forked from OSchip/llvm-project
260 lines
7.1 KiB
C++
260 lines
7.1 KiB
C++
//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the template classes ExplodedNode and ExplodedGraph,
|
|
// which represent a path-sensitive, intra-procedural "exploded graph."
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/PathSensitive/ExplodedGraph.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include <vector>
|
|
#include <list>
|
|
|
|
using namespace clang;
|
|
|
|
|
|
static inline std::vector<ExplodedNodeImpl*>& getVector(void* P) {
|
|
return *reinterpret_cast<std::vector<ExplodedNodeImpl*>*>(P);
|
|
}
|
|
|
|
void ExplodedNodeImpl::NodeGroup::addNode(ExplodedNodeImpl* N) {
|
|
|
|
assert ((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
|
|
assert (!getFlag());
|
|
|
|
if (getKind() == Size1) {
|
|
if (ExplodedNodeImpl* NOld = getNode()) {
|
|
std::vector<ExplodedNodeImpl*>* V = new std::vector<ExplodedNodeImpl*>();
|
|
assert ((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
|
|
V->push_back(NOld);
|
|
V->push_back(N);
|
|
P = reinterpret_cast<uintptr_t>(V) | SizeOther;
|
|
assert (getPtr() == (void*) V);
|
|
assert (getKind() == SizeOther);
|
|
}
|
|
else {
|
|
P = reinterpret_cast<uintptr_t>(N);
|
|
assert (getKind() == Size1);
|
|
}
|
|
}
|
|
else {
|
|
assert (getKind() == SizeOther);
|
|
getVector(getPtr()).push_back(N);
|
|
}
|
|
}
|
|
|
|
|
|
unsigned ExplodedNodeImpl::NodeGroup::size() const {
|
|
if (getFlag())
|
|
return 0;
|
|
|
|
if (getKind() == Size1)
|
|
return getNode() ? 1 : 0;
|
|
else
|
|
return getVector(getPtr()).size();
|
|
}
|
|
|
|
ExplodedNodeImpl** ExplodedNodeImpl::NodeGroup::begin() const {
|
|
if (getFlag())
|
|
return NULL;
|
|
|
|
if (getKind() == Size1)
|
|
return (ExplodedNodeImpl**) (getPtr() ? &P : NULL);
|
|
else
|
|
return const_cast<ExplodedNodeImpl**>(&*(getVector(getPtr()).begin()));
|
|
}
|
|
|
|
ExplodedNodeImpl** ExplodedNodeImpl::NodeGroup::end() const {
|
|
if (getFlag())
|
|
return NULL;
|
|
|
|
if (getKind() == Size1)
|
|
return (ExplodedNodeImpl**) (getPtr() ? &P+1 : NULL);
|
|
else {
|
|
// Dereferencing end() is undefined behaviour. The vector is not empty, so
|
|
// we can dereference the last elem and then add 1 to the result.
|
|
return const_cast<ExplodedNodeImpl**>(&getVector(getPtr()).back()) + 1;
|
|
}
|
|
}
|
|
|
|
ExplodedNodeImpl::NodeGroup::~NodeGroup() {
|
|
if (getKind() == SizeOther) delete &getVector(getPtr());
|
|
}
|
|
|
|
ExplodedGraphImpl* ExplodedGraphImpl::Trim(ExplodedNodeImpl** BeginSources,
|
|
ExplodedNodeImpl** EndSources) const{
|
|
|
|
typedef llvm::DenseMap<ExplodedNodeImpl*, ExplodedNodeImpl*> Pass1Ty;
|
|
typedef llvm::DenseMap<ExplodedNodeImpl*, ExplodedNodeImpl*> Pass2Ty;
|
|
|
|
Pass1Ty Pass1;
|
|
Pass2Ty Pass2;
|
|
|
|
llvm::SmallVector<ExplodedNodeImpl*, 10> WL2;
|
|
|
|
{ // ===- Pass 1 (reverse BFS) -===
|
|
|
|
// Enqueue the source nodes to the first worklist.
|
|
|
|
std::list<std::pair<ExplodedNodeImpl*, ExplodedNodeImpl*> > WL1;
|
|
std::list<std::pair<ExplodedNodeImpl*, ExplodedNodeImpl*> > WL1_Loops;
|
|
|
|
for (ExplodedNodeImpl** I = BeginSources; I != EndSources; ++I)
|
|
WL1.push_back(std::make_pair(*I, *I));
|
|
|
|
// Process the worklist.
|
|
|
|
while (! (WL1.empty() && WL1_Loops.empty())) {
|
|
|
|
ExplodedNodeImpl *N, *Src;
|
|
|
|
// Only dequeue from the "loops" worklist if WL1 has no items.
|
|
// Thus we prioritize for paths that don't span loop boundaries.
|
|
|
|
if (WL1.empty()) {
|
|
N = WL1_Loops.back().first;
|
|
Src = WL1_Loops.back().second;
|
|
WL1_Loops.pop_back();
|
|
}
|
|
else {
|
|
N = WL1.back().first;
|
|
Src = WL1.back().second;
|
|
WL1.pop_back();
|
|
}
|
|
|
|
if (Pass1.find(N) != Pass1.end())
|
|
continue;
|
|
|
|
bool PredHasSameSource = false;
|
|
bool VisitPreds = true;
|
|
|
|
for (ExplodedNodeImpl** I=N->Preds.begin(), **E=N->Preds.end();
|
|
I!=E; ++I) {
|
|
|
|
Pass1Ty::iterator pi = Pass1.find(*I);
|
|
|
|
if (pi == Pass1.end())
|
|
continue;
|
|
|
|
VisitPreds = false;
|
|
|
|
if (pi->second == Src) {
|
|
PredHasSameSource = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (VisitPreds || !PredHasSameSource) {
|
|
|
|
Pass1[N] = Src;
|
|
|
|
if (N->Preds.empty()) {
|
|
WL2.push_back(N);
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
Pass1[N] = NULL;
|
|
|
|
if (VisitPreds)
|
|
for (ExplodedNodeImpl** I=N->Preds.begin(), **E=N->Preds.end();
|
|
I!=E; ++I) {
|
|
|
|
ProgramPoint P = Src->getLocation();
|
|
|
|
if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
|
|
if (Stmt* T = BE->getSrc()->getTerminator())
|
|
switch (T->getStmtClass()) {
|
|
default: break;
|
|
case Stmt::ForStmtClass:
|
|
case Stmt::WhileStmtClass:
|
|
case Stmt::DoStmtClass:
|
|
WL1_Loops.push_front(std::make_pair(*I, Src));
|
|
continue;
|
|
|
|
}
|
|
|
|
WL1.push_front(std::make_pair(*I, Src));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (WL2.empty())
|
|
return NULL;
|
|
|
|
ExplodedGraphImpl* G = MakeEmptyGraph();
|
|
|
|
// ===- Pass 2 (forward DFS to construct the new graph) -===
|
|
|
|
while (!WL2.empty()) {
|
|
|
|
ExplodedNodeImpl* N = WL2.back();
|
|
WL2.pop_back();
|
|
|
|
// Skip this node if we have already processed it.
|
|
|
|
if (Pass2.find(N) != Pass2.end())
|
|
continue;
|
|
|
|
// Create the corresponding node in the new graph.
|
|
|
|
ExplodedNodeImpl* NewN = G->getNodeImpl(N->getLocation(), N->State, NULL);
|
|
Pass2[N] = NewN;
|
|
|
|
if (N->Preds.empty())
|
|
G->addRoot(NewN);
|
|
|
|
// In the case that some of the intended predecessors of NewN have already
|
|
// been created, we should hook them up as predecessors.
|
|
|
|
for (ExplodedNodeImpl **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
|
|
|
|
Pass2Ty::iterator PI = Pass2.find(*I);
|
|
|
|
if (PI == Pass2.end())
|
|
continue;
|
|
|
|
NewN->addPredecessor(PI->second);
|
|
}
|
|
|
|
// In the case that some of the intended successors of NewN have already
|
|
// been created, we should hook them up as successors. Otherwise, enqueue
|
|
// the new nodes from the original graph that should have nodes created
|
|
// in the new graph.
|
|
|
|
for (ExplodedNodeImpl **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
|
|
|
|
Pass2Ty::iterator PI = Pass2.find(*I);
|
|
|
|
if (PI != Pass2.end()) {
|
|
PI->second->addPredecessor(NewN);
|
|
continue;
|
|
}
|
|
|
|
// Enqueue nodes to the worklist that were marked during pass 1.
|
|
|
|
Pass1Ty::iterator pi = Pass1.find(*I);
|
|
|
|
if (pi == Pass1.end() || pi->second == NULL)
|
|
continue;
|
|
|
|
WL2.push_back(*I);
|
|
}
|
|
|
|
if (N->isSink())
|
|
NewN->markAsSink();
|
|
}
|
|
|
|
return G;
|
|
}
|