llvm-project/clang/lib/CodeGen/CGExprComplex.cpp

1096 lines
41 KiB
C++

//===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes with complex types as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/StmtVisitor.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include <algorithm>
using namespace clang;
using namespace CodeGen;
//===----------------------------------------------------------------------===//
// Complex Expression Emitter
//===----------------------------------------------------------------------===//
typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
/// Return the complex type that we are meant to emit.
static const ComplexType *getComplexType(QualType type) {
type = type.getCanonicalType();
if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
return comp;
} else {
return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
}
}
namespace {
class ComplexExprEmitter
: public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
CodeGenFunction &CGF;
CGBuilderTy &Builder;
bool IgnoreReal;
bool IgnoreImag;
public:
ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
: CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
}
//===--------------------------------------------------------------------===//
// Utilities
//===--------------------------------------------------------------------===//
bool TestAndClearIgnoreReal() {
bool I = IgnoreReal;
IgnoreReal = false;
return I;
}
bool TestAndClearIgnoreImag() {
bool I = IgnoreImag;
IgnoreImag = false;
return I;
}
/// EmitLoadOfLValue - Given an expression with complex type that represents a
/// value l-value, this method emits the address of the l-value, then loads
/// and returns the result.
ComplexPairTy EmitLoadOfLValue(const Expr *E) {
return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
}
ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
/// EmitStoreOfComplex - Store the specified real/imag parts into the
/// specified value pointer.
void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
/// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType.
ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
QualType DestType);
/// EmitComplexToComplexCast - Emit a cast from scalar value Val to DestType.
ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
QualType DestType);
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
ComplexPairTy Visit(Expr *E) {
return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
}
ComplexPairTy VisitStmt(Stmt *S) {
S->dump(CGF.getContext().getSourceManager());
llvm_unreachable("Stmt can't have complex result type!");
}
ComplexPairTy VisitExpr(Expr *S);
ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
return Visit(GE->getResultExpr());
}
ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
ComplexPairTy
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
return Visit(PE->getReplacement());
}
// l-values.
ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
if (result.isReference())
return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
E->getExprLoc());
llvm::Constant *pair = result.getValue();
return ComplexPairTy(pair->getAggregateElement(0U),
pair->getAggregateElement(1U));
}
return EmitLoadOfLValue(E);
}
ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
return EmitLoadOfLValue(E);
}
ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
return CGF.EmitObjCMessageExpr(E).getComplexVal();
}
ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); }
ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
if (E->isGLValue())
return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
return CGF.getOpaqueRValueMapping(E).getComplexVal();
}
ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
return CGF.EmitPseudoObjectRValue(E).getComplexVal();
}
// FIXME: CompoundLiteralExpr
ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
// Unlike for scalars, we don't have to worry about function->ptr demotion
// here.
return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
}
ComplexPairTy VisitCastExpr(CastExpr *E) {
return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
}
ComplexPairTy VisitCallExpr(const CallExpr *E);
ComplexPairTy VisitStmtExpr(const StmtExpr *E);
// Operators.
ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
bool isInc, bool isPre) {
LValue LV = CGF.EmitLValue(E->getSubExpr());
return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
}
ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
return VisitPrePostIncDec(E, false, false);
}
ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
return VisitPrePostIncDec(E, true, false);
}
ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
return VisitPrePostIncDec(E, false, true);
}
ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
return VisitPrePostIncDec(E, true, true);
}
ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) {
TestAndClearIgnoreReal();
TestAndClearIgnoreImag();
return Visit(E->getSubExpr());
}
ComplexPairTy VisitUnaryMinus (const UnaryOperator *E);
ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
// LNot,Real,Imag never return complex.
ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
return Visit(E->getSubExpr());
}
ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
return Visit(DAE->getExpr());
}
ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
return Visit(DIE->getExpr());
}
ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
CGF.enterFullExpression(E);
CodeGenFunction::RunCleanupsScope Scope(CGF);
return Visit(E->getSubExpr());
}
ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
assert(E->getType()->isAnyComplexType() && "Expected complex type!");
QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
return ComplexPairTy(Null, Null);
}
ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
assert(E->getType()->isAnyComplexType() && "Expected complex type!");
QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
llvm::Constant *Null =
llvm::Constant::getNullValue(CGF.ConvertType(Elem));
return ComplexPairTy(Null, Null);
}
struct BinOpInfo {
ComplexPairTy LHS;
ComplexPairTy RHS;
QualType Ty; // Computation Type.
};
BinOpInfo EmitBinOps(const BinaryOperator *E);
LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
ComplexPairTy (ComplexExprEmitter::*Func)
(const BinOpInfo &),
RValue &Val);
ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
ComplexPairTy (ComplexExprEmitter::*Func)
(const BinOpInfo &));
ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
ComplexPairTy EmitBinSub(const BinOpInfo &Op);
ComplexPairTy EmitBinMul(const BinOpInfo &Op);
ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
const BinOpInfo &Op);
ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
return EmitBinAdd(EmitBinOps(E));
}
ComplexPairTy VisitBinSub(const BinaryOperator *E) {
return EmitBinSub(EmitBinOps(E));
}
ComplexPairTy VisitBinMul(const BinaryOperator *E) {
return EmitBinMul(EmitBinOps(E));
}
ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
return EmitBinDiv(EmitBinOps(E));
}
// Compound assignments.
ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
}
ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
}
ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
}
ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
}
// GCC rejects rem/and/or/xor for integer complex.
// Logical and/or always return int, never complex.
// No comparisons produce a complex result.
LValue EmitBinAssignLValue(const BinaryOperator *E,
ComplexPairTy &Val);
ComplexPairTy VisitBinAssign (const BinaryOperator *E);
ComplexPairTy VisitBinComma (const BinaryOperator *E);
ComplexPairTy
VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
ComplexPairTy VisitInitListExpr(InitListExpr *E);
ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
return EmitLoadOfLValue(E);
}
ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
return CGF.EmitAtomicExpr(E).getComplexVal();
}
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
/// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
/// load the real and imaginary pieces, returning them as Real/Imag.
ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
SourceLocation loc) {
assert(lvalue.isSimple() && "non-simple complex l-value?");
if (lvalue.getType()->isAtomicType())
return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
llvm::Value *SrcPtr = lvalue.getAddress();
bool isVolatile = lvalue.isVolatileQualified();
unsigned AlignR = lvalue.getAlignment().getQuantity();
ASTContext &C = CGF.getContext();
QualType ComplexTy = lvalue.getType();
unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity();
unsigned AlignI = std::min(AlignR, ComplexAlign);
llvm::Value *Real=nullptr, *Imag=nullptr;
if (!IgnoreReal || isVolatile) {
llvm::Value *RealP = Builder.CreateStructGEP(SrcPtr, 0,
SrcPtr->getName() + ".realp");
Real = Builder.CreateAlignedLoad(RealP, AlignR, isVolatile,
SrcPtr->getName() + ".real");
}
if (!IgnoreImag || isVolatile) {
llvm::Value *ImagP = Builder.CreateStructGEP(SrcPtr, 1,
SrcPtr->getName() + ".imagp");
Imag = Builder.CreateAlignedLoad(ImagP, AlignI, isVolatile,
SrcPtr->getName() + ".imag");
}
return ComplexPairTy(Real, Imag);
}
/// EmitStoreOfComplex - Store the specified real/imag parts into the
/// specified value pointer.
void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
bool isInit) {
if (lvalue.getType()->isAtomicType())
return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
llvm::Value *Ptr = lvalue.getAddress();
llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, "real");
llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, "imag");
unsigned AlignR = lvalue.getAlignment().getQuantity();
ASTContext &C = CGF.getContext();
QualType ComplexTy = lvalue.getType();
unsigned ComplexAlign = C.getTypeAlignInChars(ComplexTy).getQuantity();
unsigned AlignI = std::min(AlignR, ComplexAlign);
Builder.CreateAlignedStore(Val.first, RealPtr, AlignR,
lvalue.isVolatileQualified());
Builder.CreateAlignedStore(Val.second, ImagPtr, AlignI,
lvalue.isVolatileQualified());
}
//===----------------------------------------------------------------------===//
// Visitor Methods
//===----------------------------------------------------------------------===//
ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
CGF.ErrorUnsupported(E, "complex expression");
llvm::Type *EltTy =
CGF.ConvertType(getComplexType(E->getType())->getElementType());
llvm::Value *U = llvm::UndefValue::get(EltTy);
return ComplexPairTy(U, U);
}
ComplexPairTy ComplexExprEmitter::
VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
}
ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
if (E->getCallReturnType()->isReferenceType())
return EmitLoadOfLValue(E);
return CGF.EmitCallExpr(E).getComplexVal();
}
ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
CodeGenFunction::StmtExprEvaluation eval(CGF);
llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
assert(RetAlloca && "Expected complex return value");
return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
E->getExprLoc());
}
/// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType.
ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
QualType SrcType,
QualType DestType) {
// Get the src/dest element type.
SrcType = SrcType->castAs<ComplexType>()->getElementType();
DestType = DestType->castAs<ComplexType>()->getElementType();
// C99 6.3.1.6: When a value of complex type is converted to another
// complex type, both the real and imaginary parts follow the conversion
// rules for the corresponding real types.
Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType);
Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType);
return Val;
}
ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
QualType SrcType,
QualType DestType) {
// Convert the input element to the element type of the complex.
DestType = DestType->castAs<ComplexType>()->getElementType();
Val = CGF.EmitScalarConversion(Val, SrcType, DestType);
// Return (realval, 0).
return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
}
ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
QualType DestTy) {
switch (CK) {
case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
// Atomic to non-atomic casts may be more than a no-op for some platforms and
// for some types.
case CK_AtomicToNonAtomic:
case CK_NonAtomicToAtomic:
case CK_NoOp:
case CK_LValueToRValue:
case CK_UserDefinedConversion:
return Visit(Op);
case CK_LValueBitCast: {
LValue origLV = CGF.EmitLValue(Op);
llvm::Value *V = origLV.getAddress();
V = Builder.CreateBitCast(V,
CGF.ConvertType(CGF.getContext().getPointerType(DestTy)));
return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy,
origLV.getAlignment()),
Op->getExprLoc());
}
case CK_BitCast:
case CK_BaseToDerived:
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase:
case CK_Dynamic:
case CK_ToUnion:
case CK_ArrayToPointerDecay:
case CK_FunctionToPointerDecay:
case CK_NullToPointer:
case CK_NullToMemberPointer:
case CK_BaseToDerivedMemberPointer:
case CK_DerivedToBaseMemberPointer:
case CK_MemberPointerToBoolean:
case CK_ReinterpretMemberPointer:
case CK_ConstructorConversion:
case CK_IntegralToPointer:
case CK_PointerToIntegral:
case CK_PointerToBoolean:
case CK_ToVoid:
case CK_VectorSplat:
case CK_IntegralCast:
case CK_IntegralToBoolean:
case CK_IntegralToFloating:
case CK_FloatingToIntegral:
case CK_FloatingToBoolean:
case CK_FloatingCast:
case CK_CPointerToObjCPointerCast:
case CK_BlockPointerToObjCPointerCast:
case CK_AnyPointerToBlockPointerCast:
case CK_ObjCObjectLValueCast:
case CK_FloatingComplexToReal:
case CK_FloatingComplexToBoolean:
case CK_IntegralComplexToReal:
case CK_IntegralComplexToBoolean:
case CK_ARCProduceObject:
case CK_ARCConsumeObject:
case CK_ARCReclaimReturnedObject:
case CK_ARCExtendBlockObject:
case CK_CopyAndAutoreleaseBlockObject:
case CK_BuiltinFnToFnPtr:
case CK_ZeroToOCLEvent:
case CK_AddressSpaceConversion:
llvm_unreachable("invalid cast kind for complex value");
case CK_FloatingRealToComplex:
case CK_IntegralRealToComplex:
return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op),
Op->getType(), DestTy);
case CK_FloatingComplexCast:
case CK_FloatingComplexToIntegralComplex:
case CK_IntegralComplexCast:
case CK_IntegralComplexToFloatingComplex:
return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy);
}
llvm_unreachable("unknown cast resulting in complex value");
}
ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
TestAndClearIgnoreReal();
TestAndClearIgnoreImag();
ComplexPairTy Op = Visit(E->getSubExpr());
llvm::Value *ResR, *ResI;
if (Op.first->getType()->isFloatingPointTy()) {
ResR = Builder.CreateFNeg(Op.first, "neg.r");
ResI = Builder.CreateFNeg(Op.second, "neg.i");
} else {
ResR = Builder.CreateNeg(Op.first, "neg.r");
ResI = Builder.CreateNeg(Op.second, "neg.i");
}
return ComplexPairTy(ResR, ResI);
}
ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
TestAndClearIgnoreReal();
TestAndClearIgnoreImag();
// ~(a+ib) = a + i*-b
ComplexPairTy Op = Visit(E->getSubExpr());
llvm::Value *ResI;
if (Op.second->getType()->isFloatingPointTy())
ResI = Builder.CreateFNeg(Op.second, "conj.i");
else
ResI = Builder.CreateNeg(Op.second, "conj.i");
return ComplexPairTy(Op.first, ResI);
}
ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
llvm::Value *ResR, *ResI;
if (Op.LHS.first->getType()->isFloatingPointTy()) {
ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
if (Op.LHS.second && Op.RHS.second)
ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
else
ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
assert(ResI && "Only one operand may be real!");
} else {
ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
assert(Op.LHS.second && Op.RHS.second &&
"Both operands of integer complex operators must be complex!");
ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
}
return ComplexPairTy(ResR, ResI);
}
ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
llvm::Value *ResR, *ResI;
if (Op.LHS.first->getType()->isFloatingPointTy()) {
ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
if (Op.LHS.second && Op.RHS.second)
ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
else
ResI = Op.LHS.second ? Op.LHS.second
: Builder.CreateFNeg(Op.RHS.second, "sub.i");
assert(ResI && "Only one operand may be real!");
} else {
ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
assert(Op.LHS.second && Op.RHS.second &&
"Both operands of integer complex operators must be complex!");
ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
}
return ComplexPairTy(ResR, ResI);
}
/// \brief Emit a libcall for a binary operation on complex types.
ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
const BinOpInfo &Op) {
CallArgList Args;
Args.add(RValue::get(Op.LHS.first),
Op.Ty->castAs<ComplexType>()->getElementType());
Args.add(RValue::get(Op.LHS.second),
Op.Ty->castAs<ComplexType>()->getElementType());
Args.add(RValue::get(Op.RHS.first),
Op.Ty->castAs<ComplexType>()->getElementType());
Args.add(RValue::get(Op.RHS.second),
Op.Ty->castAs<ComplexType>()->getElementType());
// We *must* use the full CG function call building logic here because the
// complex type has special ABI handling. We also should not forget about
// special calling convention which may be used for compiler builtins.
const CGFunctionInfo &FuncInfo =
CGF.CGM.getTypes().arrangeFreeFunctionCall(
Op.Ty, Args, FunctionType::ExtInfo(/* No CC here - will be added later */),
RequiredArgs::All);
llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName);
llvm::Instruction *Call;
RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args,
nullptr, &Call);
cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC());
cast<llvm::CallInst>(Call)->setDoesNotThrow();
return Res.getComplexVal();
}
/// \brief Lookup the libcall name for a given floating point type complex
/// multiply.
static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
switch (Ty->getTypeID()) {
default:
llvm_unreachable("Unsupported floating point type!");
case llvm::Type::HalfTyID:
return "__mulhc3";
case llvm::Type::FloatTyID:
return "__mulsc3";
case llvm::Type::DoubleTyID:
return "__muldc3";
case llvm::Type::PPC_FP128TyID:
return "__multc3";
case llvm::Type::X86_FP80TyID:
return "__mulxc3";
case llvm::Type::FP128TyID:
return "__multc3";
}
}
// See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
// typed values.
ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
using llvm::Value;
Value *ResR, *ResI;
llvm::MDBuilder MDHelper(CGF.getLLVMContext());
if (Op.LHS.first->getType()->isFloatingPointTy()) {
// The general formulation is:
// (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
//
// But we can fold away components which would be zero due to a real
// operand according to C11 Annex G.5.1p2.
// FIXME: C11 also provides for imaginary types which would allow folding
// still more of this within the type system.
if (Op.LHS.second && Op.RHS.second) {
// If both operands are complex, emit the core math directly, and then
// test for NaNs. If we find NaNs in the result, we delegate to a libcall
// to carefully re-compute the correct infinity representation if
// possible. The expectation is that the presence of NaNs here is
// *extremely* rare, and so the cost of the libcall is almost irrelevant.
// This is good, because the libcall re-computes the core multiplication
// exactly the same as we do here and re-tests for NaNs in order to be
// a generic complex*complex libcall.
// First compute the four products.
Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
// The real part is the difference of the first two, the imaginary part is
// the sum of the second.
ResR = Builder.CreateFSub(AC, BD, "mul_r");
ResI = Builder.CreateFAdd(AD, BC, "mul_i");
// Emit the test for the real part becoming NaN and create a branch to
// handle it. We test for NaN by comparing the number to itself.
Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
llvm::BasicBlock *OrigBB = Branch->getParent();
// Give hint that we very much don't expect to see NaNs.
// Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
// Now test the imaginary part and create its branch.
CGF.EmitBlock(INaNBB);
Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
// Now emit the libcall on this slowest of the slow paths.
CGF.EmitBlock(LibCallBB);
Value *LibCallR, *LibCallI;
std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
Builder.CreateBr(ContBB);
// Finally continue execution by phi-ing together the different
// computation paths.
CGF.EmitBlock(ContBB);
llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
RealPHI->addIncoming(ResR, OrigBB);
RealPHI->addIncoming(ResR, INaNBB);
RealPHI->addIncoming(LibCallR, LibCallBB);
llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
ImagPHI->addIncoming(ResI, OrigBB);
ImagPHI->addIncoming(ResI, INaNBB);
ImagPHI->addIncoming(LibCallI, LibCallBB);
return ComplexPairTy(RealPHI, ImagPHI);
}
assert((Op.LHS.second || Op.RHS.second) &&
"At least one operand must be complex!");
// If either of the operands is a real rather than a complex, the
// imaginary component is ignored when computing the real component of the
// result.
ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
ResI = Op.LHS.second
? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
: Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
} else {
assert(Op.LHS.second && Op.RHS.second &&
"Both operands of integer complex operators must be complex!");
Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
}
return ComplexPairTy(ResR, ResI);
}
// See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
// typed values.
ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
llvm::Value *DSTr, *DSTi;
if (LHSr->getType()->isFloatingPointTy()) {
// If we have a complex operand on the RHS, we delegate to a libcall to
// handle all of the complexities and minimize underflow/overflow cases.
//
// FIXME: We would be able to avoid the libcall in many places if we
// supported imaginary types in addition to complex types.
if (RHSi) {
BinOpInfo LibCallOp = Op;
// If LHS was a real, supply a null imaginary part.
if (!LHSi)
LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
StringRef LibCallName;
switch (LHSr->getType()->getTypeID()) {
default:
llvm_unreachable("Unsupported floating point type!");
case llvm::Type::HalfTyID:
return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
case llvm::Type::FloatTyID:
return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
case llvm::Type::DoubleTyID:
return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
case llvm::Type::PPC_FP128TyID:
return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
case llvm::Type::X86_FP80TyID:
return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
case llvm::Type::FP128TyID:
return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
}
}
assert(LHSi && "Can have at most one non-complex operand!");
DSTr = Builder.CreateFDiv(LHSr, RHSr);
DSTi = Builder.CreateFDiv(LHSi, RHSr);
} else {
assert(Op.LHS.second && Op.RHS.second &&
"Both operands of integer complex operators must be complex!");
// (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
} else {
DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
}
}
return ComplexPairTy(DSTr, DSTi);
}
ComplexExprEmitter::BinOpInfo
ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
TestAndClearIgnoreReal();
TestAndClearIgnoreImag();
BinOpInfo Ops;
if (E->getLHS()->getType()->isRealFloatingType())
Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
else
Ops.LHS = Visit(E->getLHS());
if (E->getRHS()->getType()->isRealFloatingType())
Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
else
Ops.RHS = Visit(E->getRHS());
Ops.Ty = E->getType();
return Ops;
}
LValue ComplexExprEmitter::
EmitCompoundAssignLValue(const CompoundAssignOperator *E,
ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
RValue &Val) {
TestAndClearIgnoreReal();
TestAndClearIgnoreImag();
QualType LHSTy = E->getLHS()->getType();
BinOpInfo OpInfo;
// Load the RHS and LHS operands.
// __block variables need to have the rhs evaluated first, plus this should
// improve codegen a little.
OpInfo.Ty = E->getComputationResultType();
QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
// The RHS should have been converted to the computation type.
if (E->getRHS()->getType()->isRealFloatingType()) {
assert(
CGF.getContext()
.hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
} else {
assert(CGF.getContext()
.hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
OpInfo.RHS = Visit(E->getRHS());
}
LValue LHS = CGF.EmitLValue(E->getLHS());
// Load from the l-value and convert it.
if (LHSTy->isAnyComplexType()) {
ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, E->getExprLoc());
OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty);
} else {
llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, E->getExprLoc());
// For floating point real operands we can directly pass the scalar form
// to the binary operator emission and potentially get more efficient code.
if (LHSTy->isRealFloatingType()) {
if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy);
OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
} else {
OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty);
}
}
// Expand the binary operator.
ComplexPairTy Result = (this->*Func)(OpInfo);
// Truncate the result and store it into the LHS lvalue.
if (LHSTy->isAnyComplexType()) {
ComplexPairTy ResVal = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy);
EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
Val = RValue::getComplex(ResVal);
} else {
llvm::Value *ResVal =
CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy);
CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
Val = RValue::get(ResVal);
}
return LHS;
}
// Compound assignments.
ComplexPairTy ComplexExprEmitter::
EmitCompoundAssign(const CompoundAssignOperator *E,
ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
RValue Val;
LValue LV = EmitCompoundAssignLValue(E, Func, Val);
// The result of an assignment in C is the assigned r-value.
if (!CGF.getLangOpts().CPlusPlus)
return Val.getComplexVal();
// If the lvalue is non-volatile, return the computed value of the assignment.
if (!LV.isVolatileQualified())
return Val.getComplexVal();
return EmitLoadOfLValue(LV, E->getExprLoc());
}
LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
ComplexPairTy &Val) {
assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
E->getRHS()->getType()) &&
"Invalid assignment");
TestAndClearIgnoreReal();
TestAndClearIgnoreImag();
// Emit the RHS. __block variables need the RHS evaluated first.
Val = Visit(E->getRHS());
// Compute the address to store into.
LValue LHS = CGF.EmitLValue(E->getLHS());
// Store the result value into the LHS lvalue.
EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
return LHS;
}
ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
ComplexPairTy Val;
LValue LV = EmitBinAssignLValue(E, Val);
// The result of an assignment in C is the assigned r-value.
if (!CGF.getLangOpts().CPlusPlus)
return Val;
// If the lvalue is non-volatile, return the computed value of the assignment.
if (!LV.isVolatileQualified())
return Val;
return EmitLoadOfLValue(LV, E->getExprLoc());
}
ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
CGF.EmitIgnoredExpr(E->getLHS());
return Visit(E->getRHS());
}
ComplexPairTy ComplexExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
TestAndClearIgnoreReal();
TestAndClearIgnoreImag();
llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
// Bind the common expression if necessary.
CodeGenFunction::OpaqueValueMapping binding(CGF, E);
RegionCounter Cnt = CGF.getPGORegionCounter(E);
CodeGenFunction::ConditionalEvaluation eval(CGF);
CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
eval.begin(CGF);
CGF.EmitBlock(LHSBlock);
Cnt.beginRegion(Builder);
ComplexPairTy LHS = Visit(E->getTrueExpr());
LHSBlock = Builder.GetInsertBlock();
CGF.EmitBranch(ContBlock);
eval.end(CGF);
eval.begin(CGF);
CGF.EmitBlock(RHSBlock);
ComplexPairTy RHS = Visit(E->getFalseExpr());
RHSBlock = Builder.GetInsertBlock();
CGF.EmitBlock(ContBlock);
eval.end(CGF);
// Create a PHI node for the real part.
llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
RealPN->addIncoming(LHS.first, LHSBlock);
RealPN->addIncoming(RHS.first, RHSBlock);
// Create a PHI node for the imaginary part.
llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
ImagPN->addIncoming(LHS.second, LHSBlock);
ImagPN->addIncoming(RHS.second, RHSBlock);
return ComplexPairTy(RealPN, ImagPN);
}
ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
return Visit(E->getChosenSubExpr());
}
ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
bool Ignore = TestAndClearIgnoreReal();
(void)Ignore;
assert (Ignore == false && "init list ignored");
Ignore = TestAndClearIgnoreImag();
(void)Ignore;
assert (Ignore == false && "init list ignored");
if (E->getNumInits() == 2) {
llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
return ComplexPairTy(Real, Imag);
} else if (E->getNumInits() == 1) {
return Visit(E->getInit(0));
}
// Empty init list intializes to null
assert(E->getNumInits() == 0 && "Unexpected number of inits");
QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
llvm::Type* LTy = CGF.ConvertType(Ty);
llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
return ComplexPairTy(zeroConstant, zeroConstant);
}
ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
llvm::Value *ArgValue = CGF.EmitVAListRef(E->getSubExpr());
llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, E->getType());
if (!ArgPtr) {
CGF.ErrorUnsupported(E, "complex va_arg expression");
llvm::Type *EltTy =
CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
llvm::Value *U = llvm::UndefValue::get(EltTy);
return ComplexPairTy(U, U);
}
return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(ArgPtr, E->getType()),
E->getExprLoc());
}
//===----------------------------------------------------------------------===//
// Entry Point into this File
//===----------------------------------------------------------------------===//
/// EmitComplexExpr - Emit the computation of the specified expression of
/// complex type, ignoring the result.
ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
bool IgnoreImag) {
assert(E && getComplexType(E->getType()) &&
"Invalid complex expression to emit");
return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
.Visit(const_cast<Expr*>(E));
}
void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
bool isInit) {
assert(E && getComplexType(E->getType()) &&
"Invalid complex expression to emit");
ComplexExprEmitter Emitter(*this);
ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
Emitter.EmitStoreOfComplex(Val, dest, isInit);
}
/// EmitStoreOfComplex - Store a complex number into the specified l-value.
void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
bool isInit) {
ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
}
/// EmitLoadOfComplex - Load a complex number from the specified address.
ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
SourceLocation loc) {
return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
}
LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
assert(E->getOpcode() == BO_Assign);
ComplexPairTy Val; // ignored
return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
}
typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
const ComplexExprEmitter::BinOpInfo &);
static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
switch (Op) {
case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
default:
llvm_unreachable("unexpected complex compound assignment");
}
}
LValue CodeGenFunction::
EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
CompoundFunc Op = getComplexOp(E->getOpcode());
RValue Val;
return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
}
LValue CodeGenFunction::
EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
llvm::Value *&Result) {
CompoundFunc Op = getComplexOp(E->getOpcode());
RValue Val;
LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
Result = Val.getScalarVal();
return Ret;
}