llvm-project/compiler-rt/lib/tsan/dd/dd_interceptors.cc

334 lines
9.3 KiB
C++

//===-- dd_interceptors.cc ------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "dd_rtl.h"
#include "interception/interception.h"
#include "sanitizer_common/sanitizer_procmaps.h"
#include <pthread.h>
#include <stdlib.h>
using namespace __dsan;
extern "C" void *__libc_malloc(uptr size);
extern "C" void __libc_free(void *ptr);
__attribute__((tls_model("initial-exec")))
static __thread Thread *thr;
__attribute__((tls_model("initial-exec")))
static __thread volatile int initing;
static bool inited;
static uptr g_data_start;
static uptr g_data_end;
static bool InitThread() {
if (initing)
return false;
if (thr != 0)
return true;
initing = true;
if (!inited) {
inited = true;
Initialize();
}
thr = (Thread*)InternalAlloc(sizeof(*thr));
internal_memset(thr, 0, sizeof(*thr));
ThreadInit(thr);
initing = false;
return true;
}
INTERCEPTOR(int, pthread_mutex_destroy, pthread_mutex_t *m) {
InitThread();
MutexDestroy(thr, (uptr)m);
return REAL(pthread_mutex_destroy)(m);
}
INTERCEPTOR(int, pthread_mutex_lock, pthread_mutex_t *m) {
InitThread();
MutexBeforeLock(thr, (uptr)m, true);
int res = REAL(pthread_mutex_lock)(m);
MutexAfterLock(thr, (uptr)m, true, false);
return res;
}
INTERCEPTOR(int, pthread_mutex_trylock, pthread_mutex_t *m) {
InitThread();
int res = REAL(pthread_mutex_trylock)(m);
if (res == 0)
MutexAfterLock(thr, (uptr)m, true, true);
return res;
}
INTERCEPTOR(int, pthread_mutex_unlock, pthread_mutex_t *m) {
InitThread();
MutexBeforeUnlock(thr, (uptr)m, true);
return REAL(pthread_mutex_unlock)(m);
}
INTERCEPTOR(int, pthread_spin_destroy, pthread_spinlock_t *m) {
InitThread();
int res = REAL(pthread_spin_destroy)(m);
MutexDestroy(thr, (uptr)m);
return res;
}
INTERCEPTOR(int, pthread_spin_lock, pthread_spinlock_t *m) {
InitThread();
MutexBeforeLock(thr, (uptr)m, true);
int res = REAL(pthread_spin_lock)(m);
MutexAfterLock(thr, (uptr)m, true, false);
return res;
}
INTERCEPTOR(int, pthread_spin_trylock, pthread_spinlock_t *m) {
InitThread();
int res = REAL(pthread_spin_trylock)(m);
if (res == 0)
MutexAfterLock(thr, (uptr)m, true, true);
return res;
}
INTERCEPTOR(int, pthread_spin_unlock, pthread_spinlock_t *m) {
InitThread();
MutexBeforeUnlock(thr, (uptr)m, true);
return REAL(pthread_spin_unlock)(m);
}
INTERCEPTOR(int, pthread_rwlock_destroy, pthread_rwlock_t *m) {
InitThread();
MutexDestroy(thr, (uptr)m);
return REAL(pthread_rwlock_destroy)(m);
}
INTERCEPTOR(int, pthread_rwlock_rdlock, pthread_rwlock_t *m) {
InitThread();
MutexBeforeLock(thr, (uptr)m, false);
int res = REAL(pthread_rwlock_rdlock)(m);
MutexAfterLock(thr, (uptr)m, false, false);
return res;
}
INTERCEPTOR(int, pthread_rwlock_tryrdlock, pthread_rwlock_t *m) {
InitThread();
int res = REAL(pthread_rwlock_tryrdlock)(m);
if (res == 0)
MutexAfterLock(thr, (uptr)m, false, true);
return res;
}
INTERCEPTOR(int, pthread_rwlock_timedrdlock, pthread_rwlock_t *m,
const timespec *abstime) {
InitThread();
int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
if (res == 0)
MutexAfterLock(thr, (uptr)m, false, true);
return res;
}
INTERCEPTOR(int, pthread_rwlock_wrlock, pthread_rwlock_t *m) {
InitThread();
MutexBeforeLock(thr, (uptr)m, true);
int res = REAL(pthread_rwlock_wrlock)(m);
MutexAfterLock(thr, (uptr)m, true, false);
return res;
}
INTERCEPTOR(int, pthread_rwlock_trywrlock, pthread_rwlock_t *m) {
InitThread();
int res = REAL(pthread_rwlock_trywrlock)(m);
if (res == 0)
MutexAfterLock(thr, (uptr)m, true, true);
return res;
}
INTERCEPTOR(int, pthread_rwlock_timedwrlock, pthread_rwlock_t *m,
const timespec *abstime) {
InitThread();
int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
if (res == 0)
MutexAfterLock(thr, (uptr)m, true, true);
return res;
}
INTERCEPTOR(int, pthread_rwlock_unlock, pthread_rwlock_t *m) {
InitThread();
MutexBeforeUnlock(thr, (uptr)m, true); // note: not necessary write unlock
return REAL(pthread_rwlock_unlock)(m);
}
static pthread_cond_t *init_cond(pthread_cond_t *c, bool force = false) {
atomic_uintptr_t *p = (atomic_uintptr_t*)c;
uptr cond = atomic_load(p, memory_order_acquire);
if (!force && cond != 0)
return (pthread_cond_t*)cond;
void *newcond = malloc(sizeof(pthread_cond_t));
internal_memset(newcond, 0, sizeof(pthread_cond_t));
if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
memory_order_acq_rel))
return (pthread_cond_t*)newcond;
free(newcond);
return (pthread_cond_t*)cond;
}
INTERCEPTOR(int, pthread_cond_init, pthread_cond_t *c,
const pthread_condattr_t *a) {
InitThread();
pthread_cond_t *cond = init_cond(c, true);
return REAL(pthread_cond_init)(cond, a);
}
INTERCEPTOR(int, pthread_cond_wait, pthread_cond_t *c, pthread_mutex_t *m) {
InitThread();
pthread_cond_t *cond = init_cond(c);
MutexBeforeUnlock(thr, (uptr)m, true);
MutexBeforeLock(thr, (uptr)m, true);
int res = REAL(pthread_cond_wait)(cond, m);
MutexAfterLock(thr, (uptr)m, true, false);
return res;
}
INTERCEPTOR(int, pthread_cond_timedwait, pthread_cond_t *c, pthread_mutex_t *m,
const timespec *abstime) {
InitThread();
pthread_cond_t *cond = init_cond(c);
MutexBeforeUnlock(thr, (uptr)m, true);
MutexBeforeLock(thr, (uptr)m, true);
int res = REAL(pthread_cond_timedwait)(cond, m, abstime);
MutexAfterLock(thr, (uptr)m, true, false);
return res;
}
INTERCEPTOR(int, pthread_cond_signal, pthread_cond_t *c) {
InitThread();
pthread_cond_t *cond = init_cond(c);
return REAL(pthread_cond_signal)(cond);
}
INTERCEPTOR(int, pthread_cond_broadcast, pthread_cond_t *c) {
InitThread();
pthread_cond_t *cond = init_cond(c);
return REAL(pthread_cond_broadcast)(cond);
}
INTERCEPTOR(int, pthread_cond_destroy, pthread_cond_t *c) {
InitThread();
pthread_cond_t *cond = init_cond(c);
int res = REAL(pthread_cond_destroy)(cond);
free(cond);
atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
return res;
}
// for symbolizer
INTERCEPTOR(char*, realpath, const char *path, char *resolved_path) {
InitThread();
return REAL(realpath)(path, resolved_path);
}
INTERCEPTOR(SSIZE_T, read, int fd, void *ptr, SIZE_T count) {
InitThread();
return REAL(read)(fd, ptr, count);
}
INTERCEPTOR(SSIZE_T, pread, int fd, void *ptr, SIZE_T count, OFF_T offset) {
InitThread();
return REAL(pread)(fd, ptr, count, offset);
}
extern "C" {
void __dsan_before_mutex_lock(uptr m, int writelock) {
if (!InitThread())
return;
MutexBeforeLock(thr, m, writelock);
}
void __dsan_after_mutex_lock(uptr m, int writelock, int trylock) {
if (!InitThread())
return;
MutexAfterLock(thr, m, writelock, trylock);
}
void __dsan_before_mutex_unlock(uptr m, int writelock) {
if (!InitThread())
return;
MutexBeforeUnlock(thr, m, writelock);
}
void __dsan_mutex_destroy(uptr m) {
if (!InitThread())
return;
// if (m >= g_data_start && m < g_data_end)
// return;
MutexDestroy(thr, m);
}
} // extern "C"
namespace __dsan {
static void InitDataSeg() {
MemoryMappingLayout proc_maps(true);
uptr start, end, offset;
char name[128];
bool prev_is_data = false;
while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name),
/*protection*/ 0)) {
bool is_data = offset != 0 && name[0] != 0;
// BSS may get merged with [heap] in /proc/self/maps. This is not very
// reliable.
bool is_bss = offset == 0 &&
(name[0] == 0 || internal_strcmp(name, "[heap]") == 0) && prev_is_data;
if (g_data_start == 0 && is_data)
g_data_start = start;
if (is_bss)
g_data_end = end;
prev_is_data = is_data;
}
VPrintf(1, "guessed data_start=%p data_end=%p\n", g_data_start, g_data_end);
CHECK_LT(g_data_start, g_data_end);
CHECK_GE((uptr)&g_data_start, g_data_start);
CHECK_LT((uptr)&g_data_start, g_data_end);
}
void InitializeInterceptors() {
INTERCEPT_FUNCTION(pthread_mutex_destroy);
INTERCEPT_FUNCTION(pthread_mutex_lock);
INTERCEPT_FUNCTION(pthread_mutex_trylock);
INTERCEPT_FUNCTION(pthread_mutex_unlock);
INTERCEPT_FUNCTION(pthread_spin_destroy);
INTERCEPT_FUNCTION(pthread_spin_lock);
INTERCEPT_FUNCTION(pthread_spin_trylock);
INTERCEPT_FUNCTION(pthread_spin_unlock);
INTERCEPT_FUNCTION(pthread_rwlock_destroy);
INTERCEPT_FUNCTION(pthread_rwlock_rdlock);
INTERCEPT_FUNCTION(pthread_rwlock_tryrdlock);
INTERCEPT_FUNCTION(pthread_rwlock_timedrdlock);
INTERCEPT_FUNCTION(pthread_rwlock_wrlock);
INTERCEPT_FUNCTION(pthread_rwlock_trywrlock);
INTERCEPT_FUNCTION(pthread_rwlock_timedwrlock);
INTERCEPT_FUNCTION(pthread_rwlock_unlock);
INTERCEPT_FUNCTION_VER(pthread_cond_init, "GLIBC_2.3.2");
INTERCEPT_FUNCTION_VER(pthread_cond_signal, "GLIBC_2.3.2");
INTERCEPT_FUNCTION_VER(pthread_cond_broadcast, "GLIBC_2.3.2");
INTERCEPT_FUNCTION_VER(pthread_cond_wait, "GLIBC_2.3.2");
INTERCEPT_FUNCTION_VER(pthread_cond_timedwait, "GLIBC_2.3.2");
INTERCEPT_FUNCTION_VER(pthread_cond_destroy, "GLIBC_2.3.2");
// for symbolizer
INTERCEPT_FUNCTION(realpath);
INTERCEPT_FUNCTION(read);
INTERCEPT_FUNCTION(pread);
InitDataSeg();
}
} // namespace __dsan