provided ")
<< op->getOperand(0).getType() << " and "
<< op->getResult(0).getType();
}
return success();
}
// Parses an atomic update op. If the update op does not take a value (like
// AtomicIIncrement) `hasValue` must be false.
static ParseResult parseAtomicUpdateOp(OpAsmParser &parser,
OperationState &state, bool hasValue) {
spirv::Scope scope;
spirv::MemorySemantics memoryScope;
SmallVector<OpAsmParser::OperandType, 2> operandInfo;
OpAsmParser::OperandType ptrInfo, valueInfo;
Type type;
llvm::SMLoc loc;
if (parseEnumAttribute(scope, parser, state, kMemoryScopeAttrName) ||
parseEnumAttribute(memoryScope, parser, state, kSemanticsAttrName) ||
parser.parseOperandList(operandInfo, (hasValue ? 2 : 1)) ||
parser.getCurrentLocation(&loc) || parser.parseColonType(type))
return failure();
auto ptrType = type.dyn_cast<spirv::PointerType>();
if (!ptrType)
return parser.emitError(loc, "expected pointer type");
SmallVector<Type, 2> operandTypes;
operandTypes.push_back(ptrType);
if (hasValue)
operandTypes.push_back(ptrType.getPointeeType());
if (parser.resolveOperands(operandInfo, operandTypes, parser.getNameLoc(),
state.operands))
return failure();
return parser.addTypeToList(ptrType.getPointeeType(), state.types);
}
// Prints an atomic update op.
static void printAtomicUpdateOp(Operation *op, OpAsmPrinter &printer) {
printer << op->getName() << " \"";
auto scopeAttr = op->getAttrOfType<IntegerAttr>(kMemoryScopeAttrName);
printer << spirv::stringifyScope(
static_cast<spirv::Scope>(scopeAttr.getInt()))
<< "\" \"";
auto memorySemanticsAttr = op->getAttrOfType<IntegerAttr>(kSemanticsAttrName);
printer << spirv::stringifyMemorySemantics(
static_cast<spirv::MemorySemantics>(
memorySemanticsAttr.getInt()))
<< "\" " << op->getOperands() << " : " << op->getOperand(0).getType();
}
// Verifies an atomic update op.
static LogicalResult verifyAtomicUpdateOp(Operation *op) {
auto ptrType = op->getOperand(0).getType().cast<spirv::PointerType>();
auto elementType = ptrType.getPointeeType();
if (!elementType.isa<IntegerType>())
return op->emitOpError(
"pointer operand must point to an integer value, found ")
<< elementType;
if (op->getNumOperands() > 1) {
auto valueType = op->getOperand(1).getType();
if (valueType != elementType)
return op->emitOpError("expected value to have the same type as the "
"pointer operand's pointee type ")
<< elementType << ", but found " << valueType;
}
return success();
}
static ParseResult parseGroupNonUniformArithmeticOp(OpAsmParser &parser,
OperationState &state) {
spirv::Scope executionScope;
spirv::GroupOperation groupOperation;
OpAsmParser::OperandType valueInfo;
if (parseEnumAttribute(executionScope, parser, state,
kExecutionScopeAttrName) ||
parseEnumAttribute(groupOperation, parser, state,
kGroupOperationAttrName) ||
parser.parseOperand(valueInfo))
return failure();
Optional<OpAsmParser::OperandType> clusterSizeInfo;
if (succeeded(parser.parseOptionalKeyword(kClusterSize))) {
clusterSizeInfo = OpAsmParser::OperandType();
if (parser.parseLParen() || parser.parseOperand(*clusterSizeInfo) ||
parser.parseRParen())
return failure();
}
Type resultType;
if (parser.parseColonType(resultType))
return failure();
if (parser.resolveOperand(valueInfo, resultType, state.operands))
return failure();
if (clusterSizeInfo.hasValue()) {
Type i32Type = parser.getBuilder().getIntegerType(32);
if (parser.resolveOperand(*clusterSizeInfo, i32Type, state.operands))
return failure();
}
return parser.addTypeToList(resultType, state.types);
}
static void printGroupNonUniformArithmeticOp(Operation *groupOp,
OpAsmPrinter &printer) {
printer << groupOp->getName() << " \""
<< stringifyScope(static_cast<spirv::Scope>(
groupOp->getAttrOfType<IntegerAttr>(kExecutionScopeAttrName)
.getInt()))
<< "\" \""
<< stringifyGroupOperation(static_cast<spirv::GroupOperation>(
groupOp->getAttrOfType<IntegerAttr>(kGroupOperationAttrName)
.getInt()))
<< "\" " << groupOp->getOperand(0);
if (groupOp->getNumOperands() > 1)
printer << " " << kClusterSize << '(' << groupOp->getOperand(1) << ')';
printer << " : " << groupOp->getResult(0).getType();
}
static LogicalResult verifyGroupNonUniformArithmeticOp(Operation *groupOp) {
spirv::Scope scope = static_cast<spirv::Scope>(
groupOp->getAttrOfType<IntegerAttr>(kExecutionScopeAttrName).getInt());
if (scope != spirv::Scope::Workgroup && scope != spirv::Scope::Subgroup)
return groupOp->emitOpError(
"execution scope must be 'Workgroup' or 'Subgroup'");
spirv::GroupOperation operation = static_cast<spirv::GroupOperation>(
groupOp->getAttrOfType<IntegerAttr>(kGroupOperationAttrName).getInt());
if (operation == spirv::GroupOperation::ClusteredReduce &&
groupOp->getNumOperands() == 1)
return groupOp->emitOpError("cluster size operand must be provided for "
"'ClusteredReduce' group operation");
if (groupOp->getNumOperands() > 1) {
Operation *sizeOp = groupOp->getOperand(1).getDefiningOp();
int32_t clusterSize = 0;
// TODO(antiagainst): support specialization constant here.
if (failed(extractValueFromConstOp(sizeOp, clusterSize)))
return groupOp->emitOpError(
"cluster size operand must come from a constant op");
if (!llvm::isPowerOf2_32(clusterSize))
return groupOp->emitOpError(
"cluster size operand must be a power of two");
}
return success();
}
// Parses an op that has no inputs and no outputs.
static ParseResult parseNoIOOp(OpAsmParser &parser, OperationState &state) {
if (parser.parseOptionalAttrDict(state.attributes))
return failure();
return success();
}
// Prints an op that has no inputs and no outputs.
static void printNoIOOp(Operation *op, OpAsmPrinter &printer) {
printer << op->getName();
printer.printOptionalAttrDict(op->getAttrs());
}
static ParseResult parseUnaryOp(OpAsmParser &parser, OperationState &state) {
OpAsmParser::OperandType operandInfo;
Type type;
if (parser.parseOperand(operandInfo) || parser.parseColonType(type) ||
parser.resolveOperands(operandInfo, type, state.operands)) {
return failure();
}
state.addTypes(type);
return success();
}
static void printUnaryOp(Operation *unaryOp, OpAsmPrinter &printer) {
printer << unaryOp->getName() << ' ' << unaryOp->getOperand(0) << " : "
<< unaryOp->getOperand(0).getType();
}
/// Result of a logical op must be a scalar or vector of boolean type.
static Type getUnaryOpResultType(Builder &builder, Type operandType) {
Type resultType = builder.getIntegerType(1);
if (auto vecType = operandType.dyn_cast<VectorType>()) {
return VectorType::get(vecType.getNumElements(), resultType);
}
return resultType;
}
static ParseResult parseLogicalUnaryOp(OpAsmParser &parser,
OperationState &state) {
OpAsmParser::OperandType operandInfo;
Type type;
if (parser.parseOperand(operandInfo) || parser.parseColonType(type) ||
parser.resolveOperand(operandInfo, type, state.operands)) {
return failure();
}
state.addTypes(getUnaryOpResultType(parser.getBuilder(), type));
return success();
}
static ParseResult parseLogicalBinaryOp(OpAsmParser &parser,
OperationState &result) {
SmallVector<OpAsmParser::OperandType, 2> ops;
Type type;
if (parser.parseOperandList(ops, 2) || parser.parseColonType(type) ||
parser.resolveOperands(ops, type, result.operands)) {
return failure();
}
result.addTypes(getUnaryOpResultType(parser.getBuilder(), type));
return success();
}
static void printLogicalOp(Operation *logicalOp, OpAsmPrinter &printer) {
printer << logicalOp->getName() << ' ' << logicalOp->getOperands() << " : "
<< logicalOp->getOperand(0).getType();
}
static ParseResult parseShiftOp(OpAsmParser &parser, OperationState &state) {
SmallVector<OpAsmParser::OperandType, 2> operandInfo;
Type baseType;
Type shiftType;
auto loc = parser.getCurrentLocation();
if (parser.parseOperandList(operandInfo, 2) || parser.parseColon() ||
parser.parseType(baseType) || parser.parseComma() ||
parser.parseType(shiftType) ||
parser.resolveOperands(operandInfo, {baseType, shiftType}, loc,
state.operands)) {
return failure();
}
state.addTypes(baseType);
return success();
}
static void printShiftOp(Operation *op, OpAsmPrinter &printer) {
Value base = op->getOperand(0);
Value shift = op->getOperand(1);
printer << op->getName() << ' ' << base << ", " << shift << " : "
<< base.getType() << ", " << shift.getType();
}
static LogicalResult verifyShiftOp(Operation *op) {
if (op->getOperand(0).getType() != op->getResult(0).getType()) {
return op->emitError("expected the same type for the first operand and "
"result, but provided ")
<< op->getOperand(0).getType() << " and "
<< op->getResult(0).getType();
}
return success();
}
//===----------------------------------------------------------------------===//
// spv.AccessChainOp
//===----------------------------------------------------------------------===//
static Type getElementPtrType(Type type, ValueRange indices, Location baseLoc) {
if (indices.empty()) {
emitError(baseLoc, "'spv.AccessChain' op expected at least "
"one index ");
return nullptr;
}
auto ptrType = type.dyn_cast<spirv::PointerType>();
if (!ptrType) {
emitError(baseLoc, "'spv.AccessChain' op expected a pointer "
"to composite type, but provided ")
<< type;
return nullptr;
}
auto resultType = ptrType.getPointeeType();
auto resultStorageClass = ptrType.getStorageClass();
int32_t index = 0;
for (auto indexSSA : indices) {
auto cType = resultType.dyn_cast<spirv::CompositeType>();
if (!cType) {
emitError(baseLoc,
"'spv.AccessChain' op cannot extract from non-composite type ")
<< resultType << " with index " << index;
return nullptr;
}
index = 0;
if (resultType.isa<spirv::StructType>()) {
Operation *op = indexSSA.getDefiningOp();
if (!op) {
emitError(baseLoc, "'spv.AccessChain' op index must be an "
"integer spv.constant to access "
"element of spv.struct");
return nullptr;
}
// TODO(denis0x0D): this should be relaxed to allow
// integer literals of other bitwidths.
if (failed(extractValueFromConstOp(op, index))) {
emitError(baseLoc,
"'spv.AccessChain' index must be an integer spv.constant to "
"access element of spv.struct, but provided ")
<< op->getName();
return nullptr;
}
if (index < 0 || static_cast<uint64_t>(index) >= cType.getNumElements()) {
emitError(baseLoc, "'spv.AccessChain' op index ")
<< index << " out of bounds for " << resultType;
return nullptr;
}
}
resultType = cType.getElementType(index);
}
return spirv::PointerType::get(resultType, resultStorageClass);
}
void spirv::AccessChainOp::build(Builder *builder, OperationState &state,
Value basePtr, ValueRange indices) {
auto type = getElementPtrType(basePtr.getType(), indices, state.location);
assert(type && "Unable to deduce return type based on basePtr and indices");
build(builder, state, type, basePtr, indices);
}
static ParseResult parseAccessChainOp(OpAsmParser &parser,
OperationState &state) {
OpAsmParser::OperandType ptrInfo;
SmallVector<OpAsmParser::OperandType, 4> indicesInfo;
Type type;
// TODO(denis0x0D): regarding to the spec an index must be any integer type,
// figure out how to use resolveOperand with a range of types and do not
// fail on first attempt.
Type indicesType = parser.getBuilder().getIntegerType(32);
if (parser.parseOperand(ptrInfo) ||
parser.parseOperandList(indicesInfo, OpAsmParser::Delimiter::Square) ||
parser.parseColonType(type) ||
parser.resolveOperand(ptrInfo, type, state.operands) ||
parser.resolveOperands(indicesInfo, indicesType, state.operands)) {
return failure();
}
auto resultType = getElementPtrType(
type, llvm::makeArrayRef(state.operands).drop_front(), state.location);
if (!resultType) {
return failure();
}
state.addTypes(resultType);
return success();
}
static void print(spirv::AccessChainOp op, OpAsmPrinter &printer) {
printer << spirv::AccessChainOp::getOperationName() << ' ' << op.base_ptr()
<< '[' << op.indices() << "] : " << op.base_ptr().getType();
}
static LogicalResult verify(spirv::AccessChainOp accessChainOp) {
SmallVector<Value, 4> indices(accessChainOp.indices().begin(),
accessChainOp.indices().end());
auto resultType = getElementPtrType(accessChainOp.base_ptr().getType(),
indices, accessChainOp.getLoc());
if (!resultType) {
return failure();
}
auto providedResultType =
accessChainOp.getType().dyn_cast<spirv::PointerType>();
if (!providedResultType) {
return accessChainOp.emitOpError(
"result type must be a pointer, but provided")
<< providedResultType;
}
if (resultType != providedResultType) {
return accessChainOp.emitOpError("invalid result type: expected ")
<< resultType << ", but provided " << providedResultType;
}
return success();
}
namespace {
/// Combines chained `spirv::AccessChainOp` operations into one
/// `spirv::AccessChainOp` operation.
struct CombineChainedAccessChain
: public OpRewritePattern<spirv::AccessChainOp> {
using OpRewritePattern<spirv::AccessChainOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(spirv::AccessChainOp accessChainOp,
PatternRewriter &rewriter) const override {
auto parentAccessChainOp = dyn_cast_or_null<spirv::AccessChainOp>(
accessChainOp.base_ptr().getDefiningOp());
if (!parentAccessChainOp) {
return matchFailure();
}
// Combine indices.
SmallVector<Value, 4> indices(parentAccessChainOp.indices());
indices.append(accessChainOp.indices().begin(),
accessChainOp.indices().end());
rewriter.replaceOpWithNewOp<spirv::AccessChainOp>(
accessChainOp, parentAccessChainOp.base_ptr(), indices);
return matchSuccess();
}
};
} // end anonymous namespace
void spirv::AccessChainOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<CombineChainedAccessChain>(context);
}
//===----------------------------------------------------------------------===//
// spv._address_of
//===----------------------------------------------------------------------===//
void spirv::AddressOfOp::build(Builder *builder, OperationState &state,
spirv::GlobalVariableOp var) {
build(builder, state, var.type(), builder->getSymbolRefAttr(var));
}
static ParseResult parseAddressOfOp(OpAsmParser &parser,
OperationState &state) {
FlatSymbolRefAttr varRefAttr;
Type type;
if (parser.parseAttribute(varRefAttr, Type(), kVariableAttrName,
state.attributes) ||
parser.parseColonType(type)) {
return failure();
}
auto ptrType = type.dyn_cast<spirv::PointerType>();
if (!ptrType) {
return parser.emitError(parser.getCurrentLocation(),
"expected spv.ptr type");
}
state.addTypes(ptrType);
return success();
}
static void print(spirv::AddressOfOp addressOfOp, OpAsmPrinter &printer) {
SmallVector<StringRef, 4> elidedAttrs;
printer << spirv::AddressOfOp::getOperationName();
// Print symbol name.
printer << ' ';
printer.printSymbolName(addressOfOp.variable());
// Print the type.
printer << " : " << addressOfOp.pointer().getType();
}
static LogicalResult verify(spirv::AddressOfOp addressOfOp) {
auto varOp = dyn_cast_or_null<spirv::GlobalVariableOp>(
SymbolTable::lookupNearestSymbolFrom(addressOfOp.getParentOp(),
addressOfOp.variable()));
if (!varOp) {
return addressOfOp.emitOpError("expected spv.globalVariable symbol");
}
if (addressOfOp.pointer().getType() != varOp.type()) {
return addressOfOp.emitOpError(
"result type mismatch with the referenced global variable's type");
}
return success();
}
//===----------------------------------------------------------------------===//
// spv.AtomicCompareExchangeWeak
//===----------------------------------------------------------------------===//
static ParseResult parseAtomicCompareExchangeWeakOp(OpAsmParser &parser,
OperationState &state) {
spirv::Scope memoryScope;
spirv::MemorySemantics equalSemantics, unequalSemantics;
SmallVector<OpAsmParser::OperandType, 3> operandInfo;
Type type;
if (parseEnumAttribute(memoryScope, parser, state, kMemoryScopeAttrName) ||
parseEnumAttribute(equalSemantics, parser, state,
kEqualSemanticsAttrName) ||
parseEnumAttribute(unequalSemantics, parser, state,
kUnequalSemanticsAttrName) ||
parser.parseOperandList(operandInfo, 3))
return failure();
auto loc = parser.getCurrentLocation();
if (parser.parseColonType(type))
return failure();
auto ptrType = type.dyn_cast<spirv::PointerType>();
if (!ptrType)
return parser.emitError(loc, "expected pointer type");
if (parser.resolveOperands(
operandInfo,
{ptrType, ptrType.getPointeeType(), ptrType.getPointeeType()},
parser.getNameLoc(), state.operands))
return failure();
return parser.addTypeToList(ptrType.getPointeeType(), state.types);
}
static void print(spirv::AtomicCompareExchangeWeakOp atomOp,
OpAsmPrinter &printer) {
printer << spirv::AtomicCompareExchangeWeakOp::getOperationName() << " \""
<< stringifyScope(atomOp.memory_scope()) << "\" \""
<< stringifyMemorySemantics(atomOp.equal_semantics()) << "\" \""
<< stringifyMemorySemantics(atomOp.unequal_semantics()) << "\" "
<< atomOp.getOperands() << " : " << atomOp.pointer().getType();
}
static LogicalResult verify(spirv::AtomicCompareExchangeWeakOp atomOp) {
// According to the spec:
// "The type of Value must be the same as Result Type. The type of the value
// pointed to by Pointer must be the same as Result Type. This type must also
// match the type of Comparator."
if (atomOp.getType() != atomOp.value().getType())
return atomOp.emitOpError("value operand must have the same type as the op "
"result, but found ")
<< atomOp.value().getType() << " vs " << atomOp.getType();
if (atomOp.getType() != atomOp.comparator().getType())
return atomOp.emitOpError(
"comparator operand must have the same type as the op "
"result, but found ")
<< atomOp.comparator().getType() << " vs " << atomOp.getType();
Type pointeeType =
atomOp.pointer().getType().cast<spirv::PointerType>().getPointeeType();
if (atomOp.getType() != pointeeType)
return atomOp.emitOpError(
"pointer operand's pointee type must have the same "
"as the op result type, but found ")
<< pointeeType << " vs " << atomOp.getType();
// TODO(antiagainst): Unequal cannot be set to Release or Acquire and Release.
// In addition, Unequal cannot be set to a stronger memory-order then Equal.
return success();
}
//===----------------------------------------------------------------------===//
// spv.BitcastOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(spirv::BitcastOp bitcastOp) {
// TODO: The SPIR-V spec validation rules are different for different
// versions.
auto operandType = bitcastOp.operand().getType();
auto resultType = bitcastOp.result().getType();
if (operandType == resultType) {
return bitcastOp.emitError(
"result type must be different from operand type");
}
if (operandType.isa<spirv::PointerType>() &&
!resultType.isa<spirv::PointerType>()) {
return bitcastOp.emitError(
"unhandled bit cast conversion from pointer type to non-pointer type");
}
if (!operandType.isa<spirv::PointerType>() &&
resultType.isa<spirv::PointerType>()) {
return bitcastOp.emitError(
"unhandled bit cast conversion from non-pointer type to pointer type");
}
auto operandBitWidth = getBitWidth(operandType);
auto resultBitWidth = getBitWidth(resultType);
if (operandBitWidth != resultBitWidth) {
return bitcastOp.emitOpError("mismatch in result type bitwidth ")
<< resultBitWidth << " and operand type bitwidth "
<< operandBitWidth;
}
return success();
}
void spirv::BitcastOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<ConvertChainedBitcast>(context);
}
//===----------------------------------------------------------------------===//
// spv.BitFieldInsert
//===----------------------------------------------------------------------===//
static ParseResult parseBitFieldInsertOp(OpAsmParser &parser,
OperationState &state) {
SmallVector<OpAsmParser::OperandType, 4> operandInfo;
Type baseType;
Type offsetType;
Type countType;
auto loc = parser.getCurrentLocation();
if (parser.parseOperandList(operandInfo, 4) || parser.parseColon() ||
parser.parseType(baseType) || parser.parseComma() ||
parser.parseType(offsetType) || parser.parseComma() ||
parser.parseType(countType) ||
parser.resolveOperands(operandInfo,
{baseType, baseType, offsetType, countType}, loc,
state.operands)) {
return failure();
}
state.addTypes(baseType);
return success();
}
static void print(spirv::BitFieldInsertOp bitFieldInsertOp,
OpAsmPrinter &printer) {
printer << spirv::BitFieldInsertOp::getOperationName() << ' '
<< bitFieldInsertOp.getOperands() << " : "
<< bitFieldInsertOp.base().getType() << ", "
<< bitFieldInsertOp.offset().getType() << ", "
<< bitFieldInsertOp.count().getType();
}
static LogicalResult verify(spirv::BitFieldInsertOp bitFieldOp) {
auto baseType = bitFieldOp.base().getType();
auto insertType = bitFieldOp.insert().getType();
auto resultType = bitFieldOp.getResult().getType();
if ((baseType != insertType) || (baseType != resultType)) {
return bitFieldOp.emitError("expected the same type for the base operand, "
"insert operand, and "
"result, but provided ")
<< baseType << ", " << insertType << " and " << resultType;
}
return success();
}
//===----------------------------------------------------------------------===//
// spv.BranchOp
//===----------------------------------------------------------------------===//
static ParseResult parseBranchOp(OpAsmParser &parser, OperationState &state) {
Block *dest;
SmallVector<Value, 4> destOperands;
if (parser.parseSuccessorAndUseList(dest, destOperands))
return failure();
state.addSuccessor(dest, destOperands);
return success();
}
static void print(spirv::BranchOp branchOp, OpAsmPrinter &printer) {
printer << spirv::BranchOp::getOperationName() << ' ';
printer.printSuccessorAndUseList(branchOp.getOperation(), /*index=*/0);
}
static LogicalResult verify(spirv::BranchOp branchOp) {
auto *op = branchOp.getOperation();
if (op->getNumSuccessors() != 1)
branchOp.emitOpError("must have exactly one successor");
return success();
}
//===----------------------------------------------------------------------===//
// spv.BranchConditionalOp
//===----------------------------------------------------------------------===//
static ParseResult parseBranchConditionalOp(OpAsmParser &parser,
OperationState &state) {
auto &builder = parser.getBuilder();
OpAsmParser::OperandType condInfo;
Block *dest;
SmallVector<Value, 4> destOperands;
// Parse the condition.
Type boolTy = builder.getI1Type();
if (parser.parseOperand(condInfo) ||
parser.resolveOperand(condInfo, boolTy, state.operands))
return failure();
// Parse the optional branch weights.
if (succeeded(parser.parseOptionalLSquare())) {
IntegerAttr trueWeight, falseWeight;
SmallVector<NamedAttribute, 2> weights;
auto i32Type = builder.getIntegerType(32);
if (parser.parseAttribute(trueWeight, i32Type, "weight", weights) ||
parser.parseComma() ||
parser.parseAttribute(falseWeight, i32Type, "weight", weights) ||
parser.parseRSquare())
return failure();
state.addAttribute(kBranchWeightAttrName,
builder.getArrayAttr({trueWeight, falseWeight}));
}
// Parse the true branch.
if (parser.parseComma() ||
parser.parseSuccessorAndUseList(dest, destOperands))
return failure();
state.addSuccessor(dest, destOperands);
// Parse the false branch.
destOperands.clear();
if (parser.parseComma() ||
parser.parseSuccessorAndUseList(dest, destOperands))
return failure();
state.addSuccessor(dest, destOperands);
return success();
}
static void print(spirv::BranchConditionalOp branchOp, OpAsmPrinter &printer) {
printer << spirv::BranchConditionalOp::getOperationName() << ' '
<< branchOp.condition();
if (auto weights = branchOp.branch_weights()) {
printer << " [";
interleaveComma(weights->getValue(), printer, [&](Attribute a) {
printer << a.cast<IntegerAttr>().getInt();
});
printer << "]";
}
printer << ", ";
printer.printSuccessorAndUseList(branchOp.getOperation(),
spirv::BranchConditionalOp::kTrueIndex);
printer << ", ";
printer.printSuccessorAndUseList(branchOp.getOperation(),
spirv::BranchConditionalOp::kFalseIndex);
}
static LogicalResult verify(spirv::BranchConditionalOp branchOp) {
auto *op = branchOp.getOperation();
if (op->getNumSuccessors() != 2)
return branchOp.emitOpError("must have exactly two successors");
if (auto weights = branchOp.branch_weights()) {
if (weights->getValue().size() != 2) {
return branchOp.emitOpError("must have exactly two branch weights");
}
if (llvm::all_of(*weights, [](Attribute attr) {
return attr.cast<IntegerAttr>().getValue().isNullValue();
}))
return branchOp.emitOpError("branch weights cannot both be zero");
}
return success();
}
//===----------------------------------------------------------------------===//
// spv.CompositeConstruct
//===----------------------------------------------------------------------===//
static ParseResult parseCompositeConstructOp(OpAsmParser &parser,
OperationState &state) {
SmallVector<OpAsmParser::OperandType, 4> operands;
Type type;
auto loc = parser.getCurrentLocation();
if (parser.parseOperandList(operands) || parser.parseColonType(type)) {
return failure();
}
auto cType = type.dyn_cast<spirv::CompositeType>();
if (!cType) {
return parser.emitError(
loc, "result type must be a composite type, but provided ")
<< type;
}
if (operands.size() != cType.getNumElements()) {
return parser.emitError(loc, "has incorrect number of operands: expected ")
<< cType.getNumElements() << ", but provided " << operands.size();
}
// TODO: Add support for constructing a vector type from the vector operands.
// According to the spec: "for constructing a vector, the operands may
// also be vectors with the same component type as the Result Type component
// type".
SmallVector<Type, 4> elementTypes;
elementTypes.reserve(cType.getNumElements());
for (auto index : llvm::seq<uint32_t>(0, cType.getNumElements())) {
elementTypes.push_back(cType.getElementType(index));
}
state.addTypes(type);
return parser.resolveOperands(operands, elementTypes, loc, state.operands);
}
static void print(spirv::CompositeConstructOp compositeConstructOp,
OpAsmPrinter &printer) {
printer << spirv::CompositeConstructOp::getOperationName() << " "
<< compositeConstructOp.constituents() << " : "
<< compositeConstructOp.getResult().getType();
}
static LogicalResult verify(spirv::CompositeConstructOp compositeConstructOp) {
auto cType = compositeConstructOp.getType().cast<spirv::CompositeType>();
SmallVector<Value, 4> constituents(compositeConstructOp.constituents());
if (constituents.size() != cType.getNumElements()) {
return compositeConstructOp.emitError(
"has incorrect number of operands: expected ")
<< cType.getNumElements() << ", but provided "
<< constituents.size();
}
for (auto index : llvm::seq<uint32_t>(0, constituents.size())) {
if (constituents[index].getType() != cType.getElementType(index)) {
return compositeConstructOp.emitError(
"operand type mismatch: expected operand type ")
<< cType.getElementType(index) << ", but provided "
<< constituents[index].getType();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// spv.CompositeExtractOp
//===----------------------------------------------------------------------===//
void spirv::CompositeExtractOp::build(Builder *builder, OperationState &state,
Value composite,
ArrayRef<int32_t> indices) {
auto indexAttr = builder->getI32ArrayAttr(indices);
auto elementType =
getElementType(composite.getType(), indexAttr, state.location);
if (!elementType) {
return;
}
build(builder, state, elementType, composite, indexAttr);
}
static ParseResult parseCompositeExtractOp(OpAsmParser &parser,
OperationState &state) {
OpAsmParser::OperandType compositeInfo;
Attribute indicesAttr;
Type compositeType;
llvm::SMLoc attrLocation;
if (parser.parseOperand(compositeInfo) ||
parser.getCurrentLocation(&attrLocation) ||
parser.parseAttribute(indicesAttr, kIndicesAttrName, state.attributes) ||
parser.parseColonType(compositeType) ||
parser.resolveOperand(compositeInfo, compositeType, state.operands)) {
return failure();
}
Type resultType =
getElementType(compositeType, indicesAttr, parser, attrLocation);
if (!resultType) {
return failure();
}
state.addTypes(resultType);
return success();
}
static void print(spirv::CompositeExtractOp compositeExtractOp,
OpAsmPrinter &printer) {
printer << spirv::CompositeExtractOp::getOperationName() << ' '
<< compositeExtractOp.composite() << compositeExtractOp.indices()
<< " : " << compositeExtractOp.composite().getType();
}
static LogicalResult verify(spirv::CompositeExtractOp compExOp) {
auto indicesArrayAttr = compExOp.indices().dyn_cast<ArrayAttr>();
auto resultType = getElementType(compExOp.composite().getType(),
indicesArrayAttr, compExOp.getLoc());
if (!resultType)
return failure();
if (resultType != compExOp.getType()) {
return compExOp.emitOpError("invalid result type: expected ")
<< resultType << " but provided " << compExOp.getType();
}
return success();
}
OpFoldResult spirv::CompositeExtractOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 1 && "spv.CompositeExtract expects one operand");
auto indexVector = functional::map(
[](Attribute attr) {
return static_cast<unsigned>(attr.cast<IntegerAttr>().getInt());
},
indices());
return extractCompositeElement(operands[0], indexVector);
}
//===----------------------------------------------------------------------===//
// spv.CompositeInsert
//===----------------------------------------------------------------------===//
static ParseResult parseCompositeInsertOp(OpAsmParser &parser,
OperationState &state) {
SmallVector<OpAsmParser::OperandType, 2> operands;
Type objectType, compositeType;
Attribute indicesAttr;
auto loc = parser.getCurrentLocation();
return failure(
parser.parseOperandList(operands, 2) ||
parser.parseAttribute(indicesAttr, kIndicesAttrName, state.attributes) ||
parser.parseColonType(objectType) ||
parser.parseKeywordType("into", compositeType) ||
parser.resolveOperands(operands, {objectType, compositeType}, loc,
state.operands) ||
parser.addTypesToList(compositeType, state.types));
}
static LogicalResult verify(spirv::CompositeInsertOp compositeInsertOp) {
auto indicesArrayAttr = compositeInsertOp.indices().dyn_cast<ArrayAttr>();
auto objectType =
getElementType(compositeInsertOp.composite().getType(), indicesArrayAttr,
compositeInsertOp.getLoc());
if (!objectType)
return failure();
if (objectType != compositeInsertOp.object().getType()) {
return compositeInsertOp.emitOpError("object operand type should be ")
<< objectType << ", but found "
<< compositeInsertOp.object().getType();
}
if (compositeInsertOp.composite().getType() != compositeInsertOp.getType()) {
return compositeInsertOp.emitOpError("result type should be the same as "
"the composite type, but found ")
<< compositeInsertOp.composite().getType() << " vs "
<< compositeInsertOp.getType();
}
return success();
}
static void print(spirv::CompositeInsertOp compositeInsertOp,
OpAsmPrinter &printer) {
printer << spirv::CompositeInsertOp::getOperationName() << " "
<< compositeInsertOp.object() << ", " << compositeInsertOp.composite()
<< compositeInsertOp.indices() << " : "
<< compositeInsertOp.object().getType() << " into "
<< compositeInsertOp.composite().getType();
}
//===----------------------------------------------------------------------===//
// spv.constant
//===----------------------------------------------------------------------===//
static ParseResult parseConstantOp(OpAsmParser &parser, OperationState &state) {
Attribute value;
if (parser.parseAttribute(value, kValueAttrName, state.attributes))
return failure();
Type type = value.getType();
if (type.isa<NoneType>() || type.isa<TensorType>()) {
if (parser.parseColonType(type))
return failure();
}
return parser.addTypeToList(type, state.types);
}
static void print(spirv::ConstantOp constOp, OpAsmPrinter &printer) {
printer << spirv::ConstantOp::getOperationName() << ' ' << constOp.value();
if (constOp.getType().isa<spirv::ArrayType>())
printer << " : " << constOp.getType();
}
static LogicalResult verify(spirv::ConstantOp constOp) {
auto opType = constOp.getType();
auto value = constOp.value();
auto valueType = value.getType();
// ODS already generates checks to make sure the result type is valid. We just
// need to additionally check that the value's attribute type is consistent
// with the result type.
switch (value.getKind()) {
case StandardAttributes::Bool:
case StandardAttributes::Integer:
case StandardAttributes::Float: {
if (valueType != opType)
return constOp.emitOpError("result type (")
<< opType << ") does not match value type (" << valueType << ")";
return success();
} break;
case StandardAttributes::DenseElements:
case StandardAttributes::SparseElements: {
if (valueType == opType)
break;
auto arrayType = opType.dyn_cast<spirv::ArrayType>();
auto shapedType = valueType.dyn_cast<ShapedType>();
if (!arrayType) {
return constOp.emitOpError(
"must have spv.array result type for array value");
}
int numElements = arrayType.getNumElements();
auto opElemType = arrayType.getElementType();
while (auto t = opElemType.dyn_cast<spirv::ArrayType>()) {
numElements *= t.getNumElements();
opElemType = t.getElementType();
}
if (!opElemType.isIntOrFloat()) {
return constOp.emitOpError("only support nested array result type");
}
auto valueElemType = shapedType.getElementType();
if (valueElemType != opElemType) {
return constOp.emitOpError("result element type (")
<< opElemType << ") does not match value element type ("
<< valueElemType << ")";
}
if (numElements != shapedType.getNumElements()) {
return constOp.emitOpError("result number of elements (")
<< numElements << ") does not match value number of elements ("
<< shapedType.getNumElements() << ")";
}
} break;
case StandardAttributes::Array: {
auto arrayType = opType.dyn_cast<spirv::ArrayType>();
if (!arrayType)
return constOp.emitOpError(
"must have spv.array result type for array value");
auto elemType = arrayType.getElementType();
for (auto element : value.cast<ArrayAttr>().getValue()) {
if (element.getType() != elemType)
return constOp.emitOpError("has array element whose type (")
<< element.getType()
<< ") does not match the result element type (" << elemType
<< ')';
}
} break;
default:
return constOp.emitOpError("cannot have value of type ") << valueType;
}
return success();
}
OpFoldResult spirv::ConstantOp::fold(ArrayRef<Attribute> operands) {
assert(operands.empty() && "spv.constant has no operands");
return value();
}
bool spirv::ConstantOp::isBuildableWith(Type type) {
// Must be valid SPIR-V type first.
if (!SPIRVDialect::isValidType(type))
return false;
if (type.getKind() >= Type::FIRST_SPIRV_TYPE &&
type.getKind() <= spirv::TypeKind::LAST_SPIRV_TYPE) {
// TODO(antiagainst): support constant struct
return type.isa<spirv::ArrayType>();
}
return true;
}
spirv::ConstantOp spirv::ConstantOp::getZero(Type type, Location loc,
OpBuilder *builder) {
if (auto intType = type.dyn_cast<IntegerType>()) {
unsigned width = intType.getWidth();
if (width == 1)
return builder->create<spirv::ConstantOp>(loc, type,
builder->getBoolAttr(false));
return builder->create<spirv::ConstantOp>(
loc, type, builder->getIntegerAttr(type, APInt(width, 0)));
}
llvm_unreachable("unimplemented types for ConstantOp::getZero()");
}
spirv::ConstantOp spirv::ConstantOp::getOne(Type type, Location loc,
OpBuilder *builder) {
if (auto intType = type.dyn_cast<IntegerType>()) {
unsigned width = intType.getWidth();
if (width == 1)
return builder->create<spirv::ConstantOp>(loc, type,
builder->getBoolAttr(true));
return builder->create<spirv::ConstantOp>(
loc, type, builder->getIntegerAttr(type, APInt(width, 1)));
}
llvm_unreachable("unimplemented types for ConstantOp::getOne()");
}
//===----------------------------------------------------------------------===//
// spv.ControlBarrier
//===----------------------------------------------------------------------===//
static ParseResult parseControlBarrierOp(OpAsmParser &parser,
OperationState &state) {
spirv::Scope executionScope;
spirv::Scope memoryScope;
spirv::MemorySemantics memorySemantics;
return failure(
parseEnumAttribute(executionScope, parser, state,
kExecutionScopeAttrName) ||
parser.parseComma() ||
parseEnumAttribute(memoryScope, parser, state, kMemoryScopeAttrName) ||
parser.parseComma() ||
parseEnumAttribute(memorySemantics, parser, state));
}
static void print(spirv::ControlBarrierOp op, OpAsmPrinter &printer) {
printer << spirv::ControlBarrierOp::getOperationName() << " \""
<< stringifyScope(op.execution_scope()) << "\", \""
<< stringifyScope(op.memory_scope()) << "\", \""
<< stringifyMemorySemantics(op.memory_semantics()) << "\"";
}
//===----------------------------------------------------------------------===//
// spv.EntryPoint
//===----------------------------------------------------------------------===//
void spirv::EntryPointOp::build(Builder *builder, OperationState &state,
spirv::ExecutionModel executionModel,
FuncOp function,
ArrayRef<Attribute> interfaceVars) {
build(builder, state,
builder->getI32IntegerAttr(static_cast<int32_t>(executionModel)),
builder->getSymbolRefAttr(function),
builder->getArrayAttr(interfaceVars));
}
static ParseResult parseEntryPointOp(OpAsmParser &parser,
OperationState &state) {
spirv::ExecutionModel execModel;
SmallVector<OpAsmParser::OperandType, 0> identifiers;
SmallVector<Type, 0> idTypes;
SmallVector<Attribute, 4> interfaceVars;
FlatSymbolRefAttr fn;
if (parseEnumAttribute(execModel, parser, state) ||
parser.parseAttribute(fn, Type(), kFnNameAttrName, state.attributes)) {
return failure();
}
if (!parser.parseOptionalComma()) {
// Parse the interface variables
do {
// The name of the interface variable attribute isnt important
auto attrName = "var_symbol";
FlatSymbolRefAttr var;
SmallVector<NamedAttribute, 1> attrs;
if (parser.parseAttribute(var, Type(), attrName, attrs)) {
return failure();
}
interfaceVars.push_back(var);
} while (!parser.parseOptionalComma());
}
state.addAttribute(kInterfaceAttrName,
parser.getBuilder().getArrayAttr(interfaceVars));
return success();
}
static void print(spirv::EntryPointOp entryPointOp, OpAsmPrinter &printer) {
printer << spirv::EntryPointOp::getOperationName() << " \""
<< stringifyExecutionModel(entryPointOp.execution_model()) << "\" ";
printer.printSymbolName(entryPointOp.fn());
auto interfaceVars = entryPointOp.interface().getValue();
if (!interfaceVars.empty()) {
printer << ", ";
interleaveComma(interfaceVars, printer);
}
}
static LogicalResult verify(spirv::EntryPointOp entryPointOp) {
// Checks for fn and interface symbol reference are done in spirv::ModuleOp
// verification.
return success();
}
//===----------------------------------------------------------------------===//
// spv.ExecutionMode
//===----------------------------------------------------------------------===//
void spirv::ExecutionModeOp::build(Builder *builder, OperationState &state,
FuncOp function,
spirv::ExecutionMode executionMode,
ArrayRef<int32_t> params) {
build(builder, state, builder->getSymbolRefAttr(function),
builder->getI32IntegerAttr(static_cast<int32_t>(executionMode)),
builder->getI32ArrayAttr(params));
}
static ParseResult parseExecutionModeOp(OpAsmParser &parser,
OperationState &state) {
spirv::ExecutionMode execMode;
Attribute fn;
if (parser.parseAttribute(fn, kFnNameAttrName, state.attributes) ||
parseEnumAttribute(execMode, parser, state)) {
return failure();
}
SmallVector<int32_t, 4> values;
Type i32Type = parser.getBuilder().getIntegerType(32);
while (!parser.parseOptionalComma()) {
SmallVector<NamedAttribute, 1> attr;
Attribute value;
if (parser.parseAttribute(value, i32Type, "value", attr)) {
return failure();
}
values.push_back(value.cast<IntegerAttr>().getInt());
}
state.addAttribute(kValuesAttrName,
parser.getBuilder().getI32ArrayAttr(values));
return success();
}
static void print(spirv::ExecutionModeOp execModeOp, OpAsmPrinter &printer) {
printer << spirv::ExecutionModeOp::getOperationName() << " @"
<< execModeOp.fn() << " \""
<< stringifyExecutionMode(execModeOp.execution_mode()) << "\"";
auto values = execModeOp.values();
if (!values.size())
return;
printer << ", ";
interleaveComma(values, printer, [&](Attribute a) {
printer << a.cast<IntegerAttr>().getInt();
});
}
//===----------------------------------------------------------------------===//
// spv.FunctionCall
//===----------------------------------------------------------------------===//
static ParseResult parseFunctionCallOp(OpAsmParser &parser,
OperationState &state) {
FlatSymbolRefAttr calleeAttr;
FunctionType type;
SmallVector<OpAsmParser::OperandType, 4> operands;
auto loc = parser.getNameLoc();
if (parser.parseAttribute(calleeAttr, kCallee, state.attributes) ||
parser.parseOperandList(operands, OpAsmParser::Delimiter::Paren) ||
parser.parseColonType(type)) {
return failure();
}
auto funcType = type.dyn_cast<FunctionType>();
if (!funcType) {
return parser.emitError(loc, "expected function type, but provided ")
<< type;
}
if (funcType.getNumResults() > 1) {
return parser.emitError(loc, "expected callee function to have 0 or 1 "
"result, but provided ")
<< funcType.getNumResults();
}
return failure(parser.addTypesToList(funcType.getResults(), state.types) ||
parser.resolveOperands(operands, funcType.getInputs(), loc,
state.operands));
}
static void print(spirv::FunctionCallOp functionCallOp, OpAsmPrinter &printer) {
SmallVector<Type, 4> argTypes(functionCallOp.getOperandTypes());
Type functionType = FunctionType::get(
argTypes, functionCallOp.getResultTypes(), functionCallOp.getContext());
printer << spirv::FunctionCallOp::getOperationName() << ' '
<< functionCallOp.getAttr(kCallee) << '('
<< functionCallOp.arguments() << ") : " << functionType;
}
static LogicalResult verify(spirv::FunctionCallOp functionCallOp) {
auto fnName = functionCallOp.callee();
auto funcOp = dyn_cast_or_null<FuncOp>(SymbolTable::lookupNearestSymbolFrom(
functionCallOp.getParentOp(), fnName));
if (!funcOp) {
return functionCallOp.emitOpError("callee function '")
<< fnName << "' not found in nearest symbol table";
}
auto functionType = funcOp.getType();
if (functionCallOp.getNumResults() > 1) {
return functionCallOp.emitOpError(
"expected callee function to have 0 or 1 result, but provided ")
<< functionCallOp.getNumResults();
}
if (functionType.getNumInputs() != functionCallOp.getNumOperands()) {
return functionCallOp.emitOpError(
"has incorrect number of operands for callee: expected ")
<< functionType.getNumInputs() << ", but provided "
<< functionCallOp.getNumOperands();
}
for (uint32_t i = 0, e = functionType.getNumInputs(); i != e; ++i) {
if (functionCallOp.getOperand(i).getType() != functionType.getInput(i)) {
return functionCallOp.emitOpError(
"operand type mismatch: expected operand type ")
<< functionType.getInput(i) << ", but provided "
<< functionCallOp.getOperand(i).getType() << " for operand number "
<< i;
}
}
if (functionType.getNumResults() != functionCallOp.getNumResults()) {
return functionCallOp.emitOpError(
"has incorrect number of results has for callee: expected ")
<< functionType.getNumResults() << ", but provided "
<< functionCallOp.getNumResults();
}
if (functionCallOp.getNumResults() &&
(functionCallOp.getResult(0).getType() != functionType.getResult(0))) {
return functionCallOp.emitOpError("result type mismatch: expected ")
<< functionType.getResult(0) << ", but provided "
<< functionCallOp.getResult(0).getType();
}
return success();
}
CallInterfaceCallable spirv::FunctionCallOp::getCallableForCallee() {
return getAttrOfType<SymbolRefAttr>(kCallee);
}
Operation::operand_range spirv::FunctionCallOp::getArgOperands() {
return arguments();
}
//===----------------------------------------------------------------------===//
// spv.globalVariable
//===----------------------------------------------------------------------===//
void spirv::GlobalVariableOp::build(Builder *builder, OperationState &state,
Type type, StringRef name,
unsigned descriptorSet, unsigned binding) {
build(builder, state, TypeAttr::get(type), builder->getStringAttr(name),
nullptr);
state.addAttribute(
spirv::SPIRVDialect::getAttributeName(spirv::Decoration::DescriptorSet),
builder->getI32IntegerAttr(descriptorSet));
state.addAttribute(
spirv::SPIRVDialect::getAttributeName(spirv::Decoration::Binding),
builder->getI32IntegerAttr(binding));
}
void spirv::GlobalVariableOp::build(Builder *builder, OperationState &state,
Type type, StringRef name,
spirv::BuiltIn builtin) {
build(builder, state, TypeAttr::get(type), builder->getStringAttr(name),
nullptr);
state.addAttribute(
spirv::SPIRVDialect::getAttributeName(spirv::Decoration::BuiltIn),
builder->getStringAttr(spirv::stringifyBuiltIn(builtin)));
}
static ParseResult parseGlobalVariableOp(OpAsmParser &parser,
OperationState &state) {
// Parse variable name.
StringAttr nameAttr;
if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(),
state.attributes)) {
return failure();
}
// Parse optional initializer
if (succeeded(parser.parseOptionalKeyword(kInitializerAttrName))) {
FlatSymbolRefAttr initSymbol;
if (parser.parseLParen() ||
parser.parseAttribute(initSymbol, Type(), kInitializerAttrName,
state.attributes) ||
parser.parseRParen())
return failure();
}
if (parseVariableDecorations(parser, state)) {
return failure();
}
Type type;
auto loc = parser.getCurrentLocation();
if (parser.parseColonType(type)) {
return failure();
}
if (!type.isa<spirv::PointerType>()) {
return parser.emitError(loc, "expected spv.ptr type");
}
state.addAttribute(kTypeAttrName, TypeAttr::get(type));
return success();
}
static void print(spirv::GlobalVariableOp varOp, OpAsmPrinter &printer) {
auto *op = varOp.getOperation();
SmallVector<StringRef, 4> elidedAttrs{
spirv::attributeName<spirv::StorageClass>()};
printer << spirv::GlobalVariableOp::getOperationName();
// Print variable name.
printer << ' ';
printer.printSymbolName(varOp.sym_name());
elidedAttrs.push_back(SymbolTable::getSymbolAttrName());
// Print optional initializer
if (auto initializer = varOp.initializer()) {
printer << " " << kInitializerAttrName << '(';
printer.printSymbolName(initializer.getValue());
printer << ')';
elidedAttrs.push_back(kInitializerAttrName);
}
elidedAttrs.push_back(kTypeAttrName);
printVariableDecorations(op, printer, elidedAttrs);
printer << " : " << varOp.type();
}
static LogicalResult verify(spirv::GlobalVariableOp varOp) {
// SPIR-V spec: "Storage Class is the Storage Class of the memory holding the
// object. It cannot be Generic. It must be the same as the Storage Class
// operand of the Result Type."
if (varOp.storageClass() == spirv::StorageClass::Generic)
return varOp.emitOpError("storage class cannot be 'Generic'");
if (auto init =
varOp.getAttrOfType<FlatSymbolRefAttr>(kInitializerAttrName)) {
Operation *initOp = SymbolTable::lookupNearestSymbolFrom(
varOp.getParentOp(), init.getValue());
// TODO: Currently only variable initialization with specialization
// constants and other variables is supported. They could be normal
// constants in the module scope as well.
if (!initOp || !(isa<spirv::GlobalVariableOp>(initOp) ||
isa<spirv::SpecConstantOp>(initOp))) {
return varOp.emitOpError("initializer must be result of a "
"spv.specConstant or spv.globalVariable op");
}
}
return success();
}
//===----------------------------------------------------------------------===//
// spv.GroupNonUniformBallotOp
//===----------------------------------------------------------------------===//
static ParseResult parseGroupNonUniformBallotOp(OpAsmParser &parser,
OperationState &state) {
spirv::Scope executionScope;
OpAsmParser::OperandType operandInfo;
Type resultType;
IntegerType i1Type = parser.getBuilder().getI1Type();
if (parseEnumAttribute(executionScope, parser, state,
kExecutionScopeAttrName) ||
parser.parseOperand(operandInfo) || parser.parseColonType(resultType) ||
parser.resolveOperand(operandInfo, i1Type, state.operands))
return failure();
return parser.addTypeToList(resultType, state.types);
}
static void print(spirv::GroupNonUniformBallotOp ballotOp,
OpAsmPrinter &printer) {
printer << spirv::GroupNonUniformBallotOp::getOperationName() << " \""
<< stringifyScope(ballotOp.execution_scope()) << "\" "
<< ballotOp.predicate() << " : " << ballotOp.getType();
}
static LogicalResult verify(spirv::GroupNonUniformBallotOp ballotOp) {
// TODO(antiagainst): check the result integer type's signedness bit is 0.
spirv::Scope scope = ballotOp.execution_scope();
if (scope != spirv::Scope::Workgroup && scope != spirv::Scope::Subgroup)
return ballotOp.emitOpError(
"execution scope must be 'Workgroup' or 'Subgroup'");
return success();
}
//===----------------------------------------------------------------------===//
// spv.GroupNonUniformElectOp
//===----------------------------------------------------------------------===//
void spirv::GroupNonUniformElectOp::build(Builder *builder,
OperationState &state,
spirv::Scope scope) {
build(builder, state, builder->getI1Type(), scope);
}
static ParseResult parseGroupNonUniformElectOp(OpAsmParser &parser,
OperationState &state) {
spirv::Scope executionScope;
Type resultType;
if (parseEnumAttribute(executionScope, parser, state,
kExecutionScopeAttrName) ||
parser.parseColonType(resultType))
return failure();
return parser.addTypeToList(resultType, state.types);
}
static void print(spirv::GroupNonUniformElectOp groupOp,
OpAsmPrinter &printer) {
printer << spirv::GroupNonUniformElectOp::getOperationName() << " \""
<< stringifyScope(groupOp.execution_scope())
<< "\" : " << groupOp.getType();
}
static LogicalResult verify(spirv::GroupNonUniformElectOp groupOp) {
spirv::Scope scope = groupOp.execution_scope();
if (scope != spirv::Scope::Workgroup && scope != spirv::Scope::Subgroup)
return groupOp.emitOpError(
"execution scope must be 'Workgroup' or 'Subgroup'");
return success();
}
//===----------------------------------------------------------------------===//
// spv.IAdd
//===----------------------------------------------------------------------===//
OpFoldResult spirv::IAddOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "spv.IAdd expects two operands");
// x + 0 = x
if (matchPattern(operand2(), m_Zero()))
return operand1();
// According to the SPIR-V spec:
//
// The resulting value will equal the low-order N bits of the correct result
// R, where N is the component width and R is computed with enough precision
// to avoid overflow and underflow.
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// spv.IMul
//===----------------------------------------------------------------------===//
OpFoldResult spirv::IMulOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "spv.IMul expects two operands");
// x * 0 == 0
if (matchPattern(operand2(), m_Zero()))
return operand2();
// x * 1 = x
if (matchPattern(operand2(), m_One()))
return operand1();
// According to the SPIR-V spec:
//
// The resulting value will equal the low-order N bits of the correct result
// R, where N is the component width and R is computed with enough precision
// to avoid overflow and underflow.
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a * b; });
}
//===----------------------------------------------------------------------===//
// spv.ISub
//===----------------------------------------------------------------------===//
OpFoldResult spirv::ISubOp::fold(ArrayRef<Attribute> operands) {
// x - x = 0
if (operand1() == operand2())
return Builder(getContext()).getIntegerAttr(getType(), 0);
// According to the SPIR-V spec:
//
// The resulting value will equal the low-order N bits of the correct result
// R, where N is the component width and R is computed with enough precision
// to avoid overflow and underflow.
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// spv.LoadOp
//===----------------------------------------------------------------------===//
void spirv::LoadOp::build(Builder *builder, OperationState &state,
Value basePtr, IntegerAttr memory_access,
IntegerAttr alignment) {
auto ptrType = basePtr.getType().cast<spirv::PointerType>();
build(builder, state, ptrType.getPointeeType(), basePtr, memory_access,
alignment);
}
static ParseResult parseLoadOp(OpAsmParser &parser, OperationState &state) {
// Parse the storage class specification
spirv::StorageClass storageClass;
OpAsmParser::OperandType ptrInfo;
Type elementType;
if (parseEnumAttribute(storageClass, parser) ||
parser.parseOperand(ptrInfo) ||
parseMemoryAccessAttributes(parser, state) ||
parser.parseOptionalAttrDict(state.attributes) || parser.parseColon() ||
parser.parseType(elementType)) {
return failure();
}
auto ptrType = spirv::PointerType::get(elementType, storageClass);
if (parser.resolveOperand(ptrInfo, ptrType, state.operands)) {
return failure();
}
state.addTypes(elementType);
return success();
}
static void print(spirv::LoadOp loadOp, OpAsmPrinter &printer) {
auto *op = loadOp.getOperation();
SmallVector<StringRef, 4> elidedAttrs;
StringRef sc = stringifyStorageClass(
loadOp.ptr().getType().cast<spirv::PointerType>().getStorageClass());
printer << spirv::LoadOp::getOperationName() << " \"" << sc << "\" "
<< loadOp.ptr();
printMemoryAccessAttribute(loadOp, printer, elidedAttrs);
printer.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
printer << " : " << loadOp.getType();
}
static LogicalResult verify(spirv::LoadOp loadOp) {
// SPIR-V spec : "Result Type is the type of the loaded object. It must be a
// type with fixed size; i.e., it cannot be, nor include, any
// OpTypeRuntimeArray types."
if (failed(verifyLoadStorePtrAndValTypes(loadOp, loadOp.ptr(),
loadOp.value()))) {
return failure();
}
return verifyMemoryAccessAttribute(loadOp);
}
//===----------------------------------------------------------------------===//
// spv.LogicalNot
//===----------------------------------------------------------------------===//
void spirv::LogicalNotOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<ConvertLogicalNotOfIEqual, ConvertLogicalNotOfINotEqual,
ConvertLogicalNotOfLogicalEqual,
ConvertLogicalNotOfLogicalNotEqual>(context);
}
//===----------------------------------------------------------------------===//
// spv.loop
//===----------------------------------------------------------------------===//
void spirv::LoopOp::build(Builder *builder, OperationState &state) {
state.addAttribute("loop_control",
builder->getI32IntegerAttr(
static_cast<uint32_t>(spirv::LoopControl::None)));
state.addRegion();
}
static ParseResult parseLoopOp(OpAsmParser &parser, OperationState &state) {
// TODO(antiagainst): support loop control properly
Builder builder = parser.getBuilder();
state.addAttribute("loop_control",
builder.getI32IntegerAttr(
static_cast<uint32_t>(spirv::LoopControl::None)));
return parser.parseRegion(*state.addRegion(), /*arguments=*/{},
/*argTypes=*/{});
}
static void print(spirv::LoopOp loopOp, OpAsmPrinter &printer) {
auto *op = loopOp.getOperation();
printer << spirv::LoopOp::getOperationName();
printer.printRegion(op->getRegion(0), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
}
/// Returns true if the given `srcBlock` contains only one `spv.Branch` to the
/// given `dstBlock`.
static inline bool hasOneBranchOpTo(Block &srcBlock, Block &dstBlock) {
// Check that there is only one op in the `srcBlock`.
if (!has_single_element(srcBlock))
return false;
auto branchOp = dyn_cast<spirv::BranchOp>(srcBlock.back());
return branchOp && branchOp.getSuccessor(0) == &dstBlock;
}
static LogicalResult verify(spirv::LoopOp loopOp) {
auto *op = loopOp.getOperation();
// We need to verify that the blocks follow the following layout:
//
// +-------------+
// | entry block |
// +-------------+
// |
// v
// +-------------+
// | loop header | <-----+
// +-------------+ |
// |
// ... |
// \ | / |
// v |
// +---------------+ |
// | loop continue | -----+
// +---------------+
//
// ...
// \ | /
// v
// +-------------+
// | merge block |
// +-------------+
auto &region = op->getRegion(0);
// Allow empty region as a degenerated case, which can come from
// optimizations.
if (region.empty())
return success();
// The last block is the merge block.
Block &merge = region.back();
if (!isMergeBlock(merge))
return loopOp.emitOpError(
"last block must be the merge block with only one 'spv._merge' op");
if (std::next(region.begin()) == region.end())
return loopOp.emitOpError(
"must have an entry block branching to the loop header block");
// The first block is the entry block.
Block &entry = region.front();
if (std::next(region.begin(), 2) == region.end())
return loopOp.emitOpError(
"must have a loop header block branched from the entry block");
// The second block is the loop header block.
Block &header = *std::next(region.begin(), 1);
if (!hasOneBranchOpTo(entry, header))
return loopOp.emitOpError(
"entry block must only have one 'spv.Branch' op to the second block");
if (std::next(region.begin(), 3) == region.end())
return loopOp.emitOpError(
"requires a loop continue block branching to the loop header block");
// The second to last block is the loop continue block.
Block &cont = *std::prev(region.end(), 2);
// Make sure that we have a branch from the loop continue block to the loop
// header block.
if (llvm::none_of(
llvm::seq<unsigned>(0, cont.getNumSuccessors()),
[&](unsigned index) { return cont.getSuccessor(index) == &header; }))
return loopOp.emitOpError("second to last block must be the loop continue "
"block that branches to the loop header block");
// Make sure that no other blocks (except the entry and loop continue block)
// branches to the loop header block.
for (auto &block : llvm::make_range(std::next(region.begin(), 2),
std::prev(region.end(), 2))) {
for (auto i : llvm::seq<unsigned>(0, block.getNumSuccessors())) {
if (block.getSuccessor(i) == &header) {
return loopOp.emitOpError("can only have the entry and loop continue "
"block branching to the loop header block");
}
}
}
return success();
}
Block *spirv::LoopOp::getEntryBlock() {
assert(!body().empty() && "op region should not be empty!");
return &body().front();
}
Block *spirv::LoopOp::getHeaderBlock() {
assert(!body().empty() && "op region should not be empty!");
// The second block is the loop header block.
return &*std::next(body().begin());
}
Block *spirv::LoopOp::getContinueBlock() {
assert(!body().empty() && "op region should not be empty!");
// The second to last block is the loop continue block.
return &*std::prev(body().end(), 2);
}
Block *spirv::LoopOp::getMergeBlock() {
assert(!body().empty() && "op region should not be empty!");
// The last block is the loop merge block.
return &body().back();
}
void spirv::LoopOp::addEntryAndMergeBlock() {
assert(body().empty() && "entry and merge block already exist");
body().push_back(new Block());
auto *mergeBlock = new Block();
body().push_back(mergeBlock);
OpBuilder builder(mergeBlock);
// Add a spv._merge op into the merge block.
builder.create<spirv::MergeOp>(getLoc());
}
//===----------------------------------------------------------------------===//
// spv._merge
//===----------------------------------------------------------------------===//
static LogicalResult verify(spirv::MergeOp mergeOp) {
auto *parentOp = mergeOp.getParentOp();
if (!parentOp ||
(!isa<spirv::SelectionOp>(parentOp) && !isa<spirv::LoopOp>(parentOp)))
return mergeOp.emitOpError(
"expected parent op to be 'spv.selection' or 'spv.loop'");
Block &parentLastBlock = mergeOp.getParentRegion()->back();
if (mergeOp.getOperation() != parentLastBlock.getTerminator())
return mergeOp.emitOpError(
"can only be used in the last block of 'spv.selection' or 'spv.loop'");
return success();
}
//===----------------------------------------------------------------------===//
// spv.MemoryBarrier
//===----------------------------------------------------------------------===//
static ParseResult parseMemoryBarrierOp(OpAsmParser &parser,
OperationState &state) {
spirv::Scope memoryScope;
spirv::MemorySemantics memorySemantics;
return failure(
parseEnumAttribute(memoryScope, parser, state, kMemoryScopeAttrName) ||
parser.parseComma() ||
parseEnumAttribute(memorySemantics, parser, state));
}
static void print(spirv::MemoryBarrierOp op, OpAsmPrinter &printer) {
printer << spirv::MemoryBarrierOp::getOperationName() << " \""
<< stringifyScope(op.memory_scope()) << "\", \""
<< stringifyMemorySemantics(op.memory_semantics()) << "\"";
}
//===----------------------------------------------------------------------===//
// spv.module
//===----------------------------------------------------------------------===//
void spirv::ModuleOp::build(Builder *builder, OperationState &state) {
ensureTerminator(*state.addRegion(), *builder, state.location);
}
// TODO(ravishankarm): This is only here for resolving some dependency outside
// of mlir. Remove once it is done.
void spirv::ModuleOp::build(Builder *builder, OperationState &state,
IntegerAttr addressing_model,
IntegerAttr memory_model) {
state.addAttribute("addressing_model", addressing_model);
state.addAttribute("memory_model", memory_model);
build(builder, state);
}
void spirv::ModuleOp::build(Builder *builder, OperationState &state,
spirv::AddressingModel addressing_model,
spirv::MemoryModel memory_model,
ArrayRef<spirv::Capability> capabilities,
ArrayRef<spirv::Extension> extensions,
ArrayAttr extended_instruction_sets) {
state.addAttribute(
"addressing_model",
builder->getI32IntegerAttr(static_cast<int32_t>(addressing_model)));
state.addAttribute("memory_model", builder->getI32IntegerAttr(
static_cast<int32_t>(memory_model)));
if (!capabilities.empty())
state.addAttribute("capabilities",
getStrArrayAttrForEnumList<spirv::Capability>(
*builder, capabilities, spirv::stringifyCapability));
if (!extensions.empty())
state.addAttribute("extensions",
getStrArrayAttrForEnumList<spirv::Extension>(
*builder, extensions, spirv::stringifyExtension));
if (extended_instruction_sets)
state.addAttribute("extended_instruction_sets", extended_instruction_sets);
build(builder, state);
}
static ParseResult parseModuleOp(OpAsmParser &parser, OperationState &state) {
Region *body = state.addRegion();
// Parse attributes
spirv::AddressingModel addrModel;
spirv::MemoryModel memoryModel;
if (parseEnumAttribute(addrModel, parser, state) ||
parseEnumAttribute(memoryModel, parser, state)) {
return failure();
}
if (parser.parseRegion(*body, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
if (parser.parseOptionalAttrDictWithKeyword(state.attributes))
return failure();
spirv::ModuleOp::ensureTerminator(*body, parser.getBuilder(), state.location);
return success();
}
static void print(spirv::ModuleOp moduleOp, OpAsmPrinter &printer) {
printer << spirv::ModuleOp::getOperationName();
// Only print out addressing model and memory model in a nicer way if both
// presents. Otherwise, print them in the general form. This helps
// debugging ill-formed ModuleOp.
SmallVector<StringRef, 2> elidedAttrs;
auto addressingModelAttrName = spirv::attributeName<spirv::AddressingModel>();
auto memoryModelAttrName = spirv::attributeName<spirv::MemoryModel>();
if (moduleOp.getAttr(addressingModelAttrName) &&
moduleOp.getAttr(memoryModelAttrName)) {
printer << " \""
<< spirv::stringifyAddressingModel(moduleOp.addressing_model())
<< "\" \"" << spirv::stringifyMemoryModel(moduleOp.memory_model())
<< '"';
elidedAttrs.assign({addressingModelAttrName, memoryModelAttrName});
}
printer.printRegion(moduleOp.body(), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
printer.printOptionalAttrDictWithKeyword(moduleOp.getAttrs(), elidedAttrs);
}
static LogicalResult verify(spirv::ModuleOp moduleOp) {
auto &op = *moduleOp.getOperation();
auto *dialect = op.getDialect();
auto &body = op.getRegion(0).front();
DenseMap<std::pair<FuncOp, spirv::ExecutionModel>, spirv::EntryPointOp>
entryPoints;
SymbolTable table(moduleOp);
for (auto &op : body) {
if (op.getDialect() == dialect) {
// For EntryPoint op, check that the function and execution model is not
// duplicated in EntryPointOps. Also verify that the interface specified
// comes from globalVariables here to make this check cheaper.
if (auto entryPointOp = dyn_cast<spirv::EntryPointOp>(op)) {
auto funcOp = table.lookup<FuncOp>(entryPointOp.fn());
if (!funcOp) {
return entryPointOp.emitError("function '")
<< entryPointOp.fn() << "' not found in 'spv.module'";
}
if (auto interface = entryPointOp.interface()) {
for (Attribute varRef : interface) {
auto varSymRef = varRef.dyn_cast<FlatSymbolRefAttr>();
if (!varSymRef) {
return entryPointOp.emitError(
"expected symbol reference for interface "
"specification instead of '")
<< varRef;
}
auto variableOp =
table.lookup<spirv::GlobalVariableOp>(varSymRef.getValue());
if (!variableOp) {
return entryPointOp.emitError("expected spv.globalVariable "
"symbol reference instead of'")
<< varSymRef << "'";
}
}
}
auto key = std::pair<FuncOp, spirv::ExecutionModel>(
funcOp, entryPointOp.execution_model());
auto entryPtIt = entryPoints.find(key);
if (entryPtIt != entryPoints.end()) {
return entryPointOp.emitError("duplicate of a previous EntryPointOp");
}
entryPoints[key] = entryPointOp;
}
continue;
}
auto funcOp = dyn_cast<FuncOp>(op);
if (!funcOp)
return op.emitError("'spv.module' can only contain func and spv.* ops");
if (funcOp.isExternal())
return op.emitError("'spv.module' cannot contain external functions");
for (auto &block : funcOp)
for (auto &op : block) {
if (op.getDialect() == dialect)
continue;
if (isa<FuncOp>(op))
return op.emitError("'spv.module' cannot contain nested functions");
return op.emitError(
"functions in 'spv.module' can only contain spv.* ops");
}
}
// Verify capabilities. ODS already guarantees that we have an array of
// string attributes.
if (auto caps = moduleOp.getAttrOfType<ArrayAttr>("capabilities")) {
for (auto cap : caps.getValue()) {
auto capStr = cap.cast<StringAttr>().getValue();
if (!spirv::symbolizeCapability(capStr))
return moduleOp.emitOpError("uses unknown capability: ") << capStr;
}
}
// Verify extensions. ODS already guarantees that we have an array of
// string attributes.
if (auto exts = moduleOp.getAttrOfType<ArrayAttr>("extensions")) {
for (auto ext : exts.getValue()) {
auto extStr = ext.cast<StringAttr>().getValue();
if (!spirv::symbolizeExtension(extStr))
return moduleOp.emitOpError("uses unknown extension: ") << extStr;
}
}
return success();
}
//===----------------------------------------------------------------------===//
// spv._reference_of
//===----------------------------------------------------------------------===//
static ParseResult parseReferenceOfOp(OpAsmParser &parser,
OperationState &state) {
FlatSymbolRefAttr constRefAttr;
Type type;
if (parser.parseAttribute(constRefAttr, Type(), kSpecConstAttrName,
state.attributes) ||
parser.parseColonType(type)) {
return failure();
}
return parser.addTypeToList(type, state.types);
}
static void print(spirv::ReferenceOfOp referenceOfOp, OpAsmPrinter &printer) {
printer << spirv::ReferenceOfOp::getOperationName() << ' ';
printer.printSymbolName(referenceOfOp.spec_const());
printer << " : " << referenceOfOp.reference().getType();
}
static LogicalResult verify(spirv::ReferenceOfOp referenceOfOp) {
auto specConstOp = dyn_cast_or_null<spirv::SpecConstantOp>(
SymbolTable::lookupNearestSymbolFrom(referenceOfOp.getParentOp(),
referenceOfOp.spec_const()));
if (!specConstOp) {
return referenceOfOp.emitOpError("expected spv.specConstant symbol");
}
if (referenceOfOp.reference().getType() !=
specConstOp.default_value().getType()) {
return referenceOfOp.emitOpError("result type mismatch with the referenced "
"specialization constant's type");
}
return success();
}
//===----------------------------------------------------------------------===//
// spv.Return
//===----------------------------------------------------------------------===//
static LogicalResult verify(spirv::ReturnOp returnOp) {
auto funcOp = returnOp.getParentOfType<FuncOp>();
auto numOutputs = funcOp.getType().getNumResults();
if (numOutputs != 0)
return returnOp.emitOpError("cannot be used in functions returning value")
<< (numOutputs > 1 ? "s" : "");
return success();
}
//===----------------------------------------------------------------------===//
// spv.ReturnValue
//===----------------------------------------------------------------------===//
static ParseResult parseReturnValueOp(OpAsmParser &parser,
OperationState &state) {
OpAsmParser::OperandType retValInfo;
Type retValType;
return failure(parser.parseOperand(retValInfo) ||
parser.parseColonType(retValType) ||
parser.resolveOperand(retValInfo, retValType, state.operands));
}
static void print(spirv::ReturnValueOp retValOp, OpAsmPrinter &printer) {
printer << spirv::ReturnValueOp::getOperationName() << ' ' << retValOp.value()
<< " : " << retValOp.value().getType();
}
static LogicalResult verify(spirv::ReturnValueOp retValOp) {
auto funcOp = retValOp.getParentOfType<FuncOp>();
auto numFnResults = funcOp.getType().getNumResults();
if (numFnResults != 1)
return retValOp.emitOpError(
"returns 1 value but enclosing function requires ")
<< numFnResults << " results";
auto operandType = retValOp.value().getType();
auto fnResultType = funcOp.getType().getResult(0);
if (operandType != fnResultType)
return retValOp.emitOpError(" return value's type (")
<< operandType << ") mismatch with function's result type ("
<< fnResultType << ")";
return success();
}
//===----------------------------------------------------------------------===//
// spv.Select
//===----------------------------------------------------------------------===//
void spirv::SelectOp::build(Builder *builder, OperationState &state, Value cond,
Value trueValue, Value falseValue) {
build(builder, state, trueValue.getType(), cond, trueValue, falseValue);
}
static ParseResult parseSelectOp(OpAsmParser &parser, OperationState &state) {
OpAsmParser::OperandType condition;
SmallVector<OpAsmParser::OperandType, 2> operands;
SmallVector<Type, 2> types;
auto loc = parser.getCurrentLocation();
if (parser.parseOperand(condition) || parser.parseComma() ||
parser.parseOperandList(operands, 2) ||
parser.parseColonTypeList(types)) {
return failure();
}
if (types.size() != 2) {
return parser.emitError(
loc, "need exactly two trailing types for select condition and object");
}
if (parser.resolveOperand(condition, types[0], state.operands) ||
parser.resolveOperands(operands, types[1], state.operands)) {
return failure();
}
return parser.addTypesToList(types[1], state.types);
}
static void print(spirv::SelectOp op, OpAsmPrinter &printer) {
printer << spirv::SelectOp::getOperationName() << " " << op.getOperands()
<< " : " << op.condition().getType() << ", " << op.result().getType();
}
static LogicalResult verify(spirv::SelectOp op) {
auto resultTy = op.result().getType();
if (op.true_value().getType() != resultTy) {
return op.emitOpError("result type and true value type must be the same");
}
if (op.false_value().getType() != resultTy) {
return op.emitOpError("result type and false value type must be the same");
}
if (auto conditionTy = op.condition().getType().dyn_cast<VectorType>()) {
auto resultVectorTy = resultTy.dyn_cast<VectorType>();
if (!resultVectorTy) {
return op.emitOpError("result expected to be of vector type when "
"condition is of vector type");
}
if (resultVectorTy.getNumElements() != conditionTy.getNumElements()) {
return op.emitOpError("result should have the same number of elements as "
"the condition when condition is of vector type");
}
}
return success();
}
//===----------------------------------------------------------------------===//
// spv.selection
//===----------------------------------------------------------------------===//
static ParseResult parseSelectionOp(OpAsmParser &parser,
OperationState &state) {
// TODO(antiagainst): support selection control properly
Builder builder = parser.getBuilder();
state.addAttribute("selection_control",
builder.getI32IntegerAttr(
static_cast<uint32_t>(spirv::SelectionControl::None)));
return parser.parseRegion(*state.addRegion(), /*arguments=*/{},
/*argTypes=*/{});
}
static void print(spirv::SelectionOp selectionOp, OpAsmPrinter &printer) {
auto *op = selectionOp.getOperation();
printer << spirv::SelectionOp::getOperationName();
printer.printRegion(op->getRegion(0), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
}
static LogicalResult verify(spirv::SelectionOp selectionOp) {
auto *op = selectionOp.getOperation();
// We need to verify that the blocks follow the following layout:
//
// +--------------+
// | header block |
// +--------------+
// / | \
// ...
//
//
// +---------+ +---------+ +---------+
// | case #0 | | case #1 | | case #2 | ...
// +---------+ +---------+ +---------+
//
//
// ...
// \ | /
// v
// +-------------+
// | merge block |
// +-------------+
auto &region = op->getRegion(0);
// Allow empty region as a degenerated case, which can come from
// optimizations.
if (region.empty())
return success();
// The last block is the merge block.
if (!isMergeBlock(region.back()))
return selectionOp.emitOpError(
"last block must be the merge block with only one 'spv._merge' op");
if (std::next(region.begin()) == region.end())
return selectionOp.emitOpError("must have a selection header block");
return success();
}
Block *spirv::SelectionOp::getHeaderBlock() {
assert(!body().empty() && "op region should not be empty!");
// The first block is the loop header block.
return &body().front();
}
Block *spirv::SelectionOp::getMergeBlock() {
assert(!body().empty() && "op region should not be empty!");
// The last block is the loop merge block.
return &body().back();
}
void spirv::SelectionOp::addMergeBlock() {
assert(body().empty() && "entry and merge block already exist");
auto *mergeBlock = new Block();
body().push_back(mergeBlock);
OpBuilder builder(mergeBlock);
// Add a spv._merge op into the merge block.
builder.create<spirv::MergeOp>(getLoc());
}
namespace {
// Blocks from the given `spv.selection` operation must satisfy the following
// layout:
//
// +-----------------------------------------------+
// | header block |
// | spv.BranchConditionalOp %cond, ^case0, ^case1 |
// +-----------------------------------------------+
// / \
// ...
//
//
// +------------------------+ +------------------------+
// | case #0 | | case #1 |
// | spv.Store %ptr %value0 | | spv.Store %ptr %value1 |
// | spv.Branch ^merge | | spv.Branch ^merge |
// +------------------------+ +------------------------+
//
//
// ...
// \ /
// v
// +-------------+
// | merge block |
// +-------------+
//
struct ConvertSelectionOpToSelect
: public OpRewritePattern<spirv::SelectionOp> {
using OpRewritePattern<spirv::SelectionOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(spirv::SelectionOp selectionOp,
PatternRewriter &rewriter) const override {
auto *op = selectionOp.getOperation();
auto &body = op->getRegion(0);
// Verifier allows an empty region for `spv.selection`.
if (body.empty()) {
return matchFailure();
}
// Check that region consists of 4 blocks:
// header block, `true` block, `false` block and merge block.
if (std::distance(body.begin(), body.end()) != 4) {
return matchFailure();
}
auto *headerBlock = selectionOp.getHeaderBlock();
if (!onlyContainsBranchConditionalOp(headerBlock)) {
return matchFailure();
}
auto brConditionalOp =
cast<spirv::BranchConditionalOp>(headerBlock->front());
auto *trueBlock = brConditionalOp.getSuccessor(0);
auto *falseBlock = brConditionalOp.getSuccessor(1);
auto *mergeBlock = selectionOp.getMergeBlock();
if (!canCanonicalizeSelection(trueBlock, falseBlock, mergeBlock)) {
return matchFailure();
}
auto trueValue = getSrcValue(trueBlock);
auto falseValue = getSrcValue(falseBlock);
auto ptrValue = getDstPtr(trueBlock);
auto storeOpAttributes =
cast<spirv::StoreOp>(trueBlock->front()).getOperation()->getAttrs();
auto selectOp = rewriter.create<spirv::SelectOp>(
selectionOp.getLoc(), trueValue.getType(), brConditionalOp.condition(),
trueValue, falseValue);
rewriter.create<spirv::StoreOp>(selectOp.getLoc(), ptrValue,
selectOp.getResult(), storeOpAttributes);
// `spv.selection` is not needed anymore.
rewriter.eraseOp(op);
return matchSuccess();
}
private:
// Checks that given blocks follow the following rules:
// 1. Each conditional block consists of two operations, the first operation
// is a `spv.Store` and the last operation is a `spv.Branch`.
// 2. Each `spv.Store` uses the same pointer and the same memory attributes.
// 3. A control flow goes into the given merge block from the given
// conditional blocks.
PatternMatchResult canCanonicalizeSelection(Block *trueBlock,
Block *falseBlock,
Block *mergeBlock) const;
bool onlyContainsBranchConditionalOp(Block *block) const {
return std::next(block->begin()) == block->end() &&
isa<spirv::BranchConditionalOp>(block->front());
}
bool isSameAttrList(spirv::StoreOp lhs, spirv::StoreOp rhs) const {
return lhs.getOperation()->getAttrList().getDictionary() ==
rhs.getOperation()->getAttrList().getDictionary();
}
// Checks that given type is valid for `spv.SelectOp`.
// According to SPIR-V spec:
// "Before version 1.4, Result Type must be a pointer, scalar, or vector.
// Starting with version 1.4, Result Type can additionally be a composite type
// other than a vector."
bool isValidType(Type type) const {
return spirv::SPIRVDialect::isValidScalarType(type) ||
type.isa<VectorType>();
}
// Returns a source value for the given block.
Value getSrcValue(Block *block) const {
auto storeOp = cast<spirv::StoreOp>(block->front());
return storeOp.value();
}
// Returns a destination value for the given block.
Value getDstPtr(Block *block) const {
auto storeOp = cast<spirv::StoreOp>(block->front());
return storeOp.ptr();
}
};
PatternMatchResult ConvertSelectionOpToSelect::canCanonicalizeSelection(
Block *trueBlock, Block *falseBlock, Block *mergeBlock) const {
// Each block must consists of 2 operations.
if ((std::distance(trueBlock->begin(), trueBlock->end()) != 2) ||
(std::distance(falseBlock->begin(), falseBlock->end()) != 2)) {
return matchFailure();
}
auto trueBrStoreOp = dyn_cast<spirv::StoreOp>(trueBlock->front());
auto trueBrBranchOp =
dyn_cast<spirv::BranchOp>(*std::next(trueBlock->begin()));
auto falseBrStoreOp = dyn_cast<spirv::StoreOp>(falseBlock->front());
auto falseBrBranchOp =
dyn_cast<spirv::BranchOp>(*std::next(falseBlock->begin()));
if (!trueBrStoreOp || !trueBrBranchOp || !falseBrStoreOp ||
!falseBrBranchOp) {
return matchFailure();
}
// Check that each `spv.Store` uses the same pointer, memory access
// attributes and a valid type of the value.
if ((trueBrStoreOp.ptr() != falseBrStoreOp.ptr()) ||
!isSameAttrList(trueBrStoreOp, falseBrStoreOp) ||
!isValidType(trueBrStoreOp.value().getType())) {
return matchFailure();
}
if ((trueBrBranchOp.getOperation()->getSuccessor(0) != mergeBlock) ||
(falseBrBranchOp.getOperation()->getSuccessor(0) != mergeBlock)) {
return matchFailure();
}
return matchSuccess();
}
} // end anonymous namespace
void spirv::SelectionOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<ConvertSelectionOpToSelect>(context);
}
//===----------------------------------------------------------------------===//
// spv.specConstant
//===----------------------------------------------------------------------===//
static ParseResult parseSpecConstantOp(OpAsmParser &parser,
OperationState &state) {
StringAttr nameAttr;
Attribute valueAttr;
if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(),
state.attributes))
return failure();
// Parse optional spec_id.
if (succeeded(parser.parseOptionalKeyword(kSpecIdAttrName))) {
IntegerAttr specIdAttr;
if (parser.parseLParen() ||
parser.parseAttribute(specIdAttr, kSpecIdAttrName, state.attributes) ||
parser.parseRParen())
return failure();
}
if (parser.parseEqual() ||
parser.parseAttribute(valueAttr, kDefaultValueAttrName, state.attributes))
return failure();
return success();
}
static void print(spirv::SpecConstantOp constOp, OpAsmPrinter &printer) {
printer << spirv::SpecConstantOp::getOperationName() << ' ';
printer.printSymbolName(constOp.sym_name());
if (auto specID = constOp.getAttrOfType<IntegerAttr>(kSpecIdAttrName))
printer << ' ' << kSpecIdAttrName << '(' << specID.getInt() << ')';
printer << " = " << constOp.default_value();
}
static LogicalResult verify(spirv::SpecConstantOp constOp) {
if (auto specID = constOp.getAttrOfType<IntegerAttr>(kSpecIdAttrName))
if (specID.getValue().isNegative())
return constOp.emitOpError("SpecId cannot be negative");
auto value = constOp.default_value();
switch (value.getKind()) {
case StandardAttributes::Bool:
case StandardAttributes::Integer:
case StandardAttributes::Float: {
// Make sure bitwidth is allowed.
if (!spirv::SPIRVDialect::isValidType(value.getType()))
return constOp.emitOpError("default value bitwidth disallowed");
return success();
}
default:
return constOp.emitOpError(
"default value can only be a bool, integer, or float scalar");
}
}
//===----------------------------------------------------------------------===//
// spv.StoreOp
//===----------------------------------------------------------------------===//
static ParseResult parseStoreOp(OpAsmParser &parser, OperationState &state) {
// Parse the storage class specification
spirv::StorageClass storageClass;
SmallVector<OpAsmParser::OperandType, 2> operandInfo;
auto loc = parser.getCurrentLocation();
Type elementType;
if (parseEnumAttribute(storageClass, parser) ||
parser.parseOperandList(operandInfo, 2) ||
parseMemoryAccessAttributes(parser, state) || parser.parseColon() ||
parser.parseType(elementType)) {
return failure();
}
auto ptrType = spirv::PointerType::get(elementType, storageClass);
if (parser.resolveOperands(operandInfo, {ptrType, elementType}, loc,
state.operands)) {
return failure();
}
return success();
}
static void print(spirv::StoreOp storeOp, OpAsmPrinter &printer) {
auto *op = storeOp.getOperation();
SmallVector<StringRef, 4> elidedAttrs;
StringRef sc = stringifyStorageClass(
storeOp.ptr().getType().cast<spirv::PointerType>().getStorageClass());
printer << spirv::StoreOp::getOperationName() << " \"" << sc << "\" "
<< storeOp.ptr() << ", " << storeOp.value();
printMemoryAccessAttribute(storeOp, printer, elidedAttrs);
printer << " : " << storeOp.value().getType();
printer.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
}
static LogicalResult verify(spirv::StoreOp storeOp) {
// SPIR-V spec : "Pointer is the pointer to store through. Its type must be an
// OpTypePointer whose Type operand is the same as the type of Object."
if (failed(verifyLoadStorePtrAndValTypes(storeOp, storeOp.ptr(),
storeOp.value()))) {
return failure();
}
return verifyMemoryAccessAttribute(storeOp);
}
//===----------------------------------------------------------------------===//
// spv.SubgroupBallotKHROp
//===----------------------------------------------------------------------===//
static ParseResult parseSubgroupBallotKHROp(OpAsmParser &parser,
OperationState &state) {
OpAsmParser::OperandType operandInfo;
Type resultType;
IntegerType i1Type = parser.getBuilder().getI1Type();
if (parser.parseOperand(operandInfo) || parser.parseColonType(resultType) ||
parser.resolveOperand(operandInfo, i1Type, state.operands))
return failure();
return parser.addTypeToList(resultType, state.types);
}
static void print(spirv::SubgroupBallotKHROp ballotOp, OpAsmPrinter &printer) {
printer << spirv::SubgroupBallotKHROp::getOperationName() << ' '
<< ballotOp.predicate() << " : " << ballotOp.getType();
}
//===----------------------------------------------------------------------===//
// spv.Undef
//===----------------------------------------------------------------------===//
static ParseResult parseUndefOp(OpAsmParser &parser, OperationState &state) {
Type type;
if (parser.parseColonType(type)) {
return failure();
}
state.addTypes(type);
return success();
}
static void print(spirv::UndefOp undefOp, OpAsmPrinter &printer) {
printer << spirv::UndefOp::getOperationName() << " : " << undefOp.getType();
}
//===----------------------------------------------------------------------===//
// spv.Unreachable
//===----------------------------------------------------------------------===//
static LogicalResult verify(spirv::UnreachableOp unreachableOp) {
auto *op = unreachableOp.getOperation();
auto *block = op->getBlock();
// Fast track: if this is in entry block, its invalid. Otherwise, if no
// predecessors, it's valid.
if (block->isEntryBlock())
return unreachableOp.emitOpError("cannot be used in reachable block");
if (block->hasNoPredecessors())
return success();
// TODO(antiagainst): further verification needs to analyze reachablility from
// the entry block.
return success();
}
//===----------------------------------------------------------------------===//
// spv.Variable
//===----------------------------------------------------------------------===//
static ParseResult parseVariableOp(OpAsmParser &parser, OperationState &state) {
// Parse optional initializer
Optional<OpAsmParser::OperandType> initInfo;
if (succeeded(parser.parseOptionalKeyword("init"))) {
initInfo = OpAsmParser::OperandType();
if (parser.parseLParen() || parser.parseOperand(*initInfo) ||
parser.parseRParen())
return failure();
}
if (parseVariableDecorations(parser, state)) {
return failure();
}
// Parse result pointer type
Type type;
if (parser.parseColon())
return failure();
auto loc = parser.getCurrentLocation();
if (parser.parseType(type))
return failure();
auto ptrType = type.dyn_cast<spirv::PointerType>();
if (!ptrType)
return parser.emitError(loc, "expected spv.ptr type");
state.addTypes(ptrType);
// Resolve the initializer operand
if (initInfo) {
if (parser.resolveOperand(*initInfo, ptrType.getPointeeType(),
state.operands))
return failure();
}
auto attr = parser.getBuilder().getI32IntegerAttr(
llvm::bit_cast<int32_t>(ptrType.getStorageClass()));
state.addAttribute(spirv::attributeName<spirv::StorageClass>(), attr);
return success();
}
static void print(spirv::VariableOp varOp, OpAsmPrinter &printer) {
SmallVector<StringRef, 4> elidedAttrs{
spirv::attributeName<spirv::StorageClass>()};
printer << spirv::VariableOp::getOperationName();
// Print optional initializer
if (varOp.getNumOperands() != 0)
printer << " init(" << varOp.initializer() << ")";
printVariableDecorations(varOp, printer, elidedAttrs);
printer << " : " << varOp.getType();
}
static LogicalResult verify(spirv::VariableOp varOp) {
// SPIR-V spec: "Storage Class is the Storage Class of the memory holding the
// object. It cannot be Generic. It must be the same as the Storage Class
// operand of the Result Type."
if (varOp.storage_class() != spirv::StorageClass::Function) {
return varOp.emitOpError(
"can only be used to model function-level variables. Use "
"spv.globalVariable for module-level variables.");
}
auto pointerType = varOp.pointer().getType().cast<spirv::PointerType>();
if (varOp.storage_class() != pointerType.getStorageClass())
return varOp.emitOpError(
"storage class must match result pointer's storage class");
if (varOp.getNumOperands() != 0) {
// SPIR-V spec: "Initializer must be an <id> from a constant instruction or
// a global (module scope) OpVariable instruction".
auto *initOp = varOp.getOperand(0).getDefiningOp();
if (!initOp || !(isa<spirv::ConstantOp>(initOp) || // for normal constant
isa<spirv::ReferenceOfOp>(initOp) || // for spec constant
isa<spirv::AddressOfOp>(initOp)))
return varOp.emitOpError("initializer must be the result of a "
"constant or spv.globalVariable op");
}
// TODO(antiagainst): generate these strings using ODS.
auto *op = varOp.getOperation();
auto descriptorSetName =
convertToSnakeCase(stringifyDecoration(spirv::Decoration::DescriptorSet));
auto bindingName =
convertToSnakeCase(stringifyDecoration(spirv::Decoration::Binding));
auto builtInName =
convertToSnakeCase(stringifyDecoration(spirv::Decoration::BuiltIn));
for (const auto &attr : {descriptorSetName, bindingName, builtInName}) {
if (op->getAttr(attr))
return varOp.emitOpError("cannot have '")
<< attr << "' attribute (only allowed in spv.globalVariable)";
}
return success();
}
namespace mlir {
namespace spirv {
// TableGen'erated operation interfaces for querying versions, extensions, and
// capabilities.
#include "mlir/Dialect/SPIRV/SPIRVAvailability.cpp.inc"
// TablenGen'erated operation definitions.
#define GET_OP_CLASSES
#include "mlir/Dialect/SPIRV/SPIRVOps.cpp.inc"
// TableGen'erated operation availability interface implementations.
#include "mlir/Dialect/SPIRV/SPIRVOpAvailabilityImpl.inc"
} // namespace spirv
} // namespace mlir