forked from OSchip/llvm-project
674 lines
26 KiB
C++
674 lines
26 KiB
C++
//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements Loop Rotation Pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/LoopRotation.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/CodeMetrics.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/LoopPassManager.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-rotate"
|
|
|
|
static cl::opt<unsigned>
|
|
DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden,
|
|
cl::desc("The default maximum header size for automatic loop rotation"));
|
|
|
|
STATISTIC(NumRotated, "Number of loops rotated");
|
|
|
|
/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
|
|
/// old header into the preheader. If there were uses of the values produced by
|
|
/// these instruction that were outside of the loop, we have to insert PHI nodes
|
|
/// to merge the two values. Do this now.
|
|
static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
|
|
BasicBlock *OrigPreheader,
|
|
ValueToValueMapTy &ValueMap) {
|
|
// Remove PHI node entries that are no longer live.
|
|
BasicBlock::iterator I, E = OrigHeader->end();
|
|
for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
|
|
PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
|
|
|
|
// Now fix up users of the instructions in OrigHeader, inserting PHI nodes
|
|
// as necessary.
|
|
SSAUpdater SSA;
|
|
for (I = OrigHeader->begin(); I != E; ++I) {
|
|
Value *OrigHeaderVal = &*I;
|
|
|
|
// If there are no uses of the value (e.g. because it returns void), there
|
|
// is nothing to rewrite.
|
|
if (OrigHeaderVal->use_empty())
|
|
continue;
|
|
|
|
Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
|
|
|
|
// The value now exits in two versions: the initial value in the preheader
|
|
// and the loop "next" value in the original header.
|
|
SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
|
|
SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
|
|
SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
|
|
|
|
// Visit each use of the OrigHeader instruction.
|
|
for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
|
|
UE = OrigHeaderVal->use_end(); UI != UE; ) {
|
|
// Grab the use before incrementing the iterator.
|
|
Use &U = *UI;
|
|
|
|
// Increment the iterator before removing the use from the list.
|
|
++UI;
|
|
|
|
// SSAUpdater can't handle a non-PHI use in the same block as an
|
|
// earlier def. We can easily handle those cases manually.
|
|
Instruction *UserInst = cast<Instruction>(U.getUser());
|
|
if (!isa<PHINode>(UserInst)) {
|
|
BasicBlock *UserBB = UserInst->getParent();
|
|
|
|
// The original users in the OrigHeader are already using the
|
|
// original definitions.
|
|
if (UserBB == OrigHeader)
|
|
continue;
|
|
|
|
// Users in the OrigPreHeader need to use the value to which the
|
|
// original definitions are mapped.
|
|
if (UserBB == OrigPreheader) {
|
|
U = OrigPreHeaderVal;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Anything else can be handled by SSAUpdater.
|
|
SSA.RewriteUse(U);
|
|
}
|
|
|
|
// Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
|
|
// intrinsics.
|
|
LLVMContext &C = OrigHeader->getContext();
|
|
if (auto *VAM = ValueAsMetadata::getIfExists(OrigHeaderVal)) {
|
|
if (auto *MAV = MetadataAsValue::getIfExists(C, VAM)) {
|
|
for (auto UI = MAV->use_begin(), E = MAV->use_end(); UI != E; ) {
|
|
// Grab the use before incrementing the iterator. Otherwise, altering
|
|
// the Use will invalidate the iterator.
|
|
Use &U = *UI++;
|
|
DbgInfoIntrinsic *UserInst = dyn_cast<DbgInfoIntrinsic>(U.getUser());
|
|
if (!UserInst) continue;
|
|
|
|
// The original users in the OrigHeader are already using the original
|
|
// definitions.
|
|
BasicBlock *UserBB = UserInst->getParent();
|
|
if (UserBB == OrigHeader)
|
|
continue;
|
|
|
|
// Users in the OrigPreHeader need to use the value to which the
|
|
// original definitions are mapped and anything else can be handled by
|
|
// the SSAUpdater. To avoid adding PHINodes, check if the value is
|
|
// available in UserBB, if not substitute undef.
|
|
Value *NewVal;
|
|
if (UserBB == OrigPreheader)
|
|
NewVal = OrigPreHeaderVal;
|
|
else if (SSA.HasValueForBlock(UserBB))
|
|
NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
|
|
else
|
|
NewVal = UndefValue::get(OrigHeaderVal->getType());
|
|
U = MetadataAsValue::get(C, ValueAsMetadata::get(NewVal));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Rotate loop LP. Return true if the loop is rotated.
|
|
///
|
|
/// \param SimplifiedLatch is true if the latch was just folded into the final
|
|
/// loop exit. In this case we may want to rotate even though the new latch is
|
|
/// now an exiting branch. This rotation would have happened had the latch not
|
|
/// been simplified. However, if SimplifiedLatch is false, then we avoid
|
|
/// rotating loops in which the latch exits to avoid excessive or endless
|
|
/// rotation. LoopRotate should be repeatable and converge to a canonical
|
|
/// form. This property is satisfied because simplifying the loop latch can only
|
|
/// happen once across multiple invocations of the LoopRotate pass.
|
|
static bool rotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI,
|
|
const TargetTransformInfo *TTI, AssumptionCache *AC,
|
|
DominatorTree *DT, ScalarEvolution *SE,
|
|
bool SimplifiedLatch) {
|
|
// If the loop has only one block then there is not much to rotate.
|
|
if (L->getBlocks().size() == 1)
|
|
return false;
|
|
|
|
BasicBlock *OrigHeader = L->getHeader();
|
|
BasicBlock *OrigLatch = L->getLoopLatch();
|
|
|
|
BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
|
|
if (!BI || BI->isUnconditional())
|
|
return false;
|
|
|
|
// If the loop header is not one of the loop exiting blocks then
|
|
// either this loop is already rotated or it is not
|
|
// suitable for loop rotation transformations.
|
|
if (!L->isLoopExiting(OrigHeader))
|
|
return false;
|
|
|
|
// If the loop latch already contains a branch that leaves the loop then the
|
|
// loop is already rotated.
|
|
if (!OrigLatch)
|
|
return false;
|
|
|
|
// Rotate if either the loop latch does *not* exit the loop, or if the loop
|
|
// latch was just simplified.
|
|
if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
|
|
return false;
|
|
|
|
// Check size of original header and reject loop if it is very big or we can't
|
|
// duplicate blocks inside it.
|
|
{
|
|
SmallPtrSet<const Value *, 32> EphValues;
|
|
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
|
|
|
|
CodeMetrics Metrics;
|
|
Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
|
|
if (Metrics.notDuplicatable) {
|
|
DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
|
|
<< " instructions: "; L->dump());
|
|
return false;
|
|
}
|
|
if (Metrics.convergent) {
|
|
DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
|
|
"instructions: "; L->dump());
|
|
return false;
|
|
}
|
|
if (Metrics.NumInsts > MaxHeaderSize)
|
|
return false;
|
|
}
|
|
|
|
// Now, this loop is suitable for rotation.
|
|
BasicBlock *OrigPreheader = L->getLoopPreheader();
|
|
|
|
// If the loop could not be converted to canonical form, it must have an
|
|
// indirectbr in it, just give up.
|
|
if (!OrigPreheader)
|
|
return false;
|
|
|
|
// Anything ScalarEvolution may know about this loop or the PHI nodes
|
|
// in its header will soon be invalidated.
|
|
if (SE)
|
|
SE->forgetLoop(L);
|
|
|
|
DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
|
|
|
|
// Find new Loop header. NewHeader is a Header's one and only successor
|
|
// that is inside loop. Header's other successor is outside the
|
|
// loop. Otherwise loop is not suitable for rotation.
|
|
BasicBlock *Exit = BI->getSuccessor(0);
|
|
BasicBlock *NewHeader = BI->getSuccessor(1);
|
|
if (L->contains(Exit))
|
|
std::swap(Exit, NewHeader);
|
|
assert(NewHeader && "Unable to determine new loop header");
|
|
assert(L->contains(NewHeader) && !L->contains(Exit) &&
|
|
"Unable to determine loop header and exit blocks");
|
|
|
|
// This code assumes that the new header has exactly one predecessor.
|
|
// Remove any single-entry PHI nodes in it.
|
|
assert(NewHeader->getSinglePredecessor() &&
|
|
"New header doesn't have one pred!");
|
|
FoldSingleEntryPHINodes(NewHeader);
|
|
|
|
// Begin by walking OrigHeader and populating ValueMap with an entry for
|
|
// each Instruction.
|
|
BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
|
|
ValueToValueMapTy ValueMap;
|
|
|
|
// For PHI nodes, the value available in OldPreHeader is just the
|
|
// incoming value from OldPreHeader.
|
|
for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
|
|
ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
|
|
|
|
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
|
|
|
|
// For the rest of the instructions, either hoist to the OrigPreheader if
|
|
// possible or create a clone in the OldPreHeader if not.
|
|
TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
|
|
while (I != E) {
|
|
Instruction *Inst = &*I++;
|
|
|
|
// If the instruction's operands are invariant and it doesn't read or write
|
|
// memory, then it is safe to hoist. Doing this doesn't change the order of
|
|
// execution in the preheader, but does prevent the instruction from
|
|
// executing in each iteration of the loop. This means it is safe to hoist
|
|
// something that might trap, but isn't safe to hoist something that reads
|
|
// memory (without proving that the loop doesn't write).
|
|
if (L->hasLoopInvariantOperands(Inst) &&
|
|
!Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
|
|
!isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
|
|
!isa<AllocaInst>(Inst)) {
|
|
Inst->moveBefore(LoopEntryBranch);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, create a duplicate of the instruction.
|
|
Instruction *C = Inst->clone();
|
|
|
|
// Eagerly remap the operands of the instruction.
|
|
RemapInstruction(C, ValueMap,
|
|
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
|
|
|
|
// With the operands remapped, see if the instruction constant folds or is
|
|
// otherwise simplifyable. This commonly occurs because the entry from PHI
|
|
// nodes allows icmps and other instructions to fold.
|
|
// FIXME: Provide TLI, DT, AC to SimplifyInstruction.
|
|
Value *V = SimplifyInstruction(C, DL);
|
|
if (V && LI->replacementPreservesLCSSAForm(C, V)) {
|
|
// If so, then delete the temporary instruction and stick the folded value
|
|
// in the map.
|
|
delete C;
|
|
ValueMap[Inst] = V;
|
|
} else {
|
|
// Otherwise, stick the new instruction into the new block!
|
|
C->setName(Inst->getName());
|
|
C->insertBefore(LoopEntryBranch);
|
|
ValueMap[Inst] = C;
|
|
}
|
|
}
|
|
|
|
// Along with all the other instructions, we just cloned OrigHeader's
|
|
// terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
|
|
// successors by duplicating their incoming values for OrigHeader.
|
|
TerminatorInst *TI = OrigHeader->getTerminator();
|
|
for (BasicBlock *SuccBB : TI->successors())
|
|
for (BasicBlock::iterator BI = SuccBB->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
|
|
PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
|
|
|
|
// Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
|
|
// OrigPreHeader's old terminator (the original branch into the loop), and
|
|
// remove the corresponding incoming values from the PHI nodes in OrigHeader.
|
|
LoopEntryBranch->eraseFromParent();
|
|
|
|
// If there were any uses of instructions in the duplicated block outside the
|
|
// loop, update them, inserting PHI nodes as required
|
|
RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
|
|
|
|
// NewHeader is now the header of the loop.
|
|
L->moveToHeader(NewHeader);
|
|
assert(L->getHeader() == NewHeader && "Latch block is our new header");
|
|
|
|
|
|
// At this point, we've finished our major CFG changes. As part of cloning
|
|
// the loop into the preheader we've simplified instructions and the
|
|
// duplicated conditional branch may now be branching on a constant. If it is
|
|
// branching on a constant and if that constant means that we enter the loop,
|
|
// then we fold away the cond branch to an uncond branch. This simplifies the
|
|
// loop in cases important for nested loops, and it also means we don't have
|
|
// to split as many edges.
|
|
BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
|
|
assert(PHBI->isConditional() && "Should be clone of BI condbr!");
|
|
if (!isa<ConstantInt>(PHBI->getCondition()) ||
|
|
PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
|
|
!= NewHeader) {
|
|
// The conditional branch can't be folded, handle the general case.
|
|
// Update DominatorTree to reflect the CFG change we just made. Then split
|
|
// edges as necessary to preserve LoopSimplify form.
|
|
if (DT) {
|
|
// Everything that was dominated by the old loop header is now dominated
|
|
// by the original loop preheader. Conceptually the header was merged
|
|
// into the preheader, even though we reuse the actual block as a new
|
|
// loop latch.
|
|
DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
|
|
SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
|
|
OrigHeaderNode->end());
|
|
DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
|
|
for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
|
|
DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
|
|
|
|
assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
|
|
assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
|
|
|
|
// Update OrigHeader to be dominated by the new header block.
|
|
DT->changeImmediateDominator(OrigHeader, OrigLatch);
|
|
}
|
|
|
|
// Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
|
|
// thus is not a preheader anymore.
|
|
// Split the edge to form a real preheader.
|
|
BasicBlock *NewPH = SplitCriticalEdge(
|
|
OrigPreheader, NewHeader,
|
|
CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
|
|
NewPH->setName(NewHeader->getName() + ".lr.ph");
|
|
|
|
// Preserve canonical loop form, which means that 'Exit' should have only
|
|
// one predecessor. Note that Exit could be an exit block for multiple
|
|
// nested loops, causing both of the edges to now be critical and need to
|
|
// be split.
|
|
SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
|
|
bool SplitLatchEdge = false;
|
|
for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(),
|
|
PE = ExitPreds.end();
|
|
PI != PE; ++PI) {
|
|
// We only need to split loop exit edges.
|
|
Loop *PredLoop = LI->getLoopFor(*PI);
|
|
if (!PredLoop || PredLoop->contains(Exit))
|
|
continue;
|
|
if (isa<IndirectBrInst>((*PI)->getTerminator()))
|
|
continue;
|
|
SplitLatchEdge |= L->getLoopLatch() == *PI;
|
|
BasicBlock *ExitSplit = SplitCriticalEdge(
|
|
*PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
|
|
ExitSplit->moveBefore(Exit);
|
|
}
|
|
assert(SplitLatchEdge &&
|
|
"Despite splitting all preds, failed to split latch exit?");
|
|
} else {
|
|
// We can fold the conditional branch in the preheader, this makes things
|
|
// simpler. The first step is to remove the extra edge to the Exit block.
|
|
Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
|
|
BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
|
|
NewBI->setDebugLoc(PHBI->getDebugLoc());
|
|
PHBI->eraseFromParent();
|
|
|
|
// With our CFG finalized, update DomTree if it is available.
|
|
if (DT) {
|
|
// Update OrigHeader to be dominated by the new header block.
|
|
DT->changeImmediateDominator(NewHeader, OrigPreheader);
|
|
DT->changeImmediateDominator(OrigHeader, OrigLatch);
|
|
|
|
// Brute force incremental dominator tree update. Call
|
|
// findNearestCommonDominator on all CFG predecessors of each child of the
|
|
// original header.
|
|
DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
|
|
SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
|
|
OrigHeaderNode->end());
|
|
bool Changed;
|
|
do {
|
|
Changed = false;
|
|
for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
|
|
DomTreeNode *Node = HeaderChildren[I];
|
|
BasicBlock *BB = Node->getBlock();
|
|
|
|
pred_iterator PI = pred_begin(BB);
|
|
BasicBlock *NearestDom = *PI;
|
|
for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
|
|
NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
|
|
|
|
// Remember if this changes the DomTree.
|
|
if (Node->getIDom()->getBlock() != NearestDom) {
|
|
DT->changeImmediateDominator(BB, NearestDom);
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
// If the dominator changed, this may have an effect on other
|
|
// predecessors, continue until we reach a fixpoint.
|
|
} while (Changed);
|
|
}
|
|
}
|
|
|
|
assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
|
|
assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
|
|
|
|
// Now that the CFG and DomTree are in a consistent state again, try to merge
|
|
// the OrigHeader block into OrigLatch. This will succeed if they are
|
|
// connected by an unconditional branch. This is just a cleanup so the
|
|
// emitted code isn't too gross in this common case.
|
|
MergeBlockIntoPredecessor(OrigHeader, DT, LI);
|
|
|
|
DEBUG(dbgs() << "LoopRotation: into "; L->dump());
|
|
|
|
++NumRotated;
|
|
return true;
|
|
}
|
|
|
|
/// Determine whether the instructions in this range may be safely and cheaply
|
|
/// speculated. This is not an important enough situation to develop complex
|
|
/// heuristics. We handle a single arithmetic instruction along with any type
|
|
/// conversions.
|
|
static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
|
|
BasicBlock::iterator End, Loop *L) {
|
|
bool seenIncrement = false;
|
|
bool MultiExitLoop = false;
|
|
|
|
if (!L->getExitingBlock())
|
|
MultiExitLoop = true;
|
|
|
|
for (BasicBlock::iterator I = Begin; I != End; ++I) {
|
|
|
|
if (!isSafeToSpeculativelyExecute(&*I))
|
|
return false;
|
|
|
|
if (isa<DbgInfoIntrinsic>(I))
|
|
continue;
|
|
|
|
switch (I->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case Instruction::GetElementPtr:
|
|
// GEPs are cheap if all indices are constant.
|
|
if (!cast<GEPOperator>(I)->hasAllConstantIndices())
|
|
return false;
|
|
// fall-thru to increment case
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr: {
|
|
Value *IVOpnd = !isa<Constant>(I->getOperand(0))
|
|
? I->getOperand(0)
|
|
: !isa<Constant>(I->getOperand(1))
|
|
? I->getOperand(1)
|
|
: nullptr;
|
|
if (!IVOpnd)
|
|
return false;
|
|
|
|
// If increment operand is used outside of the loop, this speculation
|
|
// could cause extra live range interference.
|
|
if (MultiExitLoop) {
|
|
for (User *UseI : IVOpnd->users()) {
|
|
auto *UserInst = cast<Instruction>(UseI);
|
|
if (!L->contains(UserInst))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (seenIncrement)
|
|
return false;
|
|
seenIncrement = true;
|
|
break;
|
|
}
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
// ignore type conversions
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Fold the loop tail into the loop exit by speculating the loop tail
|
|
/// instructions. Typically, this is a single post-increment. In the case of a
|
|
/// simple 2-block loop, hoisting the increment can be much better than
|
|
/// duplicating the entire loop header. In the case of loops with early exits,
|
|
/// rotation will not work anyway, but simplifyLoopLatch will put the loop in
|
|
/// canonical form so downstream passes can handle it.
|
|
///
|
|
/// I don't believe this invalidates SCEV.
|
|
static bool simplifyLoopLatch(Loop *L, LoopInfo *LI, DominatorTree *DT) {
|
|
BasicBlock *Latch = L->getLoopLatch();
|
|
if (!Latch || Latch->hasAddressTaken())
|
|
return false;
|
|
|
|
BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
|
|
if (!Jmp || !Jmp->isUnconditional())
|
|
return false;
|
|
|
|
BasicBlock *LastExit = Latch->getSinglePredecessor();
|
|
if (!LastExit || !L->isLoopExiting(LastExit))
|
|
return false;
|
|
|
|
BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
|
|
if (!BI)
|
|
return false;
|
|
|
|
if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
|
|
<< LastExit->getName() << "\n");
|
|
|
|
// Hoist the instructions from Latch into LastExit.
|
|
LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(),
|
|
Latch->begin(), Jmp->getIterator());
|
|
|
|
unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
|
|
BasicBlock *Header = Jmp->getSuccessor(0);
|
|
assert(Header == L->getHeader() && "expected a backward branch");
|
|
|
|
// Remove Latch from the CFG so that LastExit becomes the new Latch.
|
|
BI->setSuccessor(FallThruPath, Header);
|
|
Latch->replaceSuccessorsPhiUsesWith(LastExit);
|
|
Jmp->eraseFromParent();
|
|
|
|
// Nuke the Latch block.
|
|
assert(Latch->empty() && "unable to evacuate Latch");
|
|
LI->removeBlock(Latch);
|
|
if (DT)
|
|
DT->eraseNode(Latch);
|
|
Latch->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// Rotate \c L as many times as possible. Return true if the loop is rotated
|
|
/// at least once.
|
|
static bool iterativelyRotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI,
|
|
const TargetTransformInfo *TTI,
|
|
AssumptionCache *AC, DominatorTree *DT,
|
|
ScalarEvolution *SE) {
|
|
// Save the loop metadata.
|
|
MDNode *LoopMD = L->getLoopID();
|
|
|
|
// Simplify the loop latch before attempting to rotate the header
|
|
// upward. Rotation may not be needed if the loop tail can be folded into the
|
|
// loop exit.
|
|
bool SimplifiedLatch = simplifyLoopLatch(L, LI, DT);
|
|
|
|
// One loop can be rotated multiple times.
|
|
bool MadeChange = false;
|
|
while (rotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE, SimplifiedLatch)) {
|
|
MadeChange = true;
|
|
SimplifiedLatch = false;
|
|
}
|
|
|
|
// Restore the loop metadata.
|
|
// NB! We presume LoopRotation DOESN'T ADD its own metadata.
|
|
if ((MadeChange || SimplifiedLatch) && LoopMD)
|
|
L->setLoopID(LoopMD);
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
LoopRotatePass::LoopRotatePass() : MaxHeaderSize(DefaultRotationThreshold) {}
|
|
|
|
PreservedAnalyses LoopRotatePass::run(Loop &L, AnalysisManager<Loop> &AM) {
|
|
auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
|
|
Function *F = L.getHeader()->getParent();
|
|
|
|
auto *LI = FAM.getCachedResult<LoopAnalysis>(*F);
|
|
const auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F);
|
|
auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F);
|
|
assert((LI && TTI && AC) && "Analyses for loop rotation not available");
|
|
|
|
// Optional analyses.
|
|
auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F);
|
|
auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
|
|
|
|
bool Changed = iterativelyRotateLoop(&L, MaxHeaderSize, LI, TTI, AC, DT, SE);
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
return getLoopPassPreservedAnalyses();
|
|
}
|
|
|
|
namespace {
|
|
|
|
class LoopRotateLegacyPass : public LoopPass {
|
|
unsigned MaxHeaderSize;
|
|
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
LoopRotateLegacyPass(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
|
|
initializeLoopRotateLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
if (SpecifiedMaxHeaderSize == -1)
|
|
MaxHeaderSize = DefaultRotationThreshold;
|
|
else
|
|
MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
|
|
}
|
|
|
|
// LCSSA form makes instruction renaming easier.
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
getLoopAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
|
|
if (skipLoop(L))
|
|
return false;
|
|
Function &F = *L->getHeader()->getParent();
|
|
|
|
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
|
|
auto *SE = SEWP ? &SEWP->getSE() : nullptr;
|
|
|
|
return iterativelyRotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE);
|
|
}
|
|
};
|
|
}
|
|
|
|
char LoopRotateLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops",
|
|
false, false)
|
|
|
|
Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
|
|
return new LoopRotateLegacyPass(MaxHeaderSize);
|
|
}
|