llvm-project/clang-tools-extra/clang-tidy/misc/NoRecursionCheck.cpp

276 lines
10 KiB
C++

//===--- NoRecursionCheck.cpp - clang-tidy --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "NoRecursionCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Analysis/CallGraph.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/SCCIterator.h"
using namespace clang::ast_matchers;
namespace clang {
namespace tidy {
namespace misc {
namespace {
/// Much like SmallSet, with two differences:
/// 1. It can *only* be constructed from an ArrayRef<>. If the element count
/// is small, there is no copy and said storage *must* outlive us.
/// 2. it is immutable, the way it was constructed it will stay.
template <typename T, unsigned SmallSize> class ImmutableSmallSet {
ArrayRef<T> Vector;
llvm::DenseSet<T> Set;
static_assert(SmallSize <= 32, "N should be small");
bool isSmall() const { return Set.empty(); }
public:
using size_type = size_t;
ImmutableSmallSet() = delete;
ImmutableSmallSet(const ImmutableSmallSet &) = delete;
ImmutableSmallSet(ImmutableSmallSet &&) = delete;
T &operator=(const ImmutableSmallSet &) = delete;
T &operator=(ImmutableSmallSet &&) = delete;
// WARNING: Storage *must* outlive us if we decide that the size is small.
ImmutableSmallSet(ArrayRef<T> Storage) {
// Is size small-enough to just keep using the existing storage?
if (Storage.size() <= SmallSize) {
Vector = Storage;
return;
}
// We've decided that it isn't performant to keep using vector.
// Let's migrate the data into Set.
Set.reserve(Storage.size());
Set.insert(Storage.begin(), Storage.end());
}
/// count - Return 1 if the element is in the set, 0 otherwise.
size_type count(const T &V) const {
if (isSmall()) {
// Since the collection is small, just do a linear search.
return llvm::find(Vector, V) == Vector.end() ? 0 : 1;
}
return Set.count(V);
}
};
/// Much like SmallSetVector, but with one difference:
/// when the size is \p SmallSize or less, when checking whether an element is
/// already in the set or not, we perform linear search over the vector,
/// but if the size is larger than \p SmallSize, we look in set.
/// FIXME: upstream this into SetVector/SmallSetVector itself.
template <typename T, unsigned SmallSize> class SmartSmallSetVector {
public:
using size_type = size_t;
private:
SmallVector<T, SmallSize> Vector;
llvm::DenseSet<T> Set;
static_assert(SmallSize <= 32, "N should be small");
// Are we still using Vector for uniqness tracking?
bool isSmall() const { return Set.empty(); }
// Will one more entry cause Vector to switch away from small-size storage?
bool entiretyOfVectorSmallSizeIsOccupied() const {
assert(isSmall() && Vector.size() <= SmallSize &&
"Shouldn't ask if we have already [should have] migrated into Set.");
return Vector.size() == SmallSize;
}
void populateSet() {
assert(Set.empty() && "Should not have already utilized the Set.");
// Magical growth factor prediction - to how many elements do we expect to
// sanely grow after switching away from small-size storage?
const size_t NewMaxElts = 4 * Vector.size();
Vector.reserve(NewMaxElts);
Set.reserve(NewMaxElts);
Set.insert(Vector.begin(), Vector.end());
}
/// count - Return 1 if the element is in the set, 0 otherwise.
size_type count(const T &V) const {
if (isSmall()) {
// Since the collection is small, just do a linear search.
return llvm::find(Vector, V) == Vector.end() ? 0 : 1;
}
// Look-up in the Set.
return Set.count(V);
}
bool setInsert(const T &V) {
if (count(V) != 0)
return false; // Already exists.
// Does not exist, Can/need to record it.
if (isSmall()) { // Are we still using Vector for uniqness tracking?
// Will one more entry fit within small-sized Vector?
if (!entiretyOfVectorSmallSizeIsOccupied())
return true; // We'll insert into vector right afterwards anyway.
// Time to switch to Set.
populateSet();
}
// Set time!
// Note that this must be after `populateSet()` might have been called.
bool SetInsertionSucceeded = Set.insert(V).second;
(void)SetInsertionSucceeded;
assert(SetInsertionSucceeded && "We did check that no such value existed");
return true;
}
public:
/// Insert a new element into the SmartSmallSetVector.
/// \returns true if the element was inserted into the SmartSmallSetVector.
bool insert(const T &X) {
bool Result = setInsert(X);
if (Result)
Vector.push_back(X);
return Result;
}
/// Clear the SmartSmallSetVector and return the underlying vector.
decltype(Vector) takeVector() {
Set.clear();
return std::move(Vector);
}
};
constexpr unsigned SmallCallStackSize = 16;
constexpr unsigned SmallSCCSize = 32;
using CallStackTy =
llvm::SmallVector<CallGraphNode::CallRecord, SmallCallStackSize>;
// In given SCC, find *some* call stack that will be cyclic.
// This will only find *one* such stack, it might not be the smallest one,
// and there may be other loops.
CallStackTy pathfindSomeCycle(ArrayRef<CallGraphNode *> SCC) {
// We'll need to be able to performantly look up whether some CallGraphNode
// is in SCC or not, so cache all the SCC elements in a set.
const ImmutableSmallSet<CallGraphNode *, SmallSCCSize> SCCElts(SCC);
// Is node N part if the current SCC?
auto NodeIsPartOfSCC = [&SCCElts](CallGraphNode *N) {
return SCCElts.count(N) != 0;
};
// Track the call stack that will cause a cycle.
SmartSmallSetVector<CallGraphNode::CallRecord, SmallCallStackSize>
CallStackSet;
// Arbitrarily take the first element of SCC as entry point.
CallGraphNode::CallRecord EntryNode(SCC.front(), /*CallExpr=*/nullptr);
// Continue recursing into subsequent callees that are part of this SCC,
// and are thus known to be part of the call graph loop, until loop forms.
CallGraphNode::CallRecord *Node = &EntryNode;
while (true) {
// Did we see this node before?
if (!CallStackSet.insert(*Node))
break; // Cycle completed! Note that didn't insert the node into stack!
// Else, perform depth-first traversal: out of all callees, pick first one
// that is part of this SCC. This is not guaranteed to yield shortest cycle.
Node = llvm::find_if(Node->Callee->callees(), NodeIsPartOfSCC);
}
// Note that we failed to insert the last node, that completes the cycle.
// But we really want to have it. So insert it manually into stack only.
CallStackTy CallStack = CallStackSet.takeVector();
CallStack.emplace_back(*Node);
return CallStack;
}
} // namespace
void NoRecursionCheck::registerMatchers(MatchFinder *Finder) {
Finder->addMatcher(translationUnitDecl().bind("TUDecl"), this);
}
void NoRecursionCheck::handleSCC(ArrayRef<CallGraphNode *> SCC) {
assert(!SCC.empty() && "Empty SCC does not make sense.");
// First of all, call out every strongly connected function.
for (CallGraphNode *N : SCC) {
FunctionDecl *D = N->getDefinition();
diag(D->getLocation(), "function %0 is within a recursive call chain") << D;
}
// Now, SCC only tells us about strongly connected function declarations in
// the call graph. It doesn't *really* tell us about the cycles they form.
// And there may be more than one cycle in SCC.
// So let's form a call stack that eventually exposes *some* cycle.
const CallStackTy EventuallyCyclicCallStack = pathfindSomeCycle(SCC);
assert(!EventuallyCyclicCallStack.empty() && "We should've found the cycle");
// While last node of the call stack does cause a loop, due to the way we
// pathfind the cycle, the loop does not necessarily begin at the first node
// of the call stack, so drop front nodes of the call stack until it does.
const auto CyclicCallStack =
ArrayRef<CallGraphNode::CallRecord>(EventuallyCyclicCallStack)
.drop_until([LastNode = EventuallyCyclicCallStack.back()](
CallGraphNode::CallRecord FrontNode) {
return FrontNode == LastNode;
});
assert(CyclicCallStack.size() >= 2 && "Cycle requires at least 2 frames");
// Which function we decided to be the entry point that lead to the recursion?
FunctionDecl *CycleEntryFn = CyclicCallStack.front().Callee->getDefinition();
// And now, for ease of understanding, let's print the call sequence that
// forms the cycle in question.
diag(CycleEntryFn->getLocation(),
"example recursive call chain, starting from function %0",
DiagnosticIDs::Note)
<< CycleEntryFn;
for (int CurFrame = 1, NumFrames = CyclicCallStack.size();
CurFrame != NumFrames; ++CurFrame) {
CallGraphNode::CallRecord PrevNode = CyclicCallStack[CurFrame - 1];
CallGraphNode::CallRecord CurrNode = CyclicCallStack[CurFrame];
Decl *PrevDecl = PrevNode.Callee->getDecl();
Decl *CurrDecl = CurrNode.Callee->getDecl();
diag(CurrNode.CallExpr->getBeginLoc(),
"Frame #%0: function %1 calls function %2 here:", DiagnosticIDs::Note)
<< CurFrame << cast<NamedDecl>(PrevDecl) << cast<NamedDecl>(CurrDecl);
}
diag(CyclicCallStack.back().CallExpr->getBeginLoc(),
"... which was the starting point of the recursive call chain; there "
"may be other cycles",
DiagnosticIDs::Note);
}
void NoRecursionCheck::check(const MatchFinder::MatchResult &Result) {
// Build call graph for the entire translation unit.
const auto *TU = Result.Nodes.getNodeAs<TranslationUnitDecl>("TUDecl");
CallGraph CG;
CG.addToCallGraph(const_cast<TranslationUnitDecl *>(TU));
// Look for cycles in call graph,
// by looking for Strongly Connected Components (SCC's)
for (llvm::scc_iterator<CallGraph *> SCCI = llvm::scc_begin(&CG),
SCCE = llvm::scc_end(&CG);
SCCI != SCCE; ++SCCI) {
if (!SCCI.hasCycle()) // We only care about cycles, not standalone nodes.
continue;
handleSCC(*SCCI);
}
}
} // namespace misc
} // namespace tidy
} // namespace clang