llvm-project/llvm/lib/IR/DebugInfoMetadata.cpp

1491 lines
56 KiB
C++

//===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the debug info Metadata classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/DebugInfoMetadata.h"
#include "LLVMContextImpl.h"
#include "MetadataImpl.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include <numeric>
using namespace llvm;
const DIExpression::FragmentInfo DebugVariable::DefaultFragment = {
std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()};
DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line,
unsigned Column, ArrayRef<Metadata *> MDs,
bool ImplicitCode)
: MDNode(C, DILocationKind, Storage, MDs) {
assert((MDs.size() == 1 || MDs.size() == 2) &&
"Expected a scope and optional inlined-at");
// Set line and column.
assert(Column < (1u << 16) && "Expected 16-bit column");
SubclassData32 = Line;
SubclassData16 = Column;
setImplicitCode(ImplicitCode);
}
static void adjustColumn(unsigned &Column) {
// Set to unknown on overflow. We only have 16 bits to play with here.
if (Column >= (1u << 16))
Column = 0;
}
DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line,
unsigned Column, Metadata *Scope,
Metadata *InlinedAt, bool ImplicitCode,
StorageType Storage, bool ShouldCreate) {
// Fixup column.
adjustColumn(Column);
if (Storage == Uniqued) {
if (auto *N = getUniqued(Context.pImpl->DILocations,
DILocationInfo::KeyTy(Line, Column, Scope,
InlinedAt, ImplicitCode)))
return N;
if (!ShouldCreate)
return nullptr;
} else {
assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
}
SmallVector<Metadata *, 2> Ops;
Ops.push_back(Scope);
if (InlinedAt)
Ops.push_back(InlinedAt);
return storeImpl(new (Ops.size()) DILocation(Context, Storage, Line, Column,
Ops, ImplicitCode),
Storage, Context.pImpl->DILocations);
}
const
DILocation *DILocation::getMergedLocations(ArrayRef<const DILocation *> Locs) {
if (Locs.empty())
return nullptr;
if (Locs.size() == 1)
return Locs[0];
auto *Merged = Locs[0];
for (auto I = std::next(Locs.begin()), E = Locs.end(); I != E; ++I) {
Merged = getMergedLocation(Merged, *I);
if (Merged == nullptr)
break;
}
return Merged;
}
const DILocation *DILocation::getMergedLocation(const DILocation *LocA,
const DILocation *LocB) {
if (!LocA || !LocB)
return nullptr;
if (LocA == LocB)
return LocA;
SmallPtrSet<DILocation *, 5> InlinedLocationsA;
for (DILocation *L = LocA->getInlinedAt(); L; L = L->getInlinedAt())
InlinedLocationsA.insert(L);
SmallSet<std::pair<DIScope *, DILocation *>, 5> Locations;
DIScope *S = LocA->getScope();
DILocation *L = LocA->getInlinedAt();
while (S) {
Locations.insert(std::make_pair(S, L));
S = S->getScope();
if (!S && L) {
S = L->getScope();
L = L->getInlinedAt();
}
}
const DILocation *Result = LocB;
S = LocB->getScope();
L = LocB->getInlinedAt();
while (S) {
if (Locations.count(std::make_pair(S, L)))
break;
S = S->getScope();
if (!S && L) {
S = L->getScope();
L = L->getInlinedAt();
}
}
// If the two locations are irreconsilable, just pick one. This is misleading,
// but on the other hand, it's a "line 0" location.
if (!S || !isa<DILocalScope>(S))
S = LocA->getScope();
return DILocation::get(Result->getContext(), 0, 0, S, L);
}
Optional<unsigned> DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) {
std::array<unsigned, 3> Components = {BD, DF, CI};
uint64_t RemainingWork = 0U;
// We use RemainingWork to figure out if we have no remaining components to
// encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to
// encode anything for the latter 2.
// Since any of the input components is at most 32 bits, their sum will be
// less than 34 bits, and thus RemainingWork won't overflow.
RemainingWork = std::accumulate(Components.begin(), Components.end(), RemainingWork);
int I = 0;
unsigned Ret = 0;
unsigned NextBitInsertionIndex = 0;
while (RemainingWork > 0) {
unsigned C = Components[I++];
RemainingWork -= C;
unsigned EC = encodeComponent(C);
Ret |= (EC << NextBitInsertionIndex);
NextBitInsertionIndex += encodingBits(C);
}
// Encoding may be unsuccessful because of overflow. We determine success by
// checking equivalence of components before & after encoding. Alternatively,
// we could determine Success during encoding, but the current alternative is
// simpler.
unsigned TBD, TDF, TCI = 0;
decodeDiscriminator(Ret, TBD, TDF, TCI);
if (TBD == BD && TDF == DF && TCI == CI)
return Ret;
return None;
}
void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF,
unsigned &CI) {
BD = getUnsignedFromPrefixEncoding(D);
DF = getUnsignedFromPrefixEncoding(getNextComponentInDiscriminator(D));
CI = getUnsignedFromPrefixEncoding(
getNextComponentInDiscriminator(getNextComponentInDiscriminator(D)));
}
DINode::DIFlags DINode::getFlag(StringRef Flag) {
return StringSwitch<DIFlags>(Flag)
#define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME)
#include "llvm/IR/DebugInfoFlags.def"
.Default(DINode::FlagZero);
}
StringRef DINode::getFlagString(DIFlags Flag) {
switch (Flag) {
#define HANDLE_DI_FLAG(ID, NAME) \
case Flag##NAME: \
return "DIFlag" #NAME;
#include "llvm/IR/DebugInfoFlags.def"
}
return "";
}
DINode::DIFlags DINode::splitFlags(DIFlags Flags,
SmallVectorImpl<DIFlags> &SplitFlags) {
// Flags that are packed together need to be specially handled, so
// that, for example, we emit "DIFlagPublic" and not
// "DIFlagPrivate | DIFlagProtected".
if (DIFlags A = Flags & FlagAccessibility) {
if (A == FlagPrivate)
SplitFlags.push_back(FlagPrivate);
else if (A == FlagProtected)
SplitFlags.push_back(FlagProtected);
else
SplitFlags.push_back(FlagPublic);
Flags &= ~A;
}
if (DIFlags R = Flags & FlagPtrToMemberRep) {
if (R == FlagSingleInheritance)
SplitFlags.push_back(FlagSingleInheritance);
else if (R == FlagMultipleInheritance)
SplitFlags.push_back(FlagMultipleInheritance);
else
SplitFlags.push_back(FlagVirtualInheritance);
Flags &= ~R;
}
if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) {
Flags &= ~FlagIndirectVirtualBase;
SplitFlags.push_back(FlagIndirectVirtualBase);
}
#define HANDLE_DI_FLAG(ID, NAME) \
if (DIFlags Bit = Flags & Flag##NAME) { \
SplitFlags.push_back(Bit); \
Flags &= ~Bit; \
}
#include "llvm/IR/DebugInfoFlags.def"
return Flags;
}
DIScope *DIScope::getScope() const {
if (auto *T = dyn_cast<DIType>(this))
return T->getScope();
if (auto *SP = dyn_cast<DISubprogram>(this))
return SP->getScope();
if (auto *LB = dyn_cast<DILexicalBlockBase>(this))
return LB->getScope();
if (auto *NS = dyn_cast<DINamespace>(this))
return NS->getScope();
if (auto *CB = dyn_cast<DICommonBlock>(this))
return CB->getScope();
if (auto *M = dyn_cast<DIModule>(this))
return M->getScope();
assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) &&
"Unhandled type of scope.");
return nullptr;
}
StringRef DIScope::getName() const {
if (auto *T = dyn_cast<DIType>(this))
return T->getName();
if (auto *SP = dyn_cast<DISubprogram>(this))
return SP->getName();
if (auto *NS = dyn_cast<DINamespace>(this))
return NS->getName();
if (auto *CB = dyn_cast<DICommonBlock>(this))
return CB->getName();
if (auto *M = dyn_cast<DIModule>(this))
return M->getName();
assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) ||
isa<DICompileUnit>(this)) &&
"Unhandled type of scope.");
return "";
}
#ifndef NDEBUG
static bool isCanonical(const MDString *S) {
return !S || !S->getString().empty();
}
#endif
GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag,
MDString *Header,
ArrayRef<Metadata *> DwarfOps,
StorageType Storage, bool ShouldCreate) {
unsigned Hash = 0;
if (Storage == Uniqued) {
GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps);
if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key))
return N;
if (!ShouldCreate)
return nullptr;
Hash = Key.getHash();
} else {
assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
}
// Use a nullptr for empty headers.
assert(isCanonical(Header) && "Expected canonical MDString");
Metadata *PreOps[] = {Header};
return storeImpl(new (DwarfOps.size() + 1) GenericDINode(
Context, Storage, Hash, Tag, PreOps, DwarfOps),
Storage, Context.pImpl->GenericDINodes);
}
void GenericDINode::recalculateHash() {
setHash(GenericDINodeInfo::KeyTy::calculateHash(this));
}
#define UNWRAP_ARGS_IMPL(...) __VA_ARGS__
#define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS
#define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \
do { \
if (Storage == Uniqued) { \
if (auto *N = getUniqued(Context.pImpl->CLASS##s, \
CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \
return N; \
if (!ShouldCreate) \
return nullptr; \
} else { \
assert(ShouldCreate && \
"Expected non-uniqued nodes to always be created"); \
} \
} while (false)
#define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \
return storeImpl(new (array_lengthof(OPS)) \
CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
Storage, Context.pImpl->CLASS##s)
#define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \
return storeImpl(new (0u) CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \
Storage, Context.pImpl->CLASS##s)
#define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \
return storeImpl(new (array_lengthof(OPS)) CLASS(Context, Storage, OPS), \
Storage, Context.pImpl->CLASS##s)
#define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \
return storeImpl(new (NUM_OPS) \
CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
Storage, Context.pImpl->CLASS##s)
DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo,
StorageType Storage, bool ShouldCreate) {
auto *CountNode = ConstantAsMetadata::get(
ConstantInt::getSigned(Type::getInt64Ty(Context), Count));
auto *LB = ConstantAsMetadata::get(
ConstantInt::getSigned(Type::getInt64Ty(Context), Lo));
return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
ShouldCreate);
}
DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
int64_t Lo, StorageType Storage,
bool ShouldCreate) {
auto *LB = ConstantAsMetadata::get(
ConstantInt::getSigned(Type::getInt64Ty(Context), Lo));
return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
ShouldCreate);
}
DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
Metadata *LB, Metadata *UB, Metadata *Stride,
StorageType Storage, bool ShouldCreate) {
DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride));
Metadata *Ops[] = {CountNode, LB, UB, Stride};
DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops);
}
DISubrange::CountType DISubrange::getCount() const {
if (!getRawCountNode())
return CountType();
if (auto *MD = dyn_cast<ConstantAsMetadata>(getRawCountNode()))
return CountType(cast<ConstantInt>(MD->getValue()));
if (auto *DV = dyn_cast<DIVariable>(getRawCountNode()))
return CountType(DV);
return CountType();
}
DISubrange::BoundType DISubrange::getLowerBound() const {
Metadata *LB = getRawLowerBound();
if (!LB)
return BoundType();
assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) ||
isa<DIExpression>(LB)) &&
"LowerBound must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<ConstantAsMetadata>(LB))
return BoundType(cast<ConstantInt>(MD->getValue()));
if (auto *MD = dyn_cast<DIVariable>(LB))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(LB))
return BoundType(MD);
return BoundType();
}
DISubrange::BoundType DISubrange::getUpperBound() const {
Metadata *UB = getRawUpperBound();
if (!UB)
return BoundType();
assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) ||
isa<DIExpression>(UB)) &&
"UpperBound must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<ConstantAsMetadata>(UB))
return BoundType(cast<ConstantInt>(MD->getValue()));
if (auto *MD = dyn_cast<DIVariable>(UB))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(UB))
return BoundType(MD);
return BoundType();
}
DISubrange::BoundType DISubrange::getStride() const {
Metadata *ST = getRawStride();
if (!ST)
return BoundType();
assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) ||
isa<DIExpression>(ST)) &&
"Stride must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<ConstantAsMetadata>(ST))
return BoundType(cast<ConstantInt>(MD->getValue()));
if (auto *MD = dyn_cast<DIVariable>(ST))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(ST))
return BoundType(MD);
return BoundType();
}
DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context,
Metadata *CountNode, Metadata *LB,
Metadata *UB, Metadata *Stride,
StorageType Storage,
bool ShouldCreate) {
DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride));
Metadata *Ops[] = {CountNode, LB, UB, Stride};
DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops);
}
DIGenericSubrange::BoundType DIGenericSubrange::getCount() const {
Metadata *CB = getRawCountNode();
if (!CB)
return BoundType();
assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) &&
"Count must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<DIVariable>(CB))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(CB))
return BoundType(MD);
return BoundType();
}
DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const {
Metadata *LB = getRawLowerBound();
if (!LB)
return BoundType();
assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) &&
"LowerBound must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<DIVariable>(LB))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(LB))
return BoundType(MD);
return BoundType();
}
DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const {
Metadata *UB = getRawUpperBound();
if (!UB)
return BoundType();
assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) &&
"UpperBound must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<DIVariable>(UB))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(UB))
return BoundType(MD);
return BoundType();
}
DIGenericSubrange::BoundType DIGenericSubrange::getStride() const {
Metadata *ST = getRawStride();
if (!ST)
return BoundType();
assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) &&
"Stride must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<DIVariable>(ST))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(ST))
return BoundType(MD);
return BoundType();
}
DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value,
bool IsUnsigned, MDString *Name,
StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name));
Metadata *Ops[] = {Name};
DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops);
}
DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag,
MDString *Name, uint64_t SizeInBits,
uint32_t AlignInBits, unsigned Encoding,
DIFlags Flags, StorageType Storage,
bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIBasicType,
(Tag, Name, SizeInBits, AlignInBits, Encoding, Flags));
Metadata *Ops[] = {nullptr, nullptr, Name};
DEFINE_GETIMPL_STORE(DIBasicType, (Tag, SizeInBits, AlignInBits, Encoding,
Flags), Ops);
}
Optional<DIBasicType::Signedness> DIBasicType::getSignedness() const {
switch (getEncoding()) {
case dwarf::DW_ATE_signed:
case dwarf::DW_ATE_signed_char:
return Signedness::Signed;
case dwarf::DW_ATE_unsigned:
case dwarf::DW_ATE_unsigned_char:
return Signedness::Unsigned;
default:
return None;
}
}
DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag,
MDString *Name, Metadata *StringLength,
Metadata *StringLengthExp,
uint64_t SizeInBits, uint32_t AlignInBits,
unsigned Encoding, StorageType Storage,
bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIStringType, (Tag, Name, StringLength, StringLengthExp,
SizeInBits, AlignInBits, Encoding));
Metadata *Ops[] = {nullptr, nullptr, Name, StringLength, StringLengthExp};
DEFINE_GETIMPL_STORE(DIStringType, (Tag, SizeInBits, AlignInBits, Encoding),
Ops);
}
DIDerivedType *DIDerivedType::getImpl(
LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
uint32_t AlignInBits, uint64_t OffsetInBits,
Optional<unsigned> DWARFAddressSpace, DIFlags Flags, Metadata *ExtraData,
StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIDerivedType,
(Tag, Name, File, Line, Scope, BaseType, SizeInBits,
AlignInBits, OffsetInBits, DWARFAddressSpace, Flags,
ExtraData));
Metadata *Ops[] = {File, Scope, Name, BaseType, ExtraData};
DEFINE_GETIMPL_STORE(
DIDerivedType, (Tag, Line, SizeInBits, AlignInBits, OffsetInBits,
DWARFAddressSpace, Flags), Ops);
}
DICompositeType *DICompositeType::getImpl(
LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags,
Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder,
Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator,
Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
Metadata *Rank, StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
// Keep this in sync with buildODRType.
DEFINE_GETIMPL_LOOKUP(
DICompositeType,
(Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits,
OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams,
Identifier, Discriminator, DataLocation, Associated, Allocated, Rank));
Metadata *Ops[] = {File, Scope, Name, BaseType,
Elements, VTableHolder, TemplateParams, Identifier,
Discriminator, DataLocation, Associated, Allocated,
Rank};
DEFINE_GETIMPL_STORE(DICompositeType, (Tag, Line, RuntimeLang, SizeInBits,
AlignInBits, OffsetInBits, Flags),
Ops);
}
DICompositeType *DICompositeType::buildODRType(
LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
DIFlags Flags, Metadata *Elements, unsigned RuntimeLang,
Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
Metadata *Rank) {
assert(!Identifier.getString().empty() && "Expected valid identifier");
if (!Context.isODRUniquingDebugTypes())
return nullptr;
auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
if (!CT)
return CT = DICompositeType::getDistinct(
Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
VTableHolder, TemplateParams, &Identifier, Discriminator,
DataLocation, Associated, Allocated, Rank);
// Only mutate CT if it's a forward declaration and the new operands aren't.
assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?");
if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl))
return CT;
// Mutate CT in place. Keep this in sync with getImpl.
CT->mutate(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits,
Flags);
Metadata *Ops[] = {File, Scope, Name, BaseType,
Elements, VTableHolder, TemplateParams, &Identifier,
Discriminator, DataLocation, Associated, Allocated,
Rank};
assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() &&
"Mismatched number of operands");
for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I)
if (Ops[I] != CT->getOperand(I))
CT->setOperand(I, Ops[I]);
return CT;
}
DICompositeType *DICompositeType::getODRType(
LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
DIFlags Flags, Metadata *Elements, unsigned RuntimeLang,
Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
Metadata *Rank) {
assert(!Identifier.getString().empty() && "Expected valid identifier");
if (!Context.isODRUniquingDebugTypes())
return nullptr;
auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
if (!CT)
CT = DICompositeType::getDistinct(
Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder,
TemplateParams, &Identifier, Discriminator, DataLocation, Associated,
Allocated, Rank);
return CT;
}
DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context,
MDString &Identifier) {
assert(!Identifier.getString().empty() && "Expected valid identifier");
if (!Context.isODRUniquingDebugTypes())
return nullptr;
return Context.pImpl->DITypeMap->lookup(&Identifier);
}
DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags,
uint8_t CC, Metadata *TypeArray,
StorageType Storage,
bool ShouldCreate) {
DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray));
Metadata *Ops[] = {nullptr, nullptr, nullptr, TypeArray};
DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops);
}
// FIXME: Implement this string-enum correspondence with a .def file and macros,
// so that the association is explicit rather than implied.
static const char *ChecksumKindName[DIFile::CSK_Last] = {
"CSK_MD5",
"CSK_SHA1",
"CSK_SHA256",
};
StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) {
assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind");
// The first space was originally the CSK_None variant, which is now
// obsolete, but the space is still reserved in ChecksumKind, so we account
// for it here.
return ChecksumKindName[CSKind - 1];
}
Optional<DIFile::ChecksumKind> DIFile::getChecksumKind(StringRef CSKindStr) {
return StringSwitch<Optional<DIFile::ChecksumKind>>(CSKindStr)
.Case("CSK_MD5", DIFile::CSK_MD5)
.Case("CSK_SHA1", DIFile::CSK_SHA1)
.Case("CSK_SHA256", DIFile::CSK_SHA256)
.Default(None);
}
DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename,
MDString *Directory,
Optional<DIFile::ChecksumInfo<MDString *>> CS,
Optional<MDString *> Source, StorageType Storage,
bool ShouldCreate) {
assert(isCanonical(Filename) && "Expected canonical MDString");
assert(isCanonical(Directory) && "Expected canonical MDString");
assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString");
assert((!Source || isCanonical(*Source)) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source));
Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr,
Source.getValueOr(nullptr)};
DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops);
}
DICompileUnit *DICompileUnit::getImpl(
LLVMContext &Context, unsigned SourceLanguage, Metadata *File,
MDString *Producer, bool IsOptimized, MDString *Flags,
unsigned RuntimeVersion, MDString *SplitDebugFilename,
unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes,
Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros,
uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling,
unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot,
MDString *SDK, StorageType Storage, bool ShouldCreate) {
assert(Storage != Uniqued && "Cannot unique DICompileUnit");
assert(isCanonical(Producer) && "Expected canonical MDString");
assert(isCanonical(Flags) && "Expected canonical MDString");
assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString");
Metadata *Ops[] = {File,
Producer,
Flags,
SplitDebugFilename,
EnumTypes,
RetainedTypes,
GlobalVariables,
ImportedEntities,
Macros,
SysRoot,
SDK};
return storeImpl(new (array_lengthof(Ops)) DICompileUnit(
Context, Storage, SourceLanguage, IsOptimized,
RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining,
DebugInfoForProfiling, NameTableKind, RangesBaseAddress,
Ops),
Storage);
}
Optional<DICompileUnit::DebugEmissionKind>
DICompileUnit::getEmissionKind(StringRef Str) {
return StringSwitch<Optional<DebugEmissionKind>>(Str)
.Case("NoDebug", NoDebug)
.Case("FullDebug", FullDebug)
.Case("LineTablesOnly", LineTablesOnly)
.Case("DebugDirectivesOnly", DebugDirectivesOnly)
.Default(None);
}
Optional<DICompileUnit::DebugNameTableKind>
DICompileUnit::getNameTableKind(StringRef Str) {
return StringSwitch<Optional<DebugNameTableKind>>(Str)
.Case("Default", DebugNameTableKind::Default)
.Case("GNU", DebugNameTableKind::GNU)
.Case("None", DebugNameTableKind::None)
.Default(None);
}
const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) {
switch (EK) {
case NoDebug: return "NoDebug";
case FullDebug: return "FullDebug";
case LineTablesOnly: return "LineTablesOnly";
case DebugDirectivesOnly: return "DebugDirectivesOnly";
}
return nullptr;
}
const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) {
switch (NTK) {
case DebugNameTableKind::Default:
return nullptr;
case DebugNameTableKind::GNU:
return "GNU";
case DebugNameTableKind::None:
return "None";
}
return nullptr;
}
DISubprogram *DILocalScope::getSubprogram() const {
if (auto *Block = dyn_cast<DILexicalBlockBase>(this))
return Block->getScope()->getSubprogram();
return const_cast<DISubprogram *>(cast<DISubprogram>(this));
}
DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const {
if (auto *File = dyn_cast<DILexicalBlockFile>(this))
return File->getScope()->getNonLexicalBlockFileScope();
return const_cast<DILocalScope *>(this);
}
DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) {
return StringSwitch<DISPFlags>(Flag)
#define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME)
#include "llvm/IR/DebugInfoFlags.def"
.Default(SPFlagZero);
}
StringRef DISubprogram::getFlagString(DISPFlags Flag) {
switch (Flag) {
// Appease a warning.
case SPFlagVirtuality:
return "";
#define HANDLE_DISP_FLAG(ID, NAME) \
case SPFlag##NAME: \
return "DISPFlag" #NAME;
#include "llvm/IR/DebugInfoFlags.def"
}
return "";
}
DISubprogram::DISPFlags
DISubprogram::splitFlags(DISPFlags Flags,
SmallVectorImpl<DISPFlags> &SplitFlags) {
// Multi-bit fields can require special handling. In our case, however, the
// only multi-bit field is virtuality, and all its values happen to be
// single-bit values, so the right behavior just falls out.
#define HANDLE_DISP_FLAG(ID, NAME) \
if (DISPFlags Bit = Flags & SPFlag##NAME) { \
SplitFlags.push_back(Bit); \
Flags &= ~Bit; \
}
#include "llvm/IR/DebugInfoFlags.def"
return Flags;
}
DISubprogram *DISubprogram::getImpl(
LLVMContext &Context, Metadata *Scope, MDString *Name,
MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type,
unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex,
int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit,
Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes,
Metadata *ThrownTypes, StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
assert(isCanonical(LinkageName) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DISubprogram,
(Scope, Name, LinkageName, File, Line, Type, ScopeLine,
ContainingType, VirtualIndex, ThisAdjustment, Flags,
SPFlags, Unit, TemplateParams, Declaration,
RetainedNodes, ThrownTypes));
SmallVector<Metadata *, 11> Ops = {
File, Scope, Name, LinkageName, Type, Unit,
Declaration, RetainedNodes, ContainingType, TemplateParams, ThrownTypes};
if (!ThrownTypes) {
Ops.pop_back();
if (!TemplateParams) {
Ops.pop_back();
if (!ContainingType)
Ops.pop_back();
}
}
DEFINE_GETIMPL_STORE_N(
DISubprogram,
(Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags, SPFlags), Ops,
Ops.size());
}
bool DISubprogram::describes(const Function *F) const {
assert(F && "Invalid function");
return F->getSubprogram() == this;
}
DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope,
Metadata *File, unsigned Line,
unsigned Column, StorageType Storage,
bool ShouldCreate) {
// Fixup column.
adjustColumn(Column);
assert(Scope && "Expected scope");
DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column));
Metadata *Ops[] = {File, Scope};
DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops);
}
DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context,
Metadata *Scope, Metadata *File,
unsigned Discriminator,
StorageType Storage,
bool ShouldCreate) {
assert(Scope && "Expected scope");
DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator));
Metadata *Ops[] = {File, Scope};
DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops);
}
DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope,
MDString *Name, bool ExportSymbols,
StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols));
// The nullptr is for DIScope's File operand. This should be refactored.
Metadata *Ops[] = {nullptr, Scope, Name};
DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops);
}
DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope,
Metadata *Decl, MDString *Name,
Metadata *File, unsigned LineNo,
StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo));
// The nullptr is for DIScope's File operand. This should be refactored.
Metadata *Ops[] = {Scope, Decl, Name, File};
DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops);
}
DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File,
Metadata *Scope, MDString *Name,
MDString *ConfigurationMacros,
MDString *IncludePath, MDString *APINotesFile,
unsigned LineNo, bool IsDecl, StorageType Storage,
bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros,
IncludePath, APINotesFile, LineNo, IsDecl));
Metadata *Ops[] = {File, Scope, Name, ConfigurationMacros,
IncludePath, APINotesFile};
DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops);
}
DITemplateTypeParameter *
DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name,
Metadata *Type, bool isDefault,
StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault));
Metadata *Ops[] = {Name, Type};
DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops);
}
DITemplateValueParameter *DITemplateValueParameter::getImpl(
LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type,
bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter,
(Tag, Name, Type, isDefault, Value));
Metadata *Ops[] = {Name, Type, Value};
DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops);
}
DIGlobalVariable *
DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
MDString *LinkageName, Metadata *File, unsigned Line,
Metadata *Type, bool IsLocalToUnit, bool IsDefinition,
Metadata *StaticDataMemberDeclaration,
Metadata *TemplateParams, uint32_t AlignInBits,
StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
assert(isCanonical(LinkageName) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIGlobalVariable, (Scope, Name, LinkageName, File, Line,
Type, IsLocalToUnit, IsDefinition,
StaticDataMemberDeclaration,
TemplateParams, AlignInBits));
Metadata *Ops[] = {Scope,
Name,
File,
Type,
Name,
LinkageName,
StaticDataMemberDeclaration,
TemplateParams};
DEFINE_GETIMPL_STORE(DIGlobalVariable,
(Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops);
}
DILocalVariable *DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope,
MDString *Name, Metadata *File,
unsigned Line, Metadata *Type,
unsigned Arg, DIFlags Flags,
uint32_t AlignInBits,
StorageType Storage,
bool ShouldCreate) {
// 64K ought to be enough for any frontend.
assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits");
assert(Scope && "Expected scope");
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DILocalVariable,
(Scope, Name, File, Line, Type, Arg, Flags,
AlignInBits));
Metadata *Ops[] = {Scope, Name, File, Type};
DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops);
}
Optional<uint64_t> DIVariable::getSizeInBits() const {
// This is used by the Verifier so be mindful of broken types.
const Metadata *RawType = getRawType();
while (RawType) {
// Try to get the size directly.
if (auto *T = dyn_cast<DIType>(RawType))
if (uint64_t Size = T->getSizeInBits())
return Size;
if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
// Look at the base type.
RawType = DT->getRawBaseType();
continue;
}
// Missing type or size.
break;
}
// Fail gracefully.
return None;
}
DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope,
MDString *Name, Metadata *File, unsigned Line,
StorageType Storage,
bool ShouldCreate) {
assert(Scope && "Expected scope");
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DILabel,
(Scope, Name, File, Line));
Metadata *Ops[] = {Scope, Name, File};
DEFINE_GETIMPL_STORE(DILabel, (Line), Ops);
}
DIExpression *DIExpression::getImpl(LLVMContext &Context,
ArrayRef<uint64_t> Elements,
StorageType Storage, bool ShouldCreate) {
DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements));
DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements));
}
unsigned DIExpression::ExprOperand::getSize() const {
uint64_t Op = getOp();
if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)
return 2;
switch (Op) {
case dwarf::DW_OP_LLVM_convert:
case dwarf::DW_OP_LLVM_fragment:
case dwarf::DW_OP_bregx:
return 3;
case dwarf::DW_OP_constu:
case dwarf::DW_OP_consts:
case dwarf::DW_OP_deref_size:
case dwarf::DW_OP_plus_uconst:
case dwarf::DW_OP_LLVM_tag_offset:
case dwarf::DW_OP_LLVM_entry_value:
case dwarf::DW_OP_regx:
return 2;
default:
return 1;
}
}
bool DIExpression::isValid() const {
for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) {
// Check that there's space for the operand.
if (I->get() + I->getSize() > E->get())
return false;
uint64_t Op = I->getOp();
if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) ||
(Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31))
return true;
// Check that the operand is valid.
switch (Op) {
default:
return false;
case dwarf::DW_OP_LLVM_fragment:
// A fragment operator must appear at the end.
return I->get() + I->getSize() == E->get();
case dwarf::DW_OP_stack_value: {
// Must be the last one or followed by a DW_OP_LLVM_fragment.
if (I->get() + I->getSize() == E->get())
break;
auto J = I;
if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment)
return false;
break;
}
case dwarf::DW_OP_swap: {
// Must be more than one implicit element on the stack.
// FIXME: A better way to implement this would be to add a local variable
// that keeps track of the stack depth and introduce something like a
// DW_LLVM_OP_implicit_location as a placeholder for the location this
// DIExpression is attached to, or else pass the number of implicit stack
// elements into isValid.
if (getNumElements() == 1)
return false;
break;
}
case dwarf::DW_OP_LLVM_entry_value: {
// An entry value operator must appear at the beginning and the number of
// operations it cover can currently only be 1, because we support only
// entry values of a simple register location. One reason for this is that
// we currently can't calculate the size of the resulting DWARF block for
// other expressions.
return I->get() == expr_op_begin()->get() && I->getArg(0) == 1 &&
getNumElements() == 2;
}
case dwarf::DW_OP_LLVM_convert:
case dwarf::DW_OP_LLVM_tag_offset:
case dwarf::DW_OP_constu:
case dwarf::DW_OP_plus_uconst:
case dwarf::DW_OP_plus:
case dwarf::DW_OP_minus:
case dwarf::DW_OP_mul:
case dwarf::DW_OP_div:
case dwarf::DW_OP_mod:
case dwarf::DW_OP_or:
case dwarf::DW_OP_and:
case dwarf::DW_OP_xor:
case dwarf::DW_OP_shl:
case dwarf::DW_OP_shr:
case dwarf::DW_OP_shra:
case dwarf::DW_OP_deref:
case dwarf::DW_OP_deref_size:
case dwarf::DW_OP_xderef:
case dwarf::DW_OP_lit0:
case dwarf::DW_OP_not:
case dwarf::DW_OP_dup:
case dwarf::DW_OP_regx:
case dwarf::DW_OP_bregx:
case dwarf::DW_OP_push_object_address:
case dwarf::DW_OP_over:
case dwarf::DW_OP_consts:
break;
}
}
return true;
}
bool DIExpression::isImplicit() const {
if (!isValid())
return false;
if (getNumElements() == 0)
return false;
for (const auto &It : expr_ops()) {
switch (It.getOp()) {
default:
break;
case dwarf::DW_OP_stack_value:
case dwarf::DW_OP_LLVM_tag_offset:
return true;
}
}
return false;
}
bool DIExpression::isComplex() const {
if (!isValid())
return false;
if (getNumElements() == 0)
return false;
// If there are any elements other than fragment or tag_offset, then some
// kind of complex computation occurs.
for (const auto &It : expr_ops()) {
switch (It.getOp()) {
case dwarf::DW_OP_LLVM_tag_offset:
case dwarf::DW_OP_LLVM_fragment:
continue;
default: return true;
}
}
return false;
}
Optional<DIExpression::FragmentInfo>
DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) {
for (auto I = Start; I != End; ++I)
if (I->getOp() == dwarf::DW_OP_LLVM_fragment) {
DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)};
return Info;
}
return None;
}
void DIExpression::appendOffset(SmallVectorImpl<uint64_t> &Ops,
int64_t Offset) {
if (Offset > 0) {
Ops.push_back(dwarf::DW_OP_plus_uconst);
Ops.push_back(Offset);
} else if (Offset < 0) {
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(-Offset);
Ops.push_back(dwarf::DW_OP_minus);
}
}
bool DIExpression::extractIfOffset(int64_t &Offset) const {
if (getNumElements() == 0) {
Offset = 0;
return true;
}
if (getNumElements() == 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
Offset = Elements[1];
return true;
}
if (getNumElements() == 3 && Elements[0] == dwarf::DW_OP_constu) {
if (Elements[2] == dwarf::DW_OP_plus) {
Offset = Elements[1];
return true;
}
if (Elements[2] == dwarf::DW_OP_minus) {
Offset = -Elements[1];
return true;
}
}
return false;
}
const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr,
unsigned &AddrClass) {
// FIXME: This seems fragile. Nothing that verifies that these elements
// actually map to ops and not operands.
const unsigned PatternSize = 4;
if (Expr->Elements.size() >= PatternSize &&
Expr->Elements[PatternSize - 4] == dwarf::DW_OP_constu &&
Expr->Elements[PatternSize - 2] == dwarf::DW_OP_swap &&
Expr->Elements[PatternSize - 1] == dwarf::DW_OP_xderef) {
AddrClass = Expr->Elements[PatternSize - 3];
if (Expr->Elements.size() == PatternSize)
return nullptr;
return DIExpression::get(Expr->getContext(),
makeArrayRef(&*Expr->Elements.begin(),
Expr->Elements.size() - PatternSize));
}
return Expr;
}
DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags,
int64_t Offset) {
SmallVector<uint64_t, 8> Ops;
if (Flags & DIExpression::DerefBefore)
Ops.push_back(dwarf::DW_OP_deref);
appendOffset(Ops, Offset);
if (Flags & DIExpression::DerefAfter)
Ops.push_back(dwarf::DW_OP_deref);
bool StackValue = Flags & DIExpression::StackValue;
bool EntryValue = Flags & DIExpression::EntryValue;
return prependOpcodes(Expr, Ops, StackValue, EntryValue);
}
DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr,
SmallVectorImpl<uint64_t> &Ops,
bool StackValue,
bool EntryValue) {
assert(Expr && "Can't prepend ops to this expression");
if (EntryValue) {
Ops.push_back(dwarf::DW_OP_LLVM_entry_value);
// Add size info needed for entry value expression.
// Add plus one for target register operand.
Ops.push_back(Expr->getNumElements() + 1);
}
// If there are no ops to prepend, do not even add the DW_OP_stack_value.
if (Ops.empty())
StackValue = false;
for (auto Op : Expr->expr_ops()) {
// A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
if (StackValue) {
if (Op.getOp() == dwarf::DW_OP_stack_value)
StackValue = false;
else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
Ops.push_back(dwarf::DW_OP_stack_value);
StackValue = false;
}
}
Op.appendToVector(Ops);
}
if (StackValue)
Ops.push_back(dwarf::DW_OP_stack_value);
return DIExpression::get(Expr->getContext(), Ops);
}
DIExpression *DIExpression::append(const DIExpression *Expr,
ArrayRef<uint64_t> Ops) {
assert(Expr && !Ops.empty() && "Can't append ops to this expression");
// Copy Expr's current op list.
SmallVector<uint64_t, 16> NewOps;
for (auto Op : Expr->expr_ops()) {
// Append new opcodes before DW_OP_{stack_value, LLVM_fragment}.
if (Op.getOp() == dwarf::DW_OP_stack_value ||
Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
NewOps.append(Ops.begin(), Ops.end());
// Ensure that the new opcodes are only appended once.
Ops = None;
}
Op.appendToVector(NewOps);
}
NewOps.append(Ops.begin(), Ops.end());
auto *result = DIExpression::get(Expr->getContext(), NewOps);
assert(result->isValid() && "concatenated expression is not valid");
return result;
}
DIExpression *DIExpression::appendToStack(const DIExpression *Expr,
ArrayRef<uint64_t> Ops) {
assert(Expr && !Ops.empty() && "Can't append ops to this expression");
assert(none_of(Ops,
[](uint64_t Op) {
return Op == dwarf::DW_OP_stack_value ||
Op == dwarf::DW_OP_LLVM_fragment;
}) &&
"Can't append this op");
// Append a DW_OP_deref after Expr's current op list if it's non-empty and
// has no DW_OP_stack_value.
//
// Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?.
Optional<FragmentInfo> FI = Expr->getFragmentInfo();
unsigned DropUntilStackValue = FI.hasValue() ? 3 : 0;
ArrayRef<uint64_t> ExprOpsBeforeFragment =
Expr->getElements().drop_back(DropUntilStackValue);
bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) &&
(ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value);
bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty();
// Append a DW_OP_deref after Expr's current op list if needed, then append
// the new ops, and finally ensure that a single DW_OP_stack_value is present.
SmallVector<uint64_t, 16> NewOps;
if (NeedsDeref)
NewOps.push_back(dwarf::DW_OP_deref);
NewOps.append(Ops.begin(), Ops.end());
if (NeedsStackValue)
NewOps.push_back(dwarf::DW_OP_stack_value);
return DIExpression::append(Expr, NewOps);
}
Optional<DIExpression *> DIExpression::createFragmentExpression(
const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) {
SmallVector<uint64_t, 8> Ops;
// Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment.
if (Expr) {
for (auto Op : Expr->expr_ops()) {
switch (Op.getOp()) {
default: break;
case dwarf::DW_OP_shr:
case dwarf::DW_OP_shra:
case dwarf::DW_OP_shl:
case dwarf::DW_OP_plus:
case dwarf::DW_OP_plus_uconst:
case dwarf::DW_OP_minus:
// We can't safely split arithmetic or shift operations into multiple
// fragments because we can't express carry-over between fragments.
//
// FIXME: We *could* preserve the lowest fragment of a constant offset
// operation if the offset fits into SizeInBits.
return None;
case dwarf::DW_OP_LLVM_fragment: {
// Make the new offset point into the existing fragment.
uint64_t FragmentOffsetInBits = Op.getArg(0);
uint64_t FragmentSizeInBits = Op.getArg(1);
(void)FragmentSizeInBits;
assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) &&
"new fragment outside of original fragment");
OffsetInBits += FragmentOffsetInBits;
continue;
}
}
Op.appendToVector(Ops);
}
}
assert(Expr && "Unknown DIExpression");
Ops.push_back(dwarf::DW_OP_LLVM_fragment);
Ops.push_back(OffsetInBits);
Ops.push_back(SizeInBits);
return DIExpression::get(Expr->getContext(), Ops);
}
bool DIExpression::isConstant() const {
// Recognize DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment Len Ofs)?.
if (getNumElements() != 3 && getNumElements() != 6)
return false;
if (getElement(0) != dwarf::DW_OP_constu ||
getElement(2) != dwarf::DW_OP_stack_value)
return false;
if (getNumElements() == 6 && getElement(3) != dwarf::DW_OP_LLVM_fragment)
return false;
return true;
}
bool DIExpression::isSignedConstant() const {
// Recognize DW_OP_consts C
if (getNumElements() != 2)
return false;
if (getElement(0) != dwarf::DW_OP_consts)
return false;
return true;
}
DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize,
bool Signed) {
dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
DIExpression::ExtOps Ops{{dwarf::DW_OP_LLVM_convert, FromSize, TK,
dwarf::DW_OP_LLVM_convert, ToSize, TK}};
return Ops;
}
DIExpression *DIExpression::appendExt(const DIExpression *Expr,
unsigned FromSize, unsigned ToSize,
bool Signed) {
return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed));
}
DIGlobalVariableExpression *
DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable,
Metadata *Expression, StorageType Storage,
bool ShouldCreate) {
DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression));
Metadata *Ops[] = {Variable, Expression};
DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops);
}
DIObjCProperty *DIObjCProperty::getImpl(
LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
MDString *GetterName, MDString *SetterName, unsigned Attributes,
Metadata *Type, StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
assert(isCanonical(GetterName) && "Expected canonical MDString");
assert(isCanonical(SetterName) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName,
SetterName, Attributes, Type));
Metadata *Ops[] = {Name, File, GetterName, SetterName, Type};
DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops);
}
DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag,
Metadata *Scope, Metadata *Entity,
Metadata *File, unsigned Line,
MDString *Name, StorageType Storage,
bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIImportedEntity,
(Tag, Scope, Entity, File, Line, Name));
Metadata *Ops[] = {Scope, Entity, Name, File};
DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops);
}
DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType,
unsigned Line, MDString *Name, MDString *Value,
StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value));
Metadata *Ops[] = { Name, Value };
DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops);
}
DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType,
unsigned Line, Metadata *File,
Metadata *Elements, StorageType Storage,
bool ShouldCreate) {
DEFINE_GETIMPL_LOOKUP(DIMacroFile,
(MIType, Line, File, Elements));
Metadata *Ops[] = { File, Elements };
DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops);
}