forked from OSchip/llvm-project
2551 lines
90 KiB
C++
2551 lines
90 KiB
C++
//=-- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-=
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a meta-engine for path-sensitive dataflow analysis that
|
|
// is built on GREngine, but provides the boilerplate to execute transfer
|
|
// functions and build the ExplodedGraph at the expression level.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "ExprEngine"
|
|
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
|
#include "PrettyStackTraceLocationContext.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/PrettyStackTrace.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
|
#include "llvm/ADT/ImmutableList.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#ifndef NDEBUG
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#endif
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
using llvm::APSInt;
|
|
|
|
STATISTIC(NumRemoveDeadBindings,
|
|
"The # of times RemoveDeadBindings is called");
|
|
STATISTIC(NumMaxBlockCountReached,
|
|
"The # of aborted paths due to reaching the maximum block count in "
|
|
"a top level function");
|
|
STATISTIC(NumMaxBlockCountReachedInInlined,
|
|
"The # of aborted paths due to reaching the maximum block count in "
|
|
"an inlined function");
|
|
STATISTIC(NumTimesRetriedWithoutInlining,
|
|
"The # of times we re-evaluated a call without inlining");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Engine construction and deletion.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ExprEngine::ExprEngine(AnalysisManager &mgr, bool gcEnabled,
|
|
SetOfConstDecls *VisitedCalleesIn,
|
|
FunctionSummariesTy *FS,
|
|
InliningModes HowToInlineIn)
|
|
: AMgr(mgr),
|
|
AnalysisDeclContexts(mgr.getAnalysisDeclContextManager()),
|
|
Engine(*this, FS),
|
|
G(Engine.getGraph()),
|
|
StateMgr(getContext(), mgr.getStoreManagerCreator(),
|
|
mgr.getConstraintManagerCreator(), G.getAllocator(),
|
|
this),
|
|
SymMgr(StateMgr.getSymbolManager()),
|
|
svalBuilder(StateMgr.getSValBuilder()),
|
|
currStmtIdx(0), currBldrCtx(0),
|
|
ObjCNoRet(mgr.getASTContext()),
|
|
ObjCGCEnabled(gcEnabled), BR(mgr, *this),
|
|
VisitedCallees(VisitedCalleesIn),
|
|
HowToInline(HowToInlineIn)
|
|
{
|
|
unsigned TrimInterval = mgr.options.getGraphTrimInterval();
|
|
if (TrimInterval != 0) {
|
|
// Enable eager node reclaimation when constructing the ExplodedGraph.
|
|
G.enableNodeReclamation(TrimInterval);
|
|
}
|
|
}
|
|
|
|
ExprEngine::~ExprEngine() {
|
|
BR.FlushReports();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ProgramStateRef ExprEngine::getInitialState(const LocationContext *InitLoc) {
|
|
ProgramStateRef state = StateMgr.getInitialState(InitLoc);
|
|
const Decl *D = InitLoc->getDecl();
|
|
|
|
// Preconditions.
|
|
// FIXME: It would be nice if we had a more general mechanism to add
|
|
// such preconditions. Some day.
|
|
do {
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// Precondition: the first argument of 'main' is an integer guaranteed
|
|
// to be > 0.
|
|
const IdentifierInfo *II = FD->getIdentifier();
|
|
if (!II || !(II->getName() == "main" && FD->getNumParams() > 0))
|
|
break;
|
|
|
|
const ParmVarDecl *PD = FD->getParamDecl(0);
|
|
QualType T = PD->getType();
|
|
const BuiltinType *BT = dyn_cast<BuiltinType>(T);
|
|
if (!BT || !BT->isInteger())
|
|
break;
|
|
|
|
const MemRegion *R = state->getRegion(PD, InitLoc);
|
|
if (!R)
|
|
break;
|
|
|
|
SVal V = state->getSVal(loc::MemRegionVal(R));
|
|
SVal Constraint_untested = evalBinOp(state, BO_GT, V,
|
|
svalBuilder.makeZeroVal(T),
|
|
getContext().IntTy);
|
|
|
|
Optional<DefinedOrUnknownSVal> Constraint =
|
|
Constraint_untested.getAs<DefinedOrUnknownSVal>();
|
|
|
|
if (!Constraint)
|
|
break;
|
|
|
|
if (ProgramStateRef newState = state->assume(*Constraint, true))
|
|
state = newState;
|
|
}
|
|
break;
|
|
}
|
|
while (0);
|
|
|
|
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
// Precondition: 'self' is always non-null upon entry to an Objective-C
|
|
// method.
|
|
const ImplicitParamDecl *SelfD = MD->getSelfDecl();
|
|
const MemRegion *R = state->getRegion(SelfD, InitLoc);
|
|
SVal V = state->getSVal(loc::MemRegionVal(R));
|
|
|
|
if (Optional<Loc> LV = V.getAs<Loc>()) {
|
|
// Assume that the pointer value in 'self' is non-null.
|
|
state = state->assume(*LV, true);
|
|
assert(state && "'self' cannot be null");
|
|
}
|
|
}
|
|
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
|
|
if (!MD->isStatic()) {
|
|
// Precondition: 'this' is always non-null upon entry to the
|
|
// top-level function. This is our starting assumption for
|
|
// analyzing an "open" program.
|
|
const StackFrameContext *SFC = InitLoc->getCurrentStackFrame();
|
|
if (SFC->getParent() == 0) {
|
|
loc::MemRegionVal L = svalBuilder.getCXXThis(MD, SFC);
|
|
SVal V = state->getSVal(L);
|
|
if (Optional<Loc> LV = V.getAs<Loc>()) {
|
|
state = state->assume(*LV, true);
|
|
assert(state && "'this' cannot be null");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::createTemporaryRegionIfNeeded(ProgramStateRef State,
|
|
const LocationContext *LC,
|
|
const Expr *Ex,
|
|
const Expr *Result) {
|
|
SVal V = State->getSVal(Ex, LC);
|
|
if (!Result) {
|
|
// If we don't have an explicit result expression, we're in "if needed"
|
|
// mode. Only create a region if the current value is a NonLoc.
|
|
if (!V.getAs<NonLoc>())
|
|
return State;
|
|
Result = Ex;
|
|
} else {
|
|
// We need to create a region no matter what. For sanity, make sure we don't
|
|
// try to stuff a Loc into a non-pointer temporary region.
|
|
assert(!V.getAs<Loc>() || Loc::isLocType(Result->getType()) ||
|
|
Result->getType()->isMemberPointerType());
|
|
}
|
|
|
|
ProgramStateManager &StateMgr = State->getStateManager();
|
|
MemRegionManager &MRMgr = StateMgr.getRegionManager();
|
|
StoreManager &StoreMgr = StateMgr.getStoreManager();
|
|
|
|
// We need to be careful about treating a derived type's value as
|
|
// bindings for a base type. Unless we're creating a temporary pointer region,
|
|
// start by stripping and recording base casts.
|
|
SmallVector<const CastExpr *, 4> Casts;
|
|
const Expr *Inner = Ex->IgnoreParens();
|
|
if (!Loc::isLocType(Result->getType())) {
|
|
while (const CastExpr *CE = dyn_cast<CastExpr>(Inner)) {
|
|
if (CE->getCastKind() == CK_DerivedToBase ||
|
|
CE->getCastKind() == CK_UncheckedDerivedToBase)
|
|
Casts.push_back(CE);
|
|
else if (CE->getCastKind() != CK_NoOp)
|
|
break;
|
|
|
|
Inner = CE->getSubExpr()->IgnoreParens();
|
|
}
|
|
}
|
|
|
|
// Create a temporary object region for the inner expression (which may have
|
|
// a more derived type) and bind the value into it.
|
|
const TypedValueRegion *TR = NULL;
|
|
if (const MaterializeTemporaryExpr *MT =
|
|
dyn_cast<MaterializeTemporaryExpr>(Result)) {
|
|
StorageDuration SD = MT->getStorageDuration();
|
|
// If this object is bound to a reference with static storage duration, we
|
|
// put it in a different region to prevent "address leakage" warnings.
|
|
if (SD == SD_Static || SD == SD_Thread)
|
|
TR = MRMgr.getCXXStaticTempObjectRegion(Inner);
|
|
}
|
|
if (!TR)
|
|
TR = MRMgr.getCXXTempObjectRegion(Inner, LC);
|
|
|
|
SVal Reg = loc::MemRegionVal(TR);
|
|
|
|
if (V.isUnknown())
|
|
V = getSValBuilder().conjureSymbolVal(Result, LC, TR->getValueType(),
|
|
currBldrCtx->blockCount());
|
|
State = State->bindLoc(Reg, V);
|
|
|
|
// Re-apply the casts (from innermost to outermost) for type sanity.
|
|
for (SmallVectorImpl<const CastExpr *>::reverse_iterator I = Casts.rbegin(),
|
|
E = Casts.rend();
|
|
I != E; ++I) {
|
|
Reg = StoreMgr.evalDerivedToBase(Reg, *I);
|
|
}
|
|
|
|
State = State->BindExpr(Result, LC, Reg);
|
|
return State;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-level transfer function logic (Dispatcher).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// evalAssume - Called by ConstraintManager. Used to call checker-specific
|
|
/// logic for handling assumptions on symbolic values.
|
|
ProgramStateRef ExprEngine::processAssume(ProgramStateRef state,
|
|
SVal cond, bool assumption) {
|
|
return getCheckerManager().runCheckersForEvalAssume(state, cond, assumption);
|
|
}
|
|
|
|
bool ExprEngine::wantsRegionChangeUpdate(ProgramStateRef state) {
|
|
return getCheckerManager().wantsRegionChangeUpdate(state);
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::processRegionChanges(ProgramStateRef state,
|
|
const InvalidatedSymbols *invalidated,
|
|
ArrayRef<const MemRegion *> Explicits,
|
|
ArrayRef<const MemRegion *> Regions,
|
|
const CallEvent *Call) {
|
|
return getCheckerManager().runCheckersForRegionChanges(state, invalidated,
|
|
Explicits, Regions, Call);
|
|
}
|
|
|
|
void ExprEngine::printState(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL, const char *Sep) {
|
|
getCheckerManager().runCheckersForPrintState(Out, State, NL, Sep);
|
|
}
|
|
|
|
void ExprEngine::processEndWorklist(bool hasWorkRemaining) {
|
|
getCheckerManager().runCheckersForEndAnalysis(G, BR, *this);
|
|
}
|
|
|
|
void ExprEngine::processCFGElement(const CFGElement E, ExplodedNode *Pred,
|
|
unsigned StmtIdx, NodeBuilderContext *Ctx) {
|
|
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
|
|
currStmtIdx = StmtIdx;
|
|
currBldrCtx = Ctx;
|
|
|
|
switch (E.getKind()) {
|
|
case CFGElement::Statement:
|
|
ProcessStmt(const_cast<Stmt*>(E.castAs<CFGStmt>().getStmt()), Pred);
|
|
return;
|
|
case CFGElement::Initializer:
|
|
ProcessInitializer(E.castAs<CFGInitializer>().getInitializer(), Pred);
|
|
return;
|
|
case CFGElement::AutomaticObjectDtor:
|
|
case CFGElement::DeleteDtor:
|
|
case CFGElement::BaseDtor:
|
|
case CFGElement::MemberDtor:
|
|
case CFGElement::TemporaryDtor:
|
|
ProcessImplicitDtor(E.castAs<CFGImplicitDtor>(), Pred);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static bool shouldRemoveDeadBindings(AnalysisManager &AMgr,
|
|
const CFGStmt S,
|
|
const ExplodedNode *Pred,
|
|
const LocationContext *LC) {
|
|
|
|
// Are we never purging state values?
|
|
if (AMgr.options.AnalysisPurgeOpt == PurgeNone)
|
|
return false;
|
|
|
|
// Is this the beginning of a basic block?
|
|
if (Pred->getLocation().getAs<BlockEntrance>())
|
|
return true;
|
|
|
|
// Is this on a non-expression?
|
|
if (!isa<Expr>(S.getStmt()))
|
|
return true;
|
|
|
|
// Run before processing a call.
|
|
if (CallEvent::isCallStmt(S.getStmt()))
|
|
return true;
|
|
|
|
// Is this an expression that is consumed by another expression? If so,
|
|
// postpone cleaning out the state.
|
|
ParentMap &PM = LC->getAnalysisDeclContext()->getParentMap();
|
|
return !PM.isConsumedExpr(cast<Expr>(S.getStmt()));
|
|
}
|
|
|
|
void ExprEngine::removeDead(ExplodedNode *Pred, ExplodedNodeSet &Out,
|
|
const Stmt *ReferenceStmt,
|
|
const LocationContext *LC,
|
|
const Stmt *DiagnosticStmt,
|
|
ProgramPoint::Kind K) {
|
|
assert((K == ProgramPoint::PreStmtPurgeDeadSymbolsKind ||
|
|
ReferenceStmt == 0 || isa<ReturnStmt>(ReferenceStmt))
|
|
&& "PostStmt is not generally supported by the SymbolReaper yet");
|
|
assert(LC && "Must pass the current (or expiring) LocationContext");
|
|
|
|
if (!DiagnosticStmt) {
|
|
DiagnosticStmt = ReferenceStmt;
|
|
assert(DiagnosticStmt && "Required for clearing a LocationContext");
|
|
}
|
|
|
|
NumRemoveDeadBindings++;
|
|
ProgramStateRef CleanedState = Pred->getState();
|
|
|
|
// LC is the location context being destroyed, but SymbolReaper wants a
|
|
// location context that is still live. (If this is the top-level stack
|
|
// frame, this will be null.)
|
|
if (!ReferenceStmt) {
|
|
assert(K == ProgramPoint::PostStmtPurgeDeadSymbolsKind &&
|
|
"Use PostStmtPurgeDeadSymbolsKind for clearing a LocationContext");
|
|
LC = LC->getParent();
|
|
}
|
|
|
|
const StackFrameContext *SFC = LC ? LC->getCurrentStackFrame() : 0;
|
|
SymbolReaper SymReaper(SFC, ReferenceStmt, SymMgr, getStoreManager());
|
|
|
|
getCheckerManager().runCheckersForLiveSymbols(CleanedState, SymReaper);
|
|
|
|
// Create a state in which dead bindings are removed from the environment
|
|
// and the store. TODO: The function should just return new env and store,
|
|
// not a new state.
|
|
CleanedState = StateMgr.removeDeadBindings(CleanedState, SFC, SymReaper);
|
|
|
|
// Process any special transfer function for dead symbols.
|
|
// A tag to track convenience transitions, which can be removed at cleanup.
|
|
static SimpleProgramPointTag cleanupTag("ExprEngine : Clean Node");
|
|
if (!SymReaper.hasDeadSymbols()) {
|
|
// Generate a CleanedNode that has the environment and store cleaned
|
|
// up. Since no symbols are dead, we can optimize and not clean out
|
|
// the constraint manager.
|
|
StmtNodeBuilder Bldr(Pred, Out, *currBldrCtx);
|
|
Bldr.generateNode(DiagnosticStmt, Pred, CleanedState, &cleanupTag, K);
|
|
|
|
} else {
|
|
// Call checkers with the non-cleaned state so that they could query the
|
|
// values of the soon to be dead symbols.
|
|
ExplodedNodeSet CheckedSet;
|
|
getCheckerManager().runCheckersForDeadSymbols(CheckedSet, Pred, SymReaper,
|
|
DiagnosticStmt, *this, K);
|
|
|
|
// For each node in CheckedSet, generate CleanedNodes that have the
|
|
// environment, the store, and the constraints cleaned up but have the
|
|
// user-supplied states as the predecessors.
|
|
StmtNodeBuilder Bldr(CheckedSet, Out, *currBldrCtx);
|
|
for (ExplodedNodeSet::const_iterator
|
|
I = CheckedSet.begin(), E = CheckedSet.end(); I != E; ++I) {
|
|
ProgramStateRef CheckerState = (*I)->getState();
|
|
|
|
// The constraint manager has not been cleaned up yet, so clean up now.
|
|
CheckerState = getConstraintManager().removeDeadBindings(CheckerState,
|
|
SymReaper);
|
|
|
|
assert(StateMgr.haveEqualEnvironments(CheckerState, Pred->getState()) &&
|
|
"Checkers are not allowed to modify the Environment as a part of "
|
|
"checkDeadSymbols processing.");
|
|
assert(StateMgr.haveEqualStores(CheckerState, Pred->getState()) &&
|
|
"Checkers are not allowed to modify the Store as a part of "
|
|
"checkDeadSymbols processing.");
|
|
|
|
// Create a state based on CleanedState with CheckerState GDM and
|
|
// generate a transition to that state.
|
|
ProgramStateRef CleanedCheckerSt =
|
|
StateMgr.getPersistentStateWithGDM(CleanedState, CheckerState);
|
|
Bldr.generateNode(DiagnosticStmt, *I, CleanedCheckerSt, &cleanupTag, K);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExprEngine::ProcessStmt(const CFGStmt S,
|
|
ExplodedNode *Pred) {
|
|
// Reclaim any unnecessary nodes in the ExplodedGraph.
|
|
G.reclaimRecentlyAllocatedNodes();
|
|
|
|
const Stmt *currStmt = S.getStmt();
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
currStmt->getLocStart(),
|
|
"Error evaluating statement");
|
|
|
|
// Remove dead bindings and symbols.
|
|
ExplodedNodeSet CleanedStates;
|
|
if (shouldRemoveDeadBindings(AMgr, S, Pred, Pred->getLocationContext())){
|
|
removeDead(Pred, CleanedStates, currStmt, Pred->getLocationContext());
|
|
} else
|
|
CleanedStates.Add(Pred);
|
|
|
|
// Visit the statement.
|
|
ExplodedNodeSet Dst;
|
|
for (ExplodedNodeSet::iterator I = CleanedStates.begin(),
|
|
E = CleanedStates.end(); I != E; ++I) {
|
|
ExplodedNodeSet DstI;
|
|
// Visit the statement.
|
|
Visit(currStmt, *I, DstI);
|
|
Dst.insert(DstI);
|
|
}
|
|
|
|
// Enqueue the new nodes onto the work list.
|
|
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
|
|
}
|
|
|
|
void ExprEngine::ProcessInitializer(const CFGInitializer Init,
|
|
ExplodedNode *Pred) {
|
|
const CXXCtorInitializer *BMI = Init.getInitializer();
|
|
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
BMI->getSourceLocation(),
|
|
"Error evaluating initializer");
|
|
|
|
// We don't clean up dead bindings here.
|
|
const StackFrameContext *stackFrame =
|
|
cast<StackFrameContext>(Pred->getLocationContext());
|
|
const CXXConstructorDecl *decl =
|
|
cast<CXXConstructorDecl>(stackFrame->getDecl());
|
|
|
|
ProgramStateRef State = Pred->getState();
|
|
SVal thisVal = State->getSVal(svalBuilder.getCXXThis(decl, stackFrame));
|
|
|
|
ExplodedNodeSet Tmp(Pred);
|
|
SVal FieldLoc;
|
|
|
|
// Evaluate the initializer, if necessary
|
|
if (BMI->isAnyMemberInitializer()) {
|
|
// Constructors build the object directly in the field,
|
|
// but non-objects must be copied in from the initializer.
|
|
const Expr *Init = BMI->getInit()->IgnoreImplicit();
|
|
if (!isa<CXXConstructExpr>(Init)) {
|
|
const ValueDecl *Field;
|
|
if (BMI->isIndirectMemberInitializer()) {
|
|
Field = BMI->getIndirectMember();
|
|
FieldLoc = State->getLValue(BMI->getIndirectMember(), thisVal);
|
|
} else {
|
|
Field = BMI->getMember();
|
|
FieldLoc = State->getLValue(BMI->getMember(), thisVal);
|
|
}
|
|
|
|
SVal InitVal;
|
|
if (BMI->getNumArrayIndices() > 0) {
|
|
// Handle arrays of trivial type. We can represent this with a
|
|
// primitive load/copy from the base array region.
|
|
const ArraySubscriptExpr *ASE;
|
|
while ((ASE = dyn_cast<ArraySubscriptExpr>(Init)))
|
|
Init = ASE->getBase()->IgnoreImplicit();
|
|
|
|
SVal LValue = State->getSVal(Init, stackFrame);
|
|
if (Optional<Loc> LValueLoc = LValue.getAs<Loc>())
|
|
InitVal = State->getSVal(*LValueLoc);
|
|
|
|
// If we fail to get the value for some reason, use a symbolic value.
|
|
if (InitVal.isUnknownOrUndef()) {
|
|
SValBuilder &SVB = getSValBuilder();
|
|
InitVal = SVB.conjureSymbolVal(BMI->getInit(), stackFrame,
|
|
Field->getType(),
|
|
currBldrCtx->blockCount());
|
|
}
|
|
} else {
|
|
InitVal = State->getSVal(BMI->getInit(), stackFrame);
|
|
}
|
|
|
|
assert(Tmp.size() == 1 && "have not generated any new nodes yet");
|
|
assert(*Tmp.begin() == Pred && "have not generated any new nodes yet");
|
|
Tmp.clear();
|
|
|
|
PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame);
|
|
evalBind(Tmp, Init, Pred, FieldLoc, InitVal, /*isInit=*/true, &PP);
|
|
}
|
|
} else {
|
|
assert(BMI->isBaseInitializer() || BMI->isDelegatingInitializer());
|
|
// We already did all the work when visiting the CXXConstructExpr.
|
|
}
|
|
|
|
// Construct PostInitializer nodes whether the state changed or not,
|
|
// so that the diagnostics don't get confused.
|
|
PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame);
|
|
ExplodedNodeSet Dst;
|
|
NodeBuilder Bldr(Tmp, Dst, *currBldrCtx);
|
|
for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) {
|
|
ExplodedNode *N = *I;
|
|
Bldr.generateNode(PP, N->getState(), N);
|
|
}
|
|
|
|
// Enqueue the new nodes onto the work list.
|
|
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
|
|
}
|
|
|
|
void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D,
|
|
ExplodedNode *Pred) {
|
|
ExplodedNodeSet Dst;
|
|
switch (D.getKind()) {
|
|
case CFGElement::AutomaticObjectDtor:
|
|
ProcessAutomaticObjDtor(D.castAs<CFGAutomaticObjDtor>(), Pred, Dst);
|
|
break;
|
|
case CFGElement::BaseDtor:
|
|
ProcessBaseDtor(D.castAs<CFGBaseDtor>(), Pred, Dst);
|
|
break;
|
|
case CFGElement::MemberDtor:
|
|
ProcessMemberDtor(D.castAs<CFGMemberDtor>(), Pred, Dst);
|
|
break;
|
|
case CFGElement::TemporaryDtor:
|
|
ProcessTemporaryDtor(D.castAs<CFGTemporaryDtor>(), Pred, Dst);
|
|
break;
|
|
case CFGElement::DeleteDtor:
|
|
ProcessDeleteDtor(D.castAs<CFGDeleteDtor>(), Pred, Dst);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected dtor kind.");
|
|
}
|
|
|
|
// Enqueue the new nodes onto the work list.
|
|
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
|
|
}
|
|
|
|
void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor Dtor,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
const VarDecl *varDecl = Dtor.getVarDecl();
|
|
QualType varType = varDecl->getType();
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
SVal dest = state->getLValue(varDecl, Pred->getLocationContext());
|
|
const MemRegion *Region = dest.castAs<loc::MemRegionVal>().getRegion();
|
|
|
|
if (const ReferenceType *refType = varType->getAs<ReferenceType>()) {
|
|
varType = refType->getPointeeType();
|
|
Region = state->getSVal(Region).getAsRegion();
|
|
}
|
|
|
|
VisitCXXDestructor(varType, Region, Dtor.getTriggerStmt(), /*IsBase=*/ false,
|
|
Pred, Dst);
|
|
}
|
|
|
|
void ExprEngine::ProcessDeleteDtor(const CFGDeleteDtor Dtor,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
ProgramStateRef State = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
const CXXDeleteExpr *DE = Dtor.getDeleteExpr();
|
|
const Stmt *Arg = DE->getArgument();
|
|
SVal ArgVal = State->getSVal(Arg, LCtx);
|
|
|
|
// If the argument to delete is known to be a null value,
|
|
// don't run destructor.
|
|
if (State->isNull(ArgVal).isConstrainedTrue()) {
|
|
QualType DTy = DE->getDestroyedType();
|
|
QualType BTy = getContext().getBaseElementType(DTy);
|
|
const CXXRecordDecl *RD = BTy->getAsCXXRecordDecl();
|
|
const CXXDestructorDecl *Dtor = RD->getDestructor();
|
|
|
|
PostImplicitCall PP(Dtor, DE->getLocStart(), LCtx);
|
|
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
Bldr.generateNode(PP, Pred->getState(), Pred);
|
|
return;
|
|
}
|
|
|
|
VisitCXXDestructor(DE->getDestroyedType(),
|
|
ArgVal.getAsRegion(),
|
|
DE, /*IsBase=*/ false,
|
|
Pred, Dst);
|
|
}
|
|
|
|
void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D,
|
|
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
ProgramStateRef State = Pred->getState();
|
|
|
|
const CXXDestructorDecl *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl());
|
|
Loc ThisPtr = getSValBuilder().getCXXThis(CurDtor,
|
|
LCtx->getCurrentStackFrame());
|
|
SVal ThisVal = Pred->getState()->getSVal(ThisPtr);
|
|
|
|
// Create the base object region.
|
|
const CXXBaseSpecifier *Base = D.getBaseSpecifier();
|
|
QualType BaseTy = Base->getType();
|
|
SVal BaseVal = getStoreManager().evalDerivedToBase(ThisVal, BaseTy,
|
|
Base->isVirtual());
|
|
|
|
VisitCXXDestructor(BaseTy, BaseVal.castAs<loc::MemRegionVal>().getRegion(),
|
|
CurDtor->getBody(), /*IsBase=*/ true, Pred, Dst);
|
|
}
|
|
|
|
void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D,
|
|
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
|
|
const FieldDecl *Member = D.getFieldDecl();
|
|
ProgramStateRef State = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
const CXXDestructorDecl *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl());
|
|
Loc ThisVal = getSValBuilder().getCXXThis(CurDtor,
|
|
LCtx->getCurrentStackFrame());
|
|
SVal FieldVal =
|
|
State->getLValue(Member, State->getSVal(ThisVal).castAs<Loc>());
|
|
|
|
VisitCXXDestructor(Member->getType(),
|
|
FieldVal.castAs<loc::MemRegionVal>().getRegion(),
|
|
CurDtor->getBody(), /*IsBase=*/false, Pred, Dst);
|
|
}
|
|
|
|
void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
|
|
QualType varType = D.getBindTemporaryExpr()->getSubExpr()->getType();
|
|
|
|
// FIXME: Inlining of temporary destructors is not supported yet anyway, so we
|
|
// just put a NULL region for now. This will need to be changed later.
|
|
VisitCXXDestructor(varType, NULL, D.getBindTemporaryExpr(),
|
|
/*IsBase=*/ false, Pred, Dst);
|
|
}
|
|
|
|
void ExprEngine::Visit(const Stmt *S, ExplodedNode *Pred,
|
|
ExplodedNodeSet &DstTop) {
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
S->getLocStart(),
|
|
"Error evaluating statement");
|
|
ExplodedNodeSet Dst;
|
|
StmtNodeBuilder Bldr(Pred, DstTop, *currBldrCtx);
|
|
|
|
assert(!isa<Expr>(S) || S == cast<Expr>(S)->IgnoreParens());
|
|
|
|
switch (S->getStmtClass()) {
|
|
// C++ and ARC stuff we don't support yet.
|
|
case Expr::ObjCIndirectCopyRestoreExprClass:
|
|
case Stmt::CXXDependentScopeMemberExprClass:
|
|
case Stmt::CXXTryStmtClass:
|
|
case Stmt::CXXTypeidExprClass:
|
|
case Stmt::CXXUuidofExprClass:
|
|
case Stmt::MSPropertyRefExprClass:
|
|
case Stmt::CXXUnresolvedConstructExprClass:
|
|
case Stmt::DependentScopeDeclRefExprClass:
|
|
case Stmt::UnaryTypeTraitExprClass:
|
|
case Stmt::BinaryTypeTraitExprClass:
|
|
case Stmt::TypeTraitExprClass:
|
|
case Stmt::ArrayTypeTraitExprClass:
|
|
case Stmt::ExpressionTraitExprClass:
|
|
case Stmt::UnresolvedLookupExprClass:
|
|
case Stmt::UnresolvedMemberExprClass:
|
|
case Stmt::CXXNoexceptExprClass:
|
|
case Stmt::PackExpansionExprClass:
|
|
case Stmt::SubstNonTypeTemplateParmPackExprClass:
|
|
case Stmt::FunctionParmPackExprClass:
|
|
case Stmt::SEHTryStmtClass:
|
|
case Stmt::SEHExceptStmtClass:
|
|
case Stmt::LambdaExprClass:
|
|
case Stmt::SEHFinallyStmtClass: {
|
|
const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState());
|
|
Engine.addAbortedBlock(node, currBldrCtx->getBlock());
|
|
break;
|
|
}
|
|
|
|
case Stmt::ParenExprClass:
|
|
llvm_unreachable("ParenExprs already handled.");
|
|
case Stmt::GenericSelectionExprClass:
|
|
llvm_unreachable("GenericSelectionExprs already handled.");
|
|
// Cases that should never be evaluated simply because they shouldn't
|
|
// appear in the CFG.
|
|
case Stmt::BreakStmtClass:
|
|
case Stmt::CaseStmtClass:
|
|
case Stmt::CompoundStmtClass:
|
|
case Stmt::ContinueStmtClass:
|
|
case Stmt::CXXForRangeStmtClass:
|
|
case Stmt::DefaultStmtClass:
|
|
case Stmt::DoStmtClass:
|
|
case Stmt::ForStmtClass:
|
|
case Stmt::GotoStmtClass:
|
|
case Stmt::IfStmtClass:
|
|
case Stmt::IndirectGotoStmtClass:
|
|
case Stmt::LabelStmtClass:
|
|
case Stmt::NoStmtClass:
|
|
case Stmt::NullStmtClass:
|
|
case Stmt::SwitchStmtClass:
|
|
case Stmt::WhileStmtClass:
|
|
case Expr::MSDependentExistsStmtClass:
|
|
case Stmt::CapturedStmtClass:
|
|
case Stmt::OMPParallelDirectiveClass:
|
|
llvm_unreachable("Stmt should not be in analyzer evaluation loop");
|
|
|
|
case Stmt::ObjCSubscriptRefExprClass:
|
|
case Stmt::ObjCPropertyRefExprClass:
|
|
llvm_unreachable("These are handled by PseudoObjectExpr");
|
|
|
|
case Stmt::GNUNullExprClass: {
|
|
// GNU __null is a pointer-width integer, not an actual pointer.
|
|
ProgramStateRef state = Pred->getState();
|
|
state = state->BindExpr(S, Pred->getLocationContext(),
|
|
svalBuilder.makeIntValWithPtrWidth(0, false));
|
|
Bldr.generateNode(S, Pred, state);
|
|
break;
|
|
}
|
|
|
|
case Stmt::ObjCAtSynchronizedStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ExprWithCleanupsClass:
|
|
// Handled due to fully linearised CFG.
|
|
break;
|
|
|
|
// Cases not handled yet; but will handle some day.
|
|
case Stmt::DesignatedInitExprClass:
|
|
case Stmt::ExtVectorElementExprClass:
|
|
case Stmt::ImaginaryLiteralClass:
|
|
case Stmt::ObjCAtCatchStmtClass:
|
|
case Stmt::ObjCAtFinallyStmtClass:
|
|
case Stmt::ObjCAtTryStmtClass:
|
|
case Stmt::ObjCAutoreleasePoolStmtClass:
|
|
case Stmt::ObjCEncodeExprClass:
|
|
case Stmt::ObjCIsaExprClass:
|
|
case Stmt::ObjCProtocolExprClass:
|
|
case Stmt::ObjCSelectorExprClass:
|
|
case Stmt::ParenListExprClass:
|
|
case Stmt::PredefinedExprClass:
|
|
case Stmt::ShuffleVectorExprClass:
|
|
case Stmt::ConvertVectorExprClass:
|
|
case Stmt::VAArgExprClass:
|
|
case Stmt::CUDAKernelCallExprClass:
|
|
case Stmt::OpaqueValueExprClass:
|
|
case Stmt::AsTypeExprClass:
|
|
case Stmt::AtomicExprClass:
|
|
// Fall through.
|
|
|
|
// Cases we intentionally don't evaluate, since they don't need
|
|
// to be explicitly evaluated.
|
|
case Stmt::AddrLabelExprClass:
|
|
case Stmt::AttributedStmtClass:
|
|
case Stmt::IntegerLiteralClass:
|
|
case Stmt::CharacterLiteralClass:
|
|
case Stmt::ImplicitValueInitExprClass:
|
|
case Stmt::CXXScalarValueInitExprClass:
|
|
case Stmt::CXXBoolLiteralExprClass:
|
|
case Stmt::ObjCBoolLiteralExprClass:
|
|
case Stmt::FloatingLiteralClass:
|
|
case Stmt::SizeOfPackExprClass:
|
|
case Stmt::StringLiteralClass:
|
|
case Stmt::ObjCStringLiteralClass:
|
|
case Stmt::CXXBindTemporaryExprClass:
|
|
case Stmt::CXXPseudoDestructorExprClass:
|
|
case Stmt::SubstNonTypeTemplateParmExprClass:
|
|
case Stmt::CXXNullPtrLiteralExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet preVisit;
|
|
getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
|
|
getCheckerManager().runCheckersForPostStmt(Dst, preVisit, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXDefaultArgExprClass:
|
|
case Stmt::CXXDefaultInitExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet PreVisit;
|
|
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
|
|
|
|
ExplodedNodeSet Tmp;
|
|
StmtNodeBuilder Bldr2(PreVisit, Tmp, *currBldrCtx);
|
|
|
|
const Expr *ArgE;
|
|
if (const CXXDefaultArgExpr *DefE = dyn_cast<CXXDefaultArgExpr>(S))
|
|
ArgE = DefE->getExpr();
|
|
else if (const CXXDefaultInitExpr *DefE = dyn_cast<CXXDefaultInitExpr>(S))
|
|
ArgE = DefE->getExpr();
|
|
else
|
|
llvm_unreachable("unknown constant wrapper kind");
|
|
|
|
bool IsTemporary = false;
|
|
if (const MaterializeTemporaryExpr *MTE =
|
|
dyn_cast<MaterializeTemporaryExpr>(ArgE)) {
|
|
ArgE = MTE->GetTemporaryExpr();
|
|
IsTemporary = true;
|
|
}
|
|
|
|
Optional<SVal> ConstantVal = svalBuilder.getConstantVal(ArgE);
|
|
if (!ConstantVal)
|
|
ConstantVal = UnknownVal();
|
|
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
for (ExplodedNodeSet::iterator I = PreVisit.begin(), E = PreVisit.end();
|
|
I != E; ++I) {
|
|
ProgramStateRef State = (*I)->getState();
|
|
State = State->BindExpr(S, LCtx, *ConstantVal);
|
|
if (IsTemporary)
|
|
State = createTemporaryRegionIfNeeded(State, LCtx,
|
|
cast<Expr>(S),
|
|
cast<Expr>(S));
|
|
Bldr2.generateNode(S, *I, State);
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
// Cases we evaluate as opaque expressions, conjuring a symbol.
|
|
case Stmt::CXXStdInitializerListExprClass:
|
|
case Expr::ObjCArrayLiteralClass:
|
|
case Expr::ObjCDictionaryLiteralClass:
|
|
case Expr::ObjCBoxedExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
|
|
ExplodedNodeSet preVisit;
|
|
getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
|
|
|
|
ExplodedNodeSet Tmp;
|
|
StmtNodeBuilder Bldr2(preVisit, Tmp, *currBldrCtx);
|
|
|
|
const Expr *Ex = cast<Expr>(S);
|
|
QualType resultType = Ex->getType();
|
|
|
|
for (ExplodedNodeSet::iterator it = preVisit.begin(), et = preVisit.end();
|
|
it != et; ++it) {
|
|
ExplodedNode *N = *it;
|
|
const LocationContext *LCtx = N->getLocationContext();
|
|
SVal result = svalBuilder.conjureSymbolVal(0, Ex, LCtx, resultType,
|
|
currBldrCtx->blockCount());
|
|
ProgramStateRef state = N->getState()->BindExpr(Ex, LCtx, result);
|
|
Bldr2.generateNode(S, N, state);
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::ArraySubscriptExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitLvalArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::GCCAsmStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitGCCAsmStmt(cast<GCCAsmStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::MSAsmStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitMSAsmStmt(cast<MSAsmStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::BlockExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::BinaryOperatorClass: {
|
|
const BinaryOperator* B = cast<BinaryOperator>(S);
|
|
if (B->isLogicalOp()) {
|
|
Bldr.takeNodes(Pred);
|
|
VisitLogicalExpr(B, Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
else if (B->getOpcode() == BO_Comma) {
|
|
ProgramStateRef state = Pred->getState();
|
|
Bldr.generateNode(B, Pred,
|
|
state->BindExpr(B, Pred->getLocationContext(),
|
|
state->getSVal(B->getRHS(),
|
|
Pred->getLocationContext())));
|
|
break;
|
|
}
|
|
|
|
Bldr.takeNodes(Pred);
|
|
|
|
if (AMgr.options.eagerlyAssumeBinOpBifurcation &&
|
|
(B->isRelationalOp() || B->isEqualityOp())) {
|
|
ExplodedNodeSet Tmp;
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp);
|
|
evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, cast<Expr>(S));
|
|
}
|
|
else
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
|
|
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXOperatorCallExprClass: {
|
|
const CXXOperatorCallExpr *OCE = cast<CXXOperatorCallExpr>(S);
|
|
|
|
// For instance method operators, make sure the 'this' argument has a
|
|
// valid region.
|
|
const Decl *Callee = OCE->getCalleeDecl();
|
|
if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Callee)) {
|
|
if (MD->isInstance()) {
|
|
ProgramStateRef State = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
ProgramStateRef NewState =
|
|
createTemporaryRegionIfNeeded(State, LCtx, OCE->getArg(0));
|
|
if (NewState != State) {
|
|
Pred = Bldr.generateNode(OCE, Pred, NewState, /*Tag=*/0,
|
|
ProgramPoint::PreStmtKind);
|
|
// Did we cache out?
|
|
if (!Pred)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// FALLTHROUGH
|
|
}
|
|
case Stmt::CallExprClass:
|
|
case Stmt::CXXMemberCallExprClass:
|
|
case Stmt::UserDefinedLiteralClass: {
|
|
Bldr.takeNodes(Pred);
|
|
VisitCallExpr(cast<CallExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXCatchStmtClass: {
|
|
Bldr.takeNodes(Pred);
|
|
VisitCXXCatchStmt(cast<CXXCatchStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXTemporaryObjectExprClass:
|
|
case Stmt::CXXConstructExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
VisitCXXConstructExpr(cast<CXXConstructExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXNewExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet PostVisit;
|
|
VisitCXXNewExpr(cast<CXXNewExpr>(S), Pred, PostVisit);
|
|
getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXDeleteExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet PreVisit;
|
|
const CXXDeleteExpr *CDE = cast<CXXDeleteExpr>(S);
|
|
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
|
|
|
|
for (ExplodedNodeSet::iterator i = PreVisit.begin(),
|
|
e = PreVisit.end(); i != e ; ++i)
|
|
VisitCXXDeleteExpr(CDE, *i, Dst);
|
|
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
// FIXME: ChooseExpr is really a constant. We need to fix
|
|
// the CFG do not model them as explicit control-flow.
|
|
|
|
case Stmt::ChooseExprClass: { // __builtin_choose_expr
|
|
Bldr.takeNodes(Pred);
|
|
const ChooseExpr *C = cast<ChooseExpr>(S);
|
|
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CompoundAssignOperatorClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::CompoundLiteralExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
case Stmt::ConditionalOperatorClass: { // '?' operator
|
|
Bldr.takeNodes(Pred);
|
|
const AbstractConditionalOperator *C
|
|
= cast<AbstractConditionalOperator>(S);
|
|
VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXThisExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::DeclRefExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
const DeclRefExpr *DE = cast<DeclRefExpr>(S);
|
|
VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::DeclStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ImplicitCastExprClass:
|
|
case Stmt::CStyleCastExprClass:
|
|
case Stmt::CXXStaticCastExprClass:
|
|
case Stmt::CXXDynamicCastExprClass:
|
|
case Stmt::CXXReinterpretCastExprClass:
|
|
case Stmt::CXXConstCastExprClass:
|
|
case Stmt::CXXFunctionalCastExprClass:
|
|
case Stmt::ObjCBridgedCastExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
const CastExpr *C = cast<CastExpr>(S);
|
|
// Handle the previsit checks.
|
|
ExplodedNodeSet dstPrevisit;
|
|
getCheckerManager().runCheckersForPreStmt(dstPrevisit, Pred, C, *this);
|
|
|
|
// Handle the expression itself.
|
|
ExplodedNodeSet dstExpr;
|
|
for (ExplodedNodeSet::iterator i = dstPrevisit.begin(),
|
|
e = dstPrevisit.end(); i != e ; ++i) {
|
|
VisitCast(C, C->getSubExpr(), *i, dstExpr);
|
|
}
|
|
|
|
// Handle the postvisit checks.
|
|
getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, C, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Expr::MaterializeTemporaryExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(S);
|
|
CreateCXXTemporaryObject(MTE, Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::InitListExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::MemberExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCIvarRefExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCMessageExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitObjCMessage(cast<ObjCMessageExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCAtThrowStmtClass:
|
|
case Stmt::CXXThrowExprClass:
|
|
// FIXME: This is not complete. We basically treat @throw as
|
|
// an abort.
|
|
Bldr.generateSink(S, Pred, Pred->getState());
|
|
break;
|
|
|
|
case Stmt::ReturnStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::OffsetOfExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::UnaryExprOrTypeTraitExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
|
|
Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::StmtExprClass: {
|
|
const StmtExpr *SE = cast<StmtExpr>(S);
|
|
|
|
if (SE->getSubStmt()->body_empty()) {
|
|
// Empty statement expression.
|
|
assert(SE->getType() == getContext().VoidTy
|
|
&& "Empty statement expression must have void type.");
|
|
break;
|
|
}
|
|
|
|
if (Expr *LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) {
|
|
ProgramStateRef state = Pred->getState();
|
|
Bldr.generateNode(SE, Pred,
|
|
state->BindExpr(SE, Pred->getLocationContext(),
|
|
state->getSVal(LastExpr,
|
|
Pred->getLocationContext())));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Stmt::UnaryOperatorClass: {
|
|
Bldr.takeNodes(Pred);
|
|
const UnaryOperator *U = cast<UnaryOperator>(S);
|
|
if (AMgr.options.eagerlyAssumeBinOpBifurcation && (U->getOpcode() == UO_LNot)) {
|
|
ExplodedNodeSet Tmp;
|
|
VisitUnaryOperator(U, Pred, Tmp);
|
|
evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, U);
|
|
}
|
|
else
|
|
VisitUnaryOperator(U, Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::PseudoObjectExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ProgramStateRef state = Pred->getState();
|
|
const PseudoObjectExpr *PE = cast<PseudoObjectExpr>(S);
|
|
if (const Expr *Result = PE->getResultExpr()) {
|
|
SVal V = state->getSVal(Result, Pred->getLocationContext());
|
|
Bldr.generateNode(S, Pred,
|
|
state->BindExpr(S, Pred->getLocationContext(), V));
|
|
}
|
|
else
|
|
Bldr.generateNode(S, Pred,
|
|
state->BindExpr(S, Pred->getLocationContext(),
|
|
UnknownVal()));
|
|
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ExprEngine::replayWithoutInlining(ExplodedNode *N,
|
|
const LocationContext *CalleeLC) {
|
|
const StackFrameContext *CalleeSF = CalleeLC->getCurrentStackFrame();
|
|
const StackFrameContext *CallerSF = CalleeSF->getParent()->getCurrentStackFrame();
|
|
assert(CalleeSF && CallerSF);
|
|
ExplodedNode *BeforeProcessingCall = 0;
|
|
const Stmt *CE = CalleeSF->getCallSite();
|
|
|
|
// Find the first node before we started processing the call expression.
|
|
while (N) {
|
|
ProgramPoint L = N->getLocation();
|
|
BeforeProcessingCall = N;
|
|
N = N->pred_empty() ? NULL : *(N->pred_begin());
|
|
|
|
// Skip the nodes corresponding to the inlined code.
|
|
if (L.getLocationContext()->getCurrentStackFrame() != CallerSF)
|
|
continue;
|
|
// We reached the caller. Find the node right before we started
|
|
// processing the call.
|
|
if (L.isPurgeKind())
|
|
continue;
|
|
if (L.getAs<PreImplicitCall>())
|
|
continue;
|
|
if (L.getAs<CallEnter>())
|
|
continue;
|
|
if (Optional<StmtPoint> SP = L.getAs<StmtPoint>())
|
|
if (SP->getStmt() == CE)
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
if (!BeforeProcessingCall)
|
|
return false;
|
|
|
|
// TODO: Clean up the unneeded nodes.
|
|
|
|
// Build an Epsilon node from which we will restart the analyzes.
|
|
// Note that CE is permitted to be NULL!
|
|
ProgramPoint NewNodeLoc =
|
|
EpsilonPoint(BeforeProcessingCall->getLocationContext(), CE);
|
|
// Add the special flag to GDM to signal retrying with no inlining.
|
|
// Note, changing the state ensures that we are not going to cache out.
|
|
ProgramStateRef NewNodeState = BeforeProcessingCall->getState();
|
|
NewNodeState =
|
|
NewNodeState->set<ReplayWithoutInlining>(const_cast<Stmt *>(CE));
|
|
|
|
// Make the new node a successor of BeforeProcessingCall.
|
|
bool IsNew = false;
|
|
ExplodedNode *NewNode = G.getNode(NewNodeLoc, NewNodeState, false, &IsNew);
|
|
// We cached out at this point. Caching out is common due to us backtracking
|
|
// from the inlined function, which might spawn several paths.
|
|
if (!IsNew)
|
|
return true;
|
|
|
|
NewNode->addPredecessor(BeforeProcessingCall, G);
|
|
|
|
// Add the new node to the work list.
|
|
Engine.enqueueStmtNode(NewNode, CalleeSF->getCallSiteBlock(),
|
|
CalleeSF->getIndex());
|
|
NumTimesRetriedWithoutInlining++;
|
|
return true;
|
|
}
|
|
|
|
/// Block entrance. (Update counters).
|
|
void ExprEngine::processCFGBlockEntrance(const BlockEdge &L,
|
|
NodeBuilderWithSinks &nodeBuilder,
|
|
ExplodedNode *Pred) {
|
|
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
|
|
|
|
// FIXME: Refactor this into a checker.
|
|
if (nodeBuilder.getContext().blockCount() >= AMgr.options.maxBlockVisitOnPath) {
|
|
static SimpleProgramPointTag tag("ExprEngine : Block count exceeded");
|
|
const ExplodedNode *Sink =
|
|
nodeBuilder.generateSink(Pred->getState(), Pred, &tag);
|
|
|
|
// Check if we stopped at the top level function or not.
|
|
// Root node should have the location context of the top most function.
|
|
const LocationContext *CalleeLC = Pred->getLocation().getLocationContext();
|
|
const LocationContext *CalleeSF = CalleeLC->getCurrentStackFrame();
|
|
const LocationContext *RootLC =
|
|
(*G.roots_begin())->getLocation().getLocationContext();
|
|
if (RootLC->getCurrentStackFrame() != CalleeSF) {
|
|
Engine.FunctionSummaries->markReachedMaxBlockCount(CalleeSF->getDecl());
|
|
|
|
// Re-run the call evaluation without inlining it, by storing the
|
|
// no-inlining policy in the state and enqueuing the new work item on
|
|
// the list. Replay should almost never fail. Use the stats to catch it
|
|
// if it does.
|
|
if ((!AMgr.options.NoRetryExhausted &&
|
|
replayWithoutInlining(Pred, CalleeLC)))
|
|
return;
|
|
NumMaxBlockCountReachedInInlined++;
|
|
} else
|
|
NumMaxBlockCountReached++;
|
|
|
|
// Make sink nodes as exhausted(for stats) only if retry failed.
|
|
Engine.blocksExhausted.push_back(std::make_pair(L, Sink));
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Branch processing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// RecoverCastedSymbol - A helper function for ProcessBranch that is used
|
|
/// to try to recover some path-sensitivity for casts of symbolic
|
|
/// integers that promote their values (which are currently not tracked well).
|
|
/// This function returns the SVal bound to Condition->IgnoreCasts if all the
|
|
// cast(s) did was sign-extend the original value.
|
|
static SVal RecoverCastedSymbol(ProgramStateManager& StateMgr,
|
|
ProgramStateRef state,
|
|
const Stmt *Condition,
|
|
const LocationContext *LCtx,
|
|
ASTContext &Ctx) {
|
|
|
|
const Expr *Ex = dyn_cast<Expr>(Condition);
|
|
if (!Ex)
|
|
return UnknownVal();
|
|
|
|
uint64_t bits = 0;
|
|
bool bitsInit = false;
|
|
|
|
while (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
|
|
QualType T = CE->getType();
|
|
|
|
if (!T->isIntegralOrEnumerationType())
|
|
return UnknownVal();
|
|
|
|
uint64_t newBits = Ctx.getTypeSize(T);
|
|
if (!bitsInit || newBits < bits) {
|
|
bitsInit = true;
|
|
bits = newBits;
|
|
}
|
|
|
|
Ex = CE->getSubExpr();
|
|
}
|
|
|
|
// We reached a non-cast. Is it a symbolic value?
|
|
QualType T = Ex->getType();
|
|
|
|
if (!bitsInit || !T->isIntegralOrEnumerationType() ||
|
|
Ctx.getTypeSize(T) > bits)
|
|
return UnknownVal();
|
|
|
|
return state->getSVal(Ex, LCtx);
|
|
}
|
|
|
|
static const Stmt *ResolveCondition(const Stmt *Condition,
|
|
const CFGBlock *B) {
|
|
if (const Expr *Ex = dyn_cast<Expr>(Condition))
|
|
Condition = Ex->IgnoreParens();
|
|
|
|
const BinaryOperator *BO = dyn_cast<BinaryOperator>(Condition);
|
|
if (!BO || !BO->isLogicalOp())
|
|
return Condition;
|
|
|
|
// For logical operations, we still have the case where some branches
|
|
// use the traditional "merge" approach and others sink the branch
|
|
// directly into the basic blocks representing the logical operation.
|
|
// We need to distinguish between those two cases here.
|
|
|
|
// The invariants are still shifting, but it is possible that the
|
|
// last element in a CFGBlock is not a CFGStmt. Look for the last
|
|
// CFGStmt as the value of the condition.
|
|
CFGBlock::const_reverse_iterator I = B->rbegin(), E = B->rend();
|
|
for (; I != E; ++I) {
|
|
CFGElement Elem = *I;
|
|
Optional<CFGStmt> CS = Elem.getAs<CFGStmt>();
|
|
if (!CS)
|
|
continue;
|
|
if (CS->getStmt() != Condition)
|
|
break;
|
|
return Condition;
|
|
}
|
|
|
|
assert(I != E);
|
|
|
|
while (Condition) {
|
|
BO = dyn_cast<BinaryOperator>(Condition);
|
|
if (!BO || !BO->isLogicalOp())
|
|
return Condition;
|
|
Condition = BO->getRHS()->IgnoreParens();
|
|
}
|
|
llvm_unreachable("could not resolve condition");
|
|
}
|
|
|
|
void ExprEngine::processBranch(const Stmt *Condition, const Stmt *Term,
|
|
NodeBuilderContext& BldCtx,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst,
|
|
const CFGBlock *DstT,
|
|
const CFGBlock *DstF) {
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
PrettyStackTraceLocationContext StackCrashInfo(LCtx);
|
|
currBldrCtx = &BldCtx;
|
|
|
|
// Check for NULL conditions; e.g. "for(;;)"
|
|
if (!Condition) {
|
|
BranchNodeBuilder NullCondBldr(Pred, Dst, BldCtx, DstT, DstF);
|
|
NullCondBldr.markInfeasible(false);
|
|
NullCondBldr.generateNode(Pred->getState(), true, Pred);
|
|
return;
|
|
}
|
|
|
|
SValBuilder &SVB = Pred->getState()->getStateManager().getSValBuilder();
|
|
SVal TrueVal = SVB.makeTruthVal(true);
|
|
SVal FalseVal = SVB.makeTruthVal(false);
|
|
|
|
if (const Expr *Ex = dyn_cast<Expr>(Condition))
|
|
Condition = Ex->IgnoreParens();
|
|
|
|
// If the value is already available, we don't need to do anything.
|
|
if (Pred->getState()->getSVal(Condition, LCtx).isUnknownOrUndef()) {
|
|
// Resolve the condition in the presence of nested '||' and '&&'.
|
|
Condition = ResolveCondition(Condition, BldCtx.getBlock());
|
|
}
|
|
|
|
// Cast truth values to the correct type.
|
|
if (const Expr *Ex = dyn_cast<Expr>(Condition)) {
|
|
TrueVal = SVB.evalCast(TrueVal, Ex->getType(),
|
|
getContext().getLogicalOperationType());
|
|
FalseVal = SVB.evalCast(FalseVal, Ex->getType(),
|
|
getContext().getLogicalOperationType());
|
|
}
|
|
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
Condition->getLocStart(),
|
|
"Error evaluating branch");
|
|
|
|
ExplodedNodeSet CheckersOutSet;
|
|
getCheckerManager().runCheckersForBranchCondition(Condition, CheckersOutSet,
|
|
Pred, *this);
|
|
// We generated only sinks.
|
|
if (CheckersOutSet.empty())
|
|
return;
|
|
|
|
BranchNodeBuilder builder(CheckersOutSet, Dst, BldCtx, DstT, DstF);
|
|
for (NodeBuilder::iterator I = CheckersOutSet.begin(),
|
|
E = CheckersOutSet.end(); E != I; ++I) {
|
|
ExplodedNode *PredI = *I;
|
|
|
|
if (PredI->isSink())
|
|
continue;
|
|
|
|
ProgramStateRef PrevState = PredI->getState();
|
|
SVal X = PrevState->getSVal(Condition, PredI->getLocationContext());
|
|
|
|
if (X.isUnknownOrUndef()) {
|
|
// Give it a chance to recover from unknown.
|
|
if (const Expr *Ex = dyn_cast<Expr>(Condition)) {
|
|
if (Ex->getType()->isIntegralOrEnumerationType()) {
|
|
// Try to recover some path-sensitivity. Right now casts of symbolic
|
|
// integers that promote their values are currently not tracked well.
|
|
// If 'Condition' is such an expression, try and recover the
|
|
// underlying value and use that instead.
|
|
SVal recovered = RecoverCastedSymbol(getStateManager(),
|
|
PrevState, Condition,
|
|
PredI->getLocationContext(),
|
|
getContext());
|
|
|
|
if (!recovered.isUnknown()) {
|
|
X = recovered;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ProgramStateRef StTrue, StFalse;
|
|
|
|
// If the condition is still unknown, give up.
|
|
if (X.isUnknownOrUndef()) {
|
|
|
|
StTrue = PrevState->BindExpr(Condition, BldCtx.LC, TrueVal);
|
|
StFalse = PrevState->BindExpr(Condition, BldCtx.LC, FalseVal);
|
|
|
|
builder.generateNode(StTrue, true, PredI);
|
|
builder.generateNode(StFalse, false, PredI);
|
|
continue;
|
|
}
|
|
|
|
DefinedSVal V = X.castAs<DefinedSVal>();
|
|
tie(StTrue, StFalse) = PrevState->assume(V);
|
|
|
|
// Process the true branch.
|
|
if (builder.isFeasible(true)) {
|
|
if (StTrue) {
|
|
StTrue = StTrue->BindExpr(Condition, BldCtx.LC, TrueVal);
|
|
builder.generateNode(StTrue, true, PredI);
|
|
} else
|
|
builder.markInfeasible(true);
|
|
}
|
|
|
|
// Process the false branch.
|
|
if (builder.isFeasible(false)) {
|
|
if (StFalse) {
|
|
StFalse = StFalse->BindExpr(Condition, BldCtx.LC, FalseVal);
|
|
builder.generateNode(StFalse, false, PredI);
|
|
} else
|
|
builder.markInfeasible(false);
|
|
}
|
|
}
|
|
currBldrCtx = 0;
|
|
}
|
|
|
|
/// The GDM component containing the set of global variables which have been
|
|
/// previously initialized with explicit initializers.
|
|
REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedGlobalsSet,
|
|
llvm::ImmutableSet<const VarDecl *>)
|
|
|
|
void ExprEngine::processStaticInitializer(const DeclStmt *DS,
|
|
NodeBuilderContext &BuilderCtx,
|
|
ExplodedNode *Pred,
|
|
clang::ento::ExplodedNodeSet &Dst,
|
|
const CFGBlock *DstT,
|
|
const CFGBlock *DstF) {
|
|
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
|
|
currBldrCtx = &BuilderCtx;
|
|
|
|
const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
|
|
ProgramStateRef state = Pred->getState();
|
|
bool initHasRun = state->contains<InitializedGlobalsSet>(VD);
|
|
BranchNodeBuilder builder(Pred, Dst, BuilderCtx, DstT, DstF);
|
|
|
|
if (!initHasRun) {
|
|
state = state->add<InitializedGlobalsSet>(VD);
|
|
}
|
|
|
|
builder.generateNode(state, initHasRun, Pred);
|
|
builder.markInfeasible(!initHasRun);
|
|
|
|
currBldrCtx = 0;
|
|
}
|
|
|
|
/// processIndirectGoto - Called by CoreEngine. Used to generate successor
|
|
/// nodes by processing the 'effects' of a computed goto jump.
|
|
void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) {
|
|
|
|
ProgramStateRef state = builder.getState();
|
|
SVal V = state->getSVal(builder.getTarget(), builder.getLocationContext());
|
|
|
|
// Three possibilities:
|
|
//
|
|
// (1) We know the computed label.
|
|
// (2) The label is NULL (or some other constant), or Undefined.
|
|
// (3) We have no clue about the label. Dispatch to all targets.
|
|
//
|
|
|
|
typedef IndirectGotoNodeBuilder::iterator iterator;
|
|
|
|
if (Optional<loc::GotoLabel> LV = V.getAs<loc::GotoLabel>()) {
|
|
const LabelDecl *L = LV->getLabel();
|
|
|
|
for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) {
|
|
if (I.getLabel() == L) {
|
|
builder.generateNode(I, state);
|
|
return;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("No block with label.");
|
|
}
|
|
|
|
if (V.getAs<loc::ConcreteInt>() || V.getAs<UndefinedVal>()) {
|
|
// Dispatch to the first target and mark it as a sink.
|
|
//ExplodedNode* N = builder.generateNode(builder.begin(), state, true);
|
|
// FIXME: add checker visit.
|
|
// UndefBranches.insert(N);
|
|
return;
|
|
}
|
|
|
|
// This is really a catch-all. We don't support symbolics yet.
|
|
// FIXME: Implement dispatch for symbolic pointers.
|
|
|
|
for (iterator I=builder.begin(), E=builder.end(); I != E; ++I)
|
|
builder.generateNode(I, state);
|
|
}
|
|
|
|
/// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path
|
|
/// nodes when the control reaches the end of a function.
|
|
void ExprEngine::processEndOfFunction(NodeBuilderContext& BC,
|
|
ExplodedNode *Pred) {
|
|
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
|
|
StateMgr.EndPath(Pred->getState());
|
|
|
|
ExplodedNodeSet Dst;
|
|
if (Pred->getLocationContext()->inTopFrame()) {
|
|
// Remove dead symbols.
|
|
ExplodedNodeSet AfterRemovedDead;
|
|
removeDeadOnEndOfFunction(BC, Pred, AfterRemovedDead);
|
|
|
|
// Notify checkers.
|
|
for (ExplodedNodeSet::iterator I = AfterRemovedDead.begin(),
|
|
E = AfterRemovedDead.end(); I != E; ++I) {
|
|
getCheckerManager().runCheckersForEndFunction(BC, Dst, *I, *this);
|
|
}
|
|
} else {
|
|
getCheckerManager().runCheckersForEndFunction(BC, Dst, Pred, *this);
|
|
}
|
|
|
|
Engine.enqueueEndOfFunction(Dst);
|
|
}
|
|
|
|
/// ProcessSwitch - Called by CoreEngine. Used to generate successor
|
|
/// nodes by processing the 'effects' of a switch statement.
|
|
void ExprEngine::processSwitch(SwitchNodeBuilder& builder) {
|
|
typedef SwitchNodeBuilder::iterator iterator;
|
|
ProgramStateRef state = builder.getState();
|
|
const Expr *CondE = builder.getCondition();
|
|
SVal CondV_untested = state->getSVal(CondE, builder.getLocationContext());
|
|
|
|
if (CondV_untested.isUndef()) {
|
|
//ExplodedNode* N = builder.generateDefaultCaseNode(state, true);
|
|
// FIXME: add checker
|
|
//UndefBranches.insert(N);
|
|
|
|
return;
|
|
}
|
|
DefinedOrUnknownSVal CondV = CondV_untested.castAs<DefinedOrUnknownSVal>();
|
|
|
|
ProgramStateRef DefaultSt = state;
|
|
|
|
iterator I = builder.begin(), EI = builder.end();
|
|
bool defaultIsFeasible = I == EI;
|
|
|
|
for ( ; I != EI; ++I) {
|
|
// Successor may be pruned out during CFG construction.
|
|
if (!I.getBlock())
|
|
continue;
|
|
|
|
const CaseStmt *Case = I.getCase();
|
|
|
|
// Evaluate the LHS of the case value.
|
|
llvm::APSInt V1 = Case->getLHS()->EvaluateKnownConstInt(getContext());
|
|
assert(V1.getBitWidth() == getContext().getTypeSize(CondE->getType()));
|
|
|
|
// Get the RHS of the case, if it exists.
|
|
llvm::APSInt V2;
|
|
if (const Expr *E = Case->getRHS())
|
|
V2 = E->EvaluateKnownConstInt(getContext());
|
|
else
|
|
V2 = V1;
|
|
|
|
// FIXME: Eventually we should replace the logic below with a range
|
|
// comparison, rather than concretize the values within the range.
|
|
// This should be easy once we have "ranges" for NonLVals.
|
|
|
|
do {
|
|
nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1));
|
|
DefinedOrUnknownSVal Res = svalBuilder.evalEQ(DefaultSt ? DefaultSt : state,
|
|
CondV, CaseVal);
|
|
|
|
// Now "assume" that the case matches.
|
|
if (ProgramStateRef stateNew = state->assume(Res, true)) {
|
|
builder.generateCaseStmtNode(I, stateNew);
|
|
|
|
// If CondV evaluates to a constant, then we know that this
|
|
// is the *only* case that we can take, so stop evaluating the
|
|
// others.
|
|
if (CondV.getAs<nonloc::ConcreteInt>())
|
|
return;
|
|
}
|
|
|
|
// Now "assume" that the case doesn't match. Add this state
|
|
// to the default state (if it is feasible).
|
|
if (DefaultSt) {
|
|
if (ProgramStateRef stateNew = DefaultSt->assume(Res, false)) {
|
|
defaultIsFeasible = true;
|
|
DefaultSt = stateNew;
|
|
}
|
|
else {
|
|
defaultIsFeasible = false;
|
|
DefaultSt = NULL;
|
|
}
|
|
}
|
|
|
|
// Concretize the next value in the range.
|
|
if (V1 == V2)
|
|
break;
|
|
|
|
++V1;
|
|
assert (V1 <= V2);
|
|
|
|
} while (true);
|
|
}
|
|
|
|
if (!defaultIsFeasible)
|
|
return;
|
|
|
|
// If we have switch(enum value), the default branch is not
|
|
// feasible if all of the enum constants not covered by 'case:' statements
|
|
// are not feasible values for the switch condition.
|
|
//
|
|
// Note that this isn't as accurate as it could be. Even if there isn't
|
|
// a case for a particular enum value as long as that enum value isn't
|
|
// feasible then it shouldn't be considered for making 'default:' reachable.
|
|
const SwitchStmt *SS = builder.getSwitch();
|
|
const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts();
|
|
if (CondExpr->getType()->getAs<EnumType>()) {
|
|
if (SS->isAllEnumCasesCovered())
|
|
return;
|
|
}
|
|
|
|
builder.generateDefaultCaseNode(DefaultSt);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer functions: Loads and stores.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
// C permits "extern void v", and if you cast the address to a valid type,
|
|
// you can even do things with it. We simply pretend
|
|
assert(Ex->isGLValue() || VD->getType()->isVoidType());
|
|
SVal V = state->getLValue(VD, Pred->getLocationContext());
|
|
|
|
// For references, the 'lvalue' is the pointer address stored in the
|
|
// reference region.
|
|
if (VD->getType()->isReferenceType()) {
|
|
if (const MemRegion *R = V.getAsRegion())
|
|
V = state->getSVal(R);
|
|
else
|
|
V = UnknownVal();
|
|
}
|
|
|
|
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), 0,
|
|
ProgramPoint::PostLValueKind);
|
|
return;
|
|
}
|
|
if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) {
|
|
assert(!Ex->isGLValue());
|
|
SVal V = svalBuilder.makeIntVal(ED->getInitVal());
|
|
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V));
|
|
return;
|
|
}
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
SVal V = svalBuilder.getFunctionPointer(FD);
|
|
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), 0,
|
|
ProgramPoint::PostLValueKind);
|
|
return;
|
|
}
|
|
if (isa<FieldDecl>(D)) {
|
|
// FIXME: Compute lvalue of field pointers-to-member.
|
|
// Right now we just use a non-null void pointer, so that it gives proper
|
|
// results in boolean contexts.
|
|
SVal V = svalBuilder.conjureSymbolVal(Ex, LCtx, getContext().VoidPtrTy,
|
|
currBldrCtx->blockCount());
|
|
state = state->assume(V.castAs<DefinedOrUnknownSVal>(), true);
|
|
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), 0,
|
|
ProgramPoint::PostLValueKind);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Support for this Decl not implemented.");
|
|
}
|
|
|
|
/// VisitArraySubscriptExpr - Transfer function for array accesses
|
|
void ExprEngine::VisitLvalArraySubscriptExpr(const ArraySubscriptExpr *A,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst){
|
|
|
|
const Expr *Base = A->getBase()->IgnoreParens();
|
|
const Expr *Idx = A->getIdx()->IgnoreParens();
|
|
|
|
|
|
ExplodedNodeSet checkerPreStmt;
|
|
getCheckerManager().runCheckersForPreStmt(checkerPreStmt, Pred, A, *this);
|
|
|
|
StmtNodeBuilder Bldr(checkerPreStmt, Dst, *currBldrCtx);
|
|
|
|
for (ExplodedNodeSet::iterator it = checkerPreStmt.begin(),
|
|
ei = checkerPreStmt.end(); it != ei; ++it) {
|
|
const LocationContext *LCtx = (*it)->getLocationContext();
|
|
ProgramStateRef state = (*it)->getState();
|
|
SVal V = state->getLValue(A->getType(),
|
|
state->getSVal(Idx, LCtx),
|
|
state->getSVal(Base, LCtx));
|
|
assert(A->isGLValue());
|
|
Bldr.generateNode(A, *it, state->BindExpr(A, LCtx, V), 0,
|
|
ProgramPoint::PostLValueKind);
|
|
}
|
|
}
|
|
|
|
/// VisitMemberExpr - Transfer function for member expressions.
|
|
void ExprEngine::VisitMemberExpr(const MemberExpr *M, ExplodedNode *Pred,
|
|
ExplodedNodeSet &TopDst) {
|
|
|
|
StmtNodeBuilder Bldr(Pred, TopDst, *currBldrCtx);
|
|
ExplodedNodeSet Dst;
|
|
ValueDecl *Member = M->getMemberDecl();
|
|
|
|
// Handle static member variables and enum constants accessed via
|
|
// member syntax.
|
|
if (isa<VarDecl>(Member) || isa<EnumConstantDecl>(Member)) {
|
|
Bldr.takeNodes(Pred);
|
|
VisitCommonDeclRefExpr(M, Member, Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
return;
|
|
}
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
Expr *BaseExpr = M->getBase();
|
|
|
|
// Handle C++ method calls.
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member)) {
|
|
if (MD->isInstance())
|
|
state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr);
|
|
|
|
SVal MDVal = svalBuilder.getFunctionPointer(MD);
|
|
state = state->BindExpr(M, LCtx, MDVal);
|
|
|
|
Bldr.generateNode(M, Pred, state);
|
|
return;
|
|
}
|
|
|
|
// Handle regular struct fields / member variables.
|
|
state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr);
|
|
SVal baseExprVal = state->getSVal(BaseExpr, LCtx);
|
|
|
|
FieldDecl *field = cast<FieldDecl>(Member);
|
|
SVal L = state->getLValue(field, baseExprVal);
|
|
|
|
if (M->isGLValue() || M->getType()->isArrayType()) {
|
|
|
|
// We special case rvalue of array type because the analyzer cannot reason
|
|
// about it, since we expect all regions to be wrapped in Locs. So we will
|
|
// treat these as lvalues assuming that they will decay to pointers as soon
|
|
// as they are used.
|
|
if (!M->isGLValue()) {
|
|
assert(M->getType()->isArrayType());
|
|
const ImplicitCastExpr *PE =
|
|
dyn_cast<ImplicitCastExpr>(Pred->getParentMap().getParent(M));
|
|
if (!PE || PE->getCastKind() != CK_ArrayToPointerDecay) {
|
|
assert(false &&
|
|
"We assume that array is always wrapped in ArrayToPointerDecay");
|
|
L = UnknownVal();
|
|
}
|
|
}
|
|
|
|
if (field->getType()->isReferenceType()) {
|
|
if (const MemRegion *R = L.getAsRegion())
|
|
L = state->getSVal(R);
|
|
else
|
|
L = UnknownVal();
|
|
}
|
|
|
|
Bldr.generateNode(M, Pred, state->BindExpr(M, LCtx, L), 0,
|
|
ProgramPoint::PostLValueKind);
|
|
} else {
|
|
Bldr.takeNodes(Pred);
|
|
evalLoad(Dst, M, M, Pred, state, L);
|
|
Bldr.addNodes(Dst);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
class CollectReachableSymbolsCallback : public SymbolVisitor {
|
|
InvalidatedSymbols Symbols;
|
|
public:
|
|
CollectReachableSymbolsCallback(ProgramStateRef State) {}
|
|
const InvalidatedSymbols &getSymbols() const { return Symbols; }
|
|
|
|
bool VisitSymbol(SymbolRef Sym) {
|
|
Symbols.insert(Sym);
|
|
return true;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
// A value escapes in three possible cases:
|
|
// (1) We are binding to something that is not a memory region.
|
|
// (2) We are binding to a MemrRegion that does not have stack storage.
|
|
// (3) We are binding to a MemRegion with stack storage that the store
|
|
// does not understand.
|
|
ProgramStateRef ExprEngine::processPointerEscapedOnBind(ProgramStateRef State,
|
|
SVal Loc, SVal Val) {
|
|
// Are we storing to something that causes the value to "escape"?
|
|
bool escapes = true;
|
|
|
|
// TODO: Move to StoreManager.
|
|
if (Optional<loc::MemRegionVal> regionLoc = Loc.getAs<loc::MemRegionVal>()) {
|
|
escapes = !regionLoc->getRegion()->hasStackStorage();
|
|
|
|
if (!escapes) {
|
|
// To test (3), generate a new state with the binding added. If it is
|
|
// the same state, then it escapes (since the store cannot represent
|
|
// the binding).
|
|
// Do this only if we know that the store is not supposed to generate the
|
|
// same state.
|
|
SVal StoredVal = State->getSVal(regionLoc->getRegion());
|
|
if (StoredVal != Val)
|
|
escapes = (State == (State->bindLoc(*regionLoc, Val)));
|
|
}
|
|
}
|
|
|
|
// If our store can represent the binding and we aren't storing to something
|
|
// that doesn't have local storage then just return and have the simulation
|
|
// state continue as is.
|
|
if (!escapes)
|
|
return State;
|
|
|
|
// Otherwise, find all symbols referenced by 'val' that we are tracking
|
|
// and stop tracking them.
|
|
CollectReachableSymbolsCallback Scanner =
|
|
State->scanReachableSymbols<CollectReachableSymbolsCallback>(Val);
|
|
const InvalidatedSymbols &EscapedSymbols = Scanner.getSymbols();
|
|
State = getCheckerManager().runCheckersForPointerEscape(State,
|
|
EscapedSymbols,
|
|
/*CallEvent*/ 0,
|
|
PSK_EscapeOnBind,
|
|
0);
|
|
|
|
return State;
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::notifyCheckersOfPointerEscape(ProgramStateRef State,
|
|
const InvalidatedSymbols *Invalidated,
|
|
ArrayRef<const MemRegion *> ExplicitRegions,
|
|
ArrayRef<const MemRegion *> Regions,
|
|
const CallEvent *Call,
|
|
RegionAndSymbolInvalidationTraits &ITraits) {
|
|
|
|
if (!Invalidated || Invalidated->empty())
|
|
return State;
|
|
|
|
if (!Call)
|
|
return getCheckerManager().runCheckersForPointerEscape(State,
|
|
*Invalidated,
|
|
0,
|
|
PSK_EscapeOther,
|
|
&ITraits);
|
|
|
|
// If the symbols were invalidated by a call, we want to find out which ones
|
|
// were invalidated directly due to being arguments to the call.
|
|
InvalidatedSymbols SymbolsDirectlyInvalidated;
|
|
for (ArrayRef<const MemRegion *>::iterator I = ExplicitRegions.begin(),
|
|
E = ExplicitRegions.end(); I != E; ++I) {
|
|
if (const SymbolicRegion *R = (*I)->StripCasts()->getAs<SymbolicRegion>())
|
|
SymbolsDirectlyInvalidated.insert(R->getSymbol());
|
|
}
|
|
|
|
InvalidatedSymbols SymbolsIndirectlyInvalidated;
|
|
for (InvalidatedSymbols::const_iterator I=Invalidated->begin(),
|
|
E = Invalidated->end(); I!=E; ++I) {
|
|
SymbolRef sym = *I;
|
|
if (SymbolsDirectlyInvalidated.count(sym))
|
|
continue;
|
|
SymbolsIndirectlyInvalidated.insert(sym);
|
|
}
|
|
|
|
if (!SymbolsDirectlyInvalidated.empty())
|
|
State = getCheckerManager().runCheckersForPointerEscape(State,
|
|
SymbolsDirectlyInvalidated, Call, PSK_DirectEscapeOnCall, &ITraits);
|
|
|
|
// Notify about the symbols that get indirectly invalidated by the call.
|
|
if (!SymbolsIndirectlyInvalidated.empty())
|
|
State = getCheckerManager().runCheckersForPointerEscape(State,
|
|
SymbolsIndirectlyInvalidated, Call, PSK_IndirectEscapeOnCall, &ITraits);
|
|
|
|
return State;
|
|
}
|
|
|
|
/// evalBind - Handle the semantics of binding a value to a specific location.
|
|
/// This method is used by evalStore and (soon) VisitDeclStmt, and others.
|
|
void ExprEngine::evalBind(ExplodedNodeSet &Dst, const Stmt *StoreE,
|
|
ExplodedNode *Pred,
|
|
SVal location, SVal Val,
|
|
bool atDeclInit, const ProgramPoint *PP) {
|
|
|
|
const LocationContext *LC = Pred->getLocationContext();
|
|
PostStmt PS(StoreE, LC);
|
|
if (!PP)
|
|
PP = &PS;
|
|
|
|
// Do a previsit of the bind.
|
|
ExplodedNodeSet CheckedSet;
|
|
getCheckerManager().runCheckersForBind(CheckedSet, Pred, location, Val,
|
|
StoreE, *this, *PP);
|
|
|
|
|
|
StmtNodeBuilder Bldr(CheckedSet, Dst, *currBldrCtx);
|
|
|
|
// If the location is not a 'Loc', it will already be handled by
|
|
// the checkers. There is nothing left to do.
|
|
if (!location.getAs<Loc>()) {
|
|
const ProgramPoint L = PostStore(StoreE, LC, /*Loc*/0, /*tag*/0);
|
|
ProgramStateRef state = Pred->getState();
|
|
state = processPointerEscapedOnBind(state, location, Val);
|
|
Bldr.generateNode(L, state, Pred);
|
|
return;
|
|
}
|
|
|
|
|
|
for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
|
|
I!=E; ++I) {
|
|
ExplodedNode *PredI = *I;
|
|
ProgramStateRef state = PredI->getState();
|
|
|
|
state = processPointerEscapedOnBind(state, location, Val);
|
|
|
|
// When binding the value, pass on the hint that this is a initialization.
|
|
// For initializations, we do not need to inform clients of region
|
|
// changes.
|
|
state = state->bindLoc(location.castAs<Loc>(),
|
|
Val, /* notifyChanges = */ !atDeclInit);
|
|
|
|
const MemRegion *LocReg = 0;
|
|
if (Optional<loc::MemRegionVal> LocRegVal =
|
|
location.getAs<loc::MemRegionVal>()) {
|
|
LocReg = LocRegVal->getRegion();
|
|
}
|
|
|
|
const ProgramPoint L = PostStore(StoreE, LC, LocReg, 0);
|
|
Bldr.generateNode(L, state, PredI);
|
|
}
|
|
}
|
|
|
|
/// evalStore - Handle the semantics of a store via an assignment.
|
|
/// @param Dst The node set to store generated state nodes
|
|
/// @param AssignE The assignment expression if the store happens in an
|
|
/// assignment.
|
|
/// @param LocationE The location expression that is stored to.
|
|
/// @param state The current simulation state
|
|
/// @param location The location to store the value
|
|
/// @param Val The value to be stored
|
|
void ExprEngine::evalStore(ExplodedNodeSet &Dst, const Expr *AssignE,
|
|
const Expr *LocationE,
|
|
ExplodedNode *Pred,
|
|
ProgramStateRef state, SVal location, SVal Val,
|
|
const ProgramPointTag *tag) {
|
|
// Proceed with the store. We use AssignE as the anchor for the PostStore
|
|
// ProgramPoint if it is non-NULL, and LocationE otherwise.
|
|
const Expr *StoreE = AssignE ? AssignE : LocationE;
|
|
|
|
// Evaluate the location (checks for bad dereferences).
|
|
ExplodedNodeSet Tmp;
|
|
evalLocation(Tmp, AssignE, LocationE, Pred, state, location, tag, false);
|
|
|
|
if (Tmp.empty())
|
|
return;
|
|
|
|
if (location.isUndef())
|
|
return;
|
|
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI)
|
|
evalBind(Dst, StoreE, *NI, location, Val, false);
|
|
}
|
|
|
|
void ExprEngine::evalLoad(ExplodedNodeSet &Dst,
|
|
const Expr *NodeEx,
|
|
const Expr *BoundEx,
|
|
ExplodedNode *Pred,
|
|
ProgramStateRef state,
|
|
SVal location,
|
|
const ProgramPointTag *tag,
|
|
QualType LoadTy)
|
|
{
|
|
assert(!location.getAs<NonLoc>() && "location cannot be a NonLoc.");
|
|
|
|
// Are we loading from a region? This actually results in two loads; one
|
|
// to fetch the address of the referenced value and one to fetch the
|
|
// referenced value.
|
|
if (const TypedValueRegion *TR =
|
|
dyn_cast_or_null<TypedValueRegion>(location.getAsRegion())) {
|
|
|
|
QualType ValTy = TR->getValueType();
|
|
if (const ReferenceType *RT = ValTy->getAs<ReferenceType>()) {
|
|
static SimpleProgramPointTag
|
|
loadReferenceTag("ExprEngine : Load Reference");
|
|
ExplodedNodeSet Tmp;
|
|
evalLoadCommon(Tmp, NodeEx, BoundEx, Pred, state,
|
|
location, &loadReferenceTag,
|
|
getContext().getPointerType(RT->getPointeeType()));
|
|
|
|
// Perform the load from the referenced value.
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) {
|
|
state = (*I)->getState();
|
|
location = state->getSVal(BoundEx, (*I)->getLocationContext());
|
|
evalLoadCommon(Dst, NodeEx, BoundEx, *I, state, location, tag, LoadTy);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
evalLoadCommon(Dst, NodeEx, BoundEx, Pred, state, location, tag, LoadTy);
|
|
}
|
|
|
|
void ExprEngine::evalLoadCommon(ExplodedNodeSet &Dst,
|
|
const Expr *NodeEx,
|
|
const Expr *BoundEx,
|
|
ExplodedNode *Pred,
|
|
ProgramStateRef state,
|
|
SVal location,
|
|
const ProgramPointTag *tag,
|
|
QualType LoadTy) {
|
|
assert(NodeEx);
|
|
assert(BoundEx);
|
|
// Evaluate the location (checks for bad dereferences).
|
|
ExplodedNodeSet Tmp;
|
|
evalLocation(Tmp, NodeEx, BoundEx, Pred, state, location, tag, true);
|
|
if (Tmp.empty())
|
|
return;
|
|
|
|
StmtNodeBuilder Bldr(Tmp, Dst, *currBldrCtx);
|
|
if (location.isUndef())
|
|
return;
|
|
|
|
// Proceed with the load.
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) {
|
|
state = (*NI)->getState();
|
|
const LocationContext *LCtx = (*NI)->getLocationContext();
|
|
|
|
SVal V = UnknownVal();
|
|
if (location.isValid()) {
|
|
if (LoadTy.isNull())
|
|
LoadTy = BoundEx->getType();
|
|
V = state->getSVal(location.castAs<Loc>(), LoadTy);
|
|
}
|
|
|
|
Bldr.generateNode(NodeEx, *NI, state->BindExpr(BoundEx, LCtx, V), tag,
|
|
ProgramPoint::PostLoadKind);
|
|
}
|
|
}
|
|
|
|
void ExprEngine::evalLocation(ExplodedNodeSet &Dst,
|
|
const Stmt *NodeEx,
|
|
const Stmt *BoundEx,
|
|
ExplodedNode *Pred,
|
|
ProgramStateRef state,
|
|
SVal location,
|
|
const ProgramPointTag *tag,
|
|
bool isLoad) {
|
|
StmtNodeBuilder BldrTop(Pred, Dst, *currBldrCtx);
|
|
// Early checks for performance reason.
|
|
if (location.isUnknown()) {
|
|
return;
|
|
}
|
|
|
|
ExplodedNodeSet Src;
|
|
BldrTop.takeNodes(Pred);
|
|
StmtNodeBuilder Bldr(Pred, Src, *currBldrCtx);
|
|
if (Pred->getState() != state) {
|
|
// Associate this new state with an ExplodedNode.
|
|
// FIXME: If I pass null tag, the graph is incorrect, e.g for
|
|
// int *p;
|
|
// p = 0;
|
|
// *p = 0xDEADBEEF;
|
|
// "p = 0" is not noted as "Null pointer value stored to 'p'" but
|
|
// instead "int *p" is noted as
|
|
// "Variable 'p' initialized to a null pointer value"
|
|
|
|
static SimpleProgramPointTag tag("ExprEngine: Location");
|
|
Bldr.generateNode(NodeEx, Pred, state, &tag);
|
|
}
|
|
ExplodedNodeSet Tmp;
|
|
getCheckerManager().runCheckersForLocation(Tmp, Src, location, isLoad,
|
|
NodeEx, BoundEx, *this);
|
|
BldrTop.addNodes(Tmp);
|
|
}
|
|
|
|
std::pair<const ProgramPointTag *, const ProgramPointTag*>
|
|
ExprEngine::geteagerlyAssumeBinOpBifurcationTags() {
|
|
static SimpleProgramPointTag
|
|
eagerlyAssumeBinOpBifurcationTrue("ExprEngine : Eagerly Assume True"),
|
|
eagerlyAssumeBinOpBifurcationFalse("ExprEngine : Eagerly Assume False");
|
|
return std::make_pair(&eagerlyAssumeBinOpBifurcationTrue,
|
|
&eagerlyAssumeBinOpBifurcationFalse);
|
|
}
|
|
|
|
void ExprEngine::evalEagerlyAssumeBinOpBifurcation(ExplodedNodeSet &Dst,
|
|
ExplodedNodeSet &Src,
|
|
const Expr *Ex) {
|
|
StmtNodeBuilder Bldr(Src, Dst, *currBldrCtx);
|
|
|
|
for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) {
|
|
ExplodedNode *Pred = *I;
|
|
// Test if the previous node was as the same expression. This can happen
|
|
// when the expression fails to evaluate to anything meaningful and
|
|
// (as an optimization) we don't generate a node.
|
|
ProgramPoint P = Pred->getLocation();
|
|
if (!P.getAs<PostStmt>() || P.castAs<PostStmt>().getStmt() != Ex) {
|
|
continue;
|
|
}
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
SVal V = state->getSVal(Ex, Pred->getLocationContext());
|
|
Optional<nonloc::SymbolVal> SEV = V.getAs<nonloc::SymbolVal>();
|
|
if (SEV && SEV->isExpression()) {
|
|
const std::pair<const ProgramPointTag *, const ProgramPointTag*> &tags =
|
|
geteagerlyAssumeBinOpBifurcationTags();
|
|
|
|
ProgramStateRef StateTrue, StateFalse;
|
|
tie(StateTrue, StateFalse) = state->assume(*SEV);
|
|
|
|
// First assume that the condition is true.
|
|
if (StateTrue) {
|
|
SVal Val = svalBuilder.makeIntVal(1U, Ex->getType());
|
|
StateTrue = StateTrue->BindExpr(Ex, Pred->getLocationContext(), Val);
|
|
Bldr.generateNode(Ex, Pred, StateTrue, tags.first);
|
|
}
|
|
|
|
// Next, assume that the condition is false.
|
|
if (StateFalse) {
|
|
SVal Val = svalBuilder.makeIntVal(0U, Ex->getType());
|
|
StateFalse = StateFalse->BindExpr(Ex, Pred->getLocationContext(), Val);
|
|
Bldr.generateNode(Ex, Pred, StateFalse, tags.second);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExprEngine::VisitGCCAsmStmt(const GCCAsmStmt *A, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
// We have processed both the inputs and the outputs. All of the outputs
|
|
// should evaluate to Locs. Nuke all of their values.
|
|
|
|
// FIXME: Some day in the future it would be nice to allow a "plug-in"
|
|
// which interprets the inline asm and stores proper results in the
|
|
// outputs.
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
|
|
for (GCCAsmStmt::const_outputs_iterator OI = A->begin_outputs(),
|
|
OE = A->end_outputs(); OI != OE; ++OI) {
|
|
SVal X = state->getSVal(*OI, Pred->getLocationContext());
|
|
assert (!X.getAs<NonLoc>()); // Should be an Lval, or unknown, undef.
|
|
|
|
if (Optional<Loc> LV = X.getAs<Loc>())
|
|
state = state->bindLoc(*LV, UnknownVal());
|
|
}
|
|
|
|
Bldr.generateNode(A, Pred, state);
|
|
}
|
|
|
|
void ExprEngine::VisitMSAsmStmt(const MSAsmStmt *A, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
Bldr.generateNode(A, Pred, Pred->getState());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Visualization.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef NDEBUG
|
|
static ExprEngine* GraphPrintCheckerState;
|
|
static SourceManager* GraphPrintSourceManager;
|
|
|
|
namespace llvm {
|
|
template<>
|
|
struct DOTGraphTraits<ExplodedNode*> :
|
|
public DefaultDOTGraphTraits {
|
|
|
|
DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
|
|
|
|
// FIXME: Since we do not cache error nodes in ExprEngine now, this does not
|
|
// work.
|
|
static std::string getNodeAttributes(const ExplodedNode *N, void*) {
|
|
|
|
#if 0
|
|
// FIXME: Replace with a general scheme to tell if the node is
|
|
// an error node.
|
|
if (GraphPrintCheckerState->isImplicitNullDeref(N) ||
|
|
GraphPrintCheckerState->isExplicitNullDeref(N) ||
|
|
GraphPrintCheckerState->isUndefDeref(N) ||
|
|
GraphPrintCheckerState->isUndefStore(N) ||
|
|
GraphPrintCheckerState->isUndefControlFlow(N) ||
|
|
GraphPrintCheckerState->isUndefResult(N) ||
|
|
GraphPrintCheckerState->isBadCall(N) ||
|
|
GraphPrintCheckerState->isUndefArg(N))
|
|
return "color=\"red\",style=\"filled\"";
|
|
|
|
if (GraphPrintCheckerState->isNoReturnCall(N))
|
|
return "color=\"blue\",style=\"filled\"";
|
|
#endif
|
|
return "";
|
|
}
|
|
|
|
static void printLocation(raw_ostream &Out, SourceLocation SLoc) {
|
|
if (SLoc.isFileID()) {
|
|
Out << "\\lline="
|
|
<< GraphPrintSourceManager->getExpansionLineNumber(SLoc)
|
|
<< " col="
|
|
<< GraphPrintSourceManager->getExpansionColumnNumber(SLoc)
|
|
<< "\\l";
|
|
}
|
|
}
|
|
|
|
static std::string getNodeLabel(const ExplodedNode *N, void*){
|
|
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream Out(sbuf);
|
|
|
|
// Program Location.
|
|
ProgramPoint Loc = N->getLocation();
|
|
|
|
switch (Loc.getKind()) {
|
|
case ProgramPoint::BlockEntranceKind: {
|
|
Out << "Block Entrance: B"
|
|
<< Loc.castAs<BlockEntrance>().getBlock()->getBlockID();
|
|
if (const NamedDecl *ND =
|
|
dyn_cast<NamedDecl>(Loc.getLocationContext()->getDecl())) {
|
|
Out << " (";
|
|
ND->printName(Out);
|
|
Out << ")";
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ProgramPoint::BlockExitKind:
|
|
assert (false);
|
|
break;
|
|
|
|
case ProgramPoint::CallEnterKind:
|
|
Out << "CallEnter";
|
|
break;
|
|
|
|
case ProgramPoint::CallExitBeginKind:
|
|
Out << "CallExitBegin";
|
|
break;
|
|
|
|
case ProgramPoint::CallExitEndKind:
|
|
Out << "CallExitEnd";
|
|
break;
|
|
|
|
case ProgramPoint::PostStmtPurgeDeadSymbolsKind:
|
|
Out << "PostStmtPurgeDeadSymbols";
|
|
break;
|
|
|
|
case ProgramPoint::PreStmtPurgeDeadSymbolsKind:
|
|
Out << "PreStmtPurgeDeadSymbols";
|
|
break;
|
|
|
|
case ProgramPoint::EpsilonKind:
|
|
Out << "Epsilon Point";
|
|
break;
|
|
|
|
case ProgramPoint::PreImplicitCallKind: {
|
|
ImplicitCallPoint PC = Loc.castAs<ImplicitCallPoint>();
|
|
Out << "PreCall: ";
|
|
|
|
// FIXME: Get proper printing options.
|
|
PC.getDecl()->print(Out, LangOptions());
|
|
printLocation(Out, PC.getLocation());
|
|
break;
|
|
}
|
|
|
|
case ProgramPoint::PostImplicitCallKind: {
|
|
ImplicitCallPoint PC = Loc.castAs<ImplicitCallPoint>();
|
|
Out << "PostCall: ";
|
|
|
|
// FIXME: Get proper printing options.
|
|
PC.getDecl()->print(Out, LangOptions());
|
|
printLocation(Out, PC.getLocation());
|
|
break;
|
|
}
|
|
|
|
case ProgramPoint::PostInitializerKind: {
|
|
Out << "PostInitializer: ";
|
|
const CXXCtorInitializer *Init =
|
|
Loc.castAs<PostInitializer>().getInitializer();
|
|
if (const FieldDecl *FD = Init->getAnyMember())
|
|
Out << *FD;
|
|
else {
|
|
QualType Ty = Init->getTypeSourceInfo()->getType();
|
|
Ty = Ty.getLocalUnqualifiedType();
|
|
LangOptions LO; // FIXME.
|
|
Ty.print(Out, LO);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ProgramPoint::BlockEdgeKind: {
|
|
const BlockEdge &E = Loc.castAs<BlockEdge>();
|
|
Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
|
|
<< E.getDst()->getBlockID() << ')';
|
|
|
|
if (const Stmt *T = E.getSrc()->getTerminator()) {
|
|
SourceLocation SLoc = T->getLocStart();
|
|
|
|
Out << "\\|Terminator: ";
|
|
LangOptions LO; // FIXME.
|
|
E.getSrc()->printTerminator(Out, LO);
|
|
|
|
if (SLoc.isFileID()) {
|
|
Out << "\\lline="
|
|
<< GraphPrintSourceManager->getExpansionLineNumber(SLoc)
|
|
<< " col="
|
|
<< GraphPrintSourceManager->getExpansionColumnNumber(SLoc);
|
|
}
|
|
|
|
if (isa<SwitchStmt>(T)) {
|
|
const Stmt *Label = E.getDst()->getLabel();
|
|
|
|
if (Label) {
|
|
if (const CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
|
|
Out << "\\lcase ";
|
|
LangOptions LO; // FIXME.
|
|
C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO));
|
|
|
|
if (const Stmt *RHS = C->getRHS()) {
|
|
Out << " .. ";
|
|
RHS->printPretty(Out, 0, PrintingPolicy(LO));
|
|
}
|
|
|
|
Out << ":";
|
|
}
|
|
else {
|
|
assert (isa<DefaultStmt>(Label));
|
|
Out << "\\ldefault:";
|
|
}
|
|
}
|
|
else
|
|
Out << "\\l(implicit) default:";
|
|
}
|
|
else if (isa<IndirectGotoStmt>(T)) {
|
|
// FIXME
|
|
}
|
|
else {
|
|
Out << "\\lCondition: ";
|
|
if (*E.getSrc()->succ_begin() == E.getDst())
|
|
Out << "true";
|
|
else
|
|
Out << "false";
|
|
}
|
|
|
|
Out << "\\l";
|
|
}
|
|
|
|
#if 0
|
|
// FIXME: Replace with a general scheme to determine
|
|
// the name of the check.
|
|
if (GraphPrintCheckerState->isUndefControlFlow(N)) {
|
|
Out << "\\|Control-flow based on\\lUndefined value.\\l";
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
const Stmt *S = Loc.castAs<StmtPoint>().getStmt();
|
|
|
|
Out << S->getStmtClassName() << ' ' << (const void*) S << ' ';
|
|
LangOptions LO; // FIXME.
|
|
S->printPretty(Out, 0, PrintingPolicy(LO));
|
|
printLocation(Out, S->getLocStart());
|
|
|
|
if (Loc.getAs<PreStmt>())
|
|
Out << "\\lPreStmt\\l;";
|
|
else if (Loc.getAs<PostLoad>())
|
|
Out << "\\lPostLoad\\l;";
|
|
else if (Loc.getAs<PostStore>())
|
|
Out << "\\lPostStore\\l";
|
|
else if (Loc.getAs<PostLValue>())
|
|
Out << "\\lPostLValue\\l";
|
|
|
|
#if 0
|
|
// FIXME: Replace with a general scheme to determine
|
|
// the name of the check.
|
|
if (GraphPrintCheckerState->isImplicitNullDeref(N))
|
|
Out << "\\|Implicit-Null Dereference.\\l";
|
|
else if (GraphPrintCheckerState->isExplicitNullDeref(N))
|
|
Out << "\\|Explicit-Null Dereference.\\l";
|
|
else if (GraphPrintCheckerState->isUndefDeref(N))
|
|
Out << "\\|Dereference of undefialied value.\\l";
|
|
else if (GraphPrintCheckerState->isUndefStore(N))
|
|
Out << "\\|Store to Undefined Loc.";
|
|
else if (GraphPrintCheckerState->isUndefResult(N))
|
|
Out << "\\|Result of operation is undefined.";
|
|
else if (GraphPrintCheckerState->isNoReturnCall(N))
|
|
Out << "\\|Call to function marked \"noreturn\".";
|
|
else if (GraphPrintCheckerState->isBadCall(N))
|
|
Out << "\\|Call to NULL/Undefined.";
|
|
else if (GraphPrintCheckerState->isUndefArg(N))
|
|
Out << "\\|Argument in call is undefined";
|
|
#endif
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
ProgramStateRef state = N->getState();
|
|
Out << "\\|StateID: " << (const void*) state.getPtr()
|
|
<< " NodeID: " << (const void*) N << "\\|";
|
|
state->printDOT(Out);
|
|
|
|
Out << "\\l";
|
|
|
|
if (const ProgramPointTag *tag = Loc.getTag()) {
|
|
Out << "\\|Tag: " << tag->getTagDescription();
|
|
Out << "\\l";
|
|
}
|
|
return Out.str();
|
|
}
|
|
};
|
|
} // end llvm namespace
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
template <typename ITERATOR>
|
|
ExplodedNode *GetGraphNode(ITERATOR I) { return *I; }
|
|
|
|
template <> ExplodedNode*
|
|
GetGraphNode<llvm::DenseMap<ExplodedNode*, Expr*>::iterator>
|
|
(llvm::DenseMap<ExplodedNode*, Expr*>::iterator I) {
|
|
return I->first;
|
|
}
|
|
#endif
|
|
|
|
void ExprEngine::ViewGraph(bool trim) {
|
|
#ifndef NDEBUG
|
|
if (trim) {
|
|
std::vector<const ExplodedNode*> Src;
|
|
|
|
// Flush any outstanding reports to make sure we cover all the nodes.
|
|
// This does not cause them to get displayed.
|
|
for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I)
|
|
const_cast<BugType*>(*I)->FlushReports(BR);
|
|
|
|
// Iterate through the reports and get their nodes.
|
|
for (BugReporter::EQClasses_iterator
|
|
EI = BR.EQClasses_begin(), EE = BR.EQClasses_end(); EI != EE; ++EI) {
|
|
ExplodedNode *N = const_cast<ExplodedNode*>(EI->begin()->getErrorNode());
|
|
if (N) Src.push_back(N);
|
|
}
|
|
|
|
ViewGraph(Src);
|
|
}
|
|
else {
|
|
GraphPrintCheckerState = this;
|
|
GraphPrintSourceManager = &getContext().getSourceManager();
|
|
|
|
llvm::ViewGraph(*G.roots_begin(), "ExprEngine");
|
|
|
|
GraphPrintCheckerState = NULL;
|
|
GraphPrintSourceManager = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void ExprEngine::ViewGraph(ArrayRef<const ExplodedNode*> Nodes) {
|
|
#ifndef NDEBUG
|
|
GraphPrintCheckerState = this;
|
|
GraphPrintSourceManager = &getContext().getSourceManager();
|
|
|
|
OwningPtr<ExplodedGraph> TrimmedG(G.trim(Nodes));
|
|
|
|
if (!TrimmedG.get())
|
|
llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n";
|
|
else
|
|
llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedExprEngine");
|
|
|
|
GraphPrintCheckerState = NULL;
|
|
GraphPrintSourceManager = NULL;
|
|
#endif
|
|
}
|