forked from OSchip/llvm-project
2164 lines
75 KiB
C++
2164 lines
75 KiB
C++
//===-- HexagonAsmParser.cpp - Parse Hexagon asm to MCInst instructions----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "mcasmparser"
|
|
|
|
#include "Hexagon.h"
|
|
#include "HexagonRegisterInfo.h"
|
|
#include "HexagonTargetStreamer.h"
|
|
#include "MCTargetDesc/HexagonBaseInfo.h"
|
|
#include "MCTargetDesc/HexagonMCAsmInfo.h"
|
|
#include "MCTargetDesc/HexagonMCChecker.h"
|
|
#include "MCTargetDesc/HexagonMCELFStreamer.h"
|
|
#include "MCTargetDesc/HexagonMCExpr.h"
|
|
#include "MCTargetDesc/HexagonMCShuffler.h"
|
|
#include "MCTargetDesc/HexagonMCTargetDesc.h"
|
|
#include "MCTargetDesc/HexagonShuffler.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCELFStreamer.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCParser/MCAsmLexer.h"
|
|
#include "llvm/MC/MCParser/MCAsmParser.h"
|
|
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
|
|
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
|
|
#include "llvm/MC/MCSectionELF.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/MC/MCValue.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ELF.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> EnableFutureRegs("mfuture-regs",
|
|
cl::desc("Enable future registers"));
|
|
|
|
static cl::opt<bool> WarnMissingParenthesis("mwarn-missing-parenthesis",
|
|
cl::desc("Warn for missing parenthesis around predicate registers"),
|
|
cl::init(true));
|
|
static cl::opt<bool> ErrorMissingParenthesis("merror-missing-parenthesis",
|
|
cl::desc("Error for missing parenthesis around predicate registers"),
|
|
cl::init(false));
|
|
static cl::opt<bool> WarnSignedMismatch("mwarn-sign-mismatch",
|
|
cl::desc("Warn for mismatching a signed and unsigned value"),
|
|
cl::init(true));
|
|
static cl::opt<bool> WarnNoncontigiousRegister("mwarn-noncontigious-register",
|
|
cl::desc("Warn for register names that arent contigious"),
|
|
cl::init(true));
|
|
static cl::opt<bool> ErrorNoncontigiousRegister("merror-noncontigious-register",
|
|
cl::desc("Error for register names that aren't contigious"),
|
|
cl::init(false));
|
|
|
|
|
|
namespace {
|
|
struct HexagonOperand;
|
|
|
|
class HexagonAsmParser : public MCTargetAsmParser {
|
|
|
|
HexagonTargetStreamer &getTargetStreamer() {
|
|
MCTargetStreamer &TS = *Parser.getStreamer().getTargetStreamer();
|
|
return static_cast<HexagonTargetStreamer &>(TS);
|
|
}
|
|
|
|
MCAsmParser &Parser;
|
|
MCAssembler *Assembler;
|
|
MCInstrInfo const &MCII;
|
|
MCInst MCB;
|
|
bool InBrackets;
|
|
|
|
MCAsmParser &getParser() const { return Parser; }
|
|
MCAssembler *getAssembler() const { return Assembler; }
|
|
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
|
|
|
|
bool equalIsAsmAssignment() override { return false; }
|
|
bool isLabel(AsmToken &Token) override;
|
|
|
|
void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
|
|
bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
|
|
bool ParseDirectiveFalign(unsigned Size, SMLoc L);
|
|
|
|
virtual bool ParseRegister(unsigned &RegNo,
|
|
SMLoc &StartLoc,
|
|
SMLoc &EndLoc) override;
|
|
bool ParseDirectiveSubsection(SMLoc L);
|
|
bool ParseDirectiveValue(unsigned Size, SMLoc L);
|
|
bool ParseDirectiveComm(bool IsLocal, SMLoc L);
|
|
bool RegisterMatchesArch(unsigned MatchNum) const;
|
|
|
|
bool matchBundleOptions();
|
|
bool handleNoncontigiousRegister(bool Contigious, SMLoc &Loc);
|
|
bool finishBundle(SMLoc IDLoc, MCStreamer &Out);
|
|
void canonicalizeImmediates(MCInst &MCI);
|
|
bool matchOneInstruction(MCInst &MCB, SMLoc IDLoc,
|
|
OperandVector &InstOperands, uint64_t &ErrorInfo,
|
|
bool MatchingInlineAsm);
|
|
|
|
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
|
|
OperandVector &Operands, MCStreamer &Out,
|
|
uint64_t &ErrorInfo, bool MatchingInlineAsm) override;
|
|
|
|
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override;
|
|
void OutOfRange(SMLoc IDLoc, long long Val, long long Max);
|
|
int processInstruction(MCInst &Inst, OperandVector const &Operands,
|
|
SMLoc IDLoc);
|
|
|
|
// Check if we have an assembler and, if so, set the ELF e_header flags.
|
|
void chksetELFHeaderEFlags(unsigned flags) {
|
|
if (getAssembler())
|
|
getAssembler()->setELFHeaderEFlags(flags);
|
|
}
|
|
|
|
unsigned matchRegister(StringRef Name);
|
|
|
|
/// @name Auto-generated Match Functions
|
|
/// {
|
|
|
|
#define GET_ASSEMBLER_HEADER
|
|
#include "HexagonGenAsmMatcher.inc"
|
|
|
|
/// }
|
|
|
|
public:
|
|
HexagonAsmParser(const MCSubtargetInfo &_STI, MCAsmParser &_Parser,
|
|
const MCInstrInfo &MII, const MCTargetOptions &Options)
|
|
: MCTargetAsmParser(Options, _STI), Parser(_Parser),
|
|
MCII (MII), MCB(HexagonMCInstrInfo::createBundle()), InBrackets(false) {
|
|
setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
|
|
|
|
MCAsmParserExtension::Initialize(_Parser);
|
|
|
|
Assembler = nullptr;
|
|
// FIXME: need better way to detect AsmStreamer (upstream removed getKind())
|
|
if (!Parser.getStreamer().hasRawTextSupport()) {
|
|
MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer());
|
|
Assembler = &MES->getAssembler();
|
|
}
|
|
}
|
|
|
|
bool splitIdentifier(OperandVector &Operands);
|
|
bool parseOperand(OperandVector &Operands);
|
|
bool parseInstruction(OperandVector &Operands);
|
|
bool implicitExpressionLocation(OperandVector &Operands);
|
|
bool parseExpressionOrOperand(OperandVector &Operands);
|
|
bool parseExpression(MCExpr const *& Expr);
|
|
virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
|
|
SMLoc NameLoc, OperandVector &Operands) override
|
|
{
|
|
llvm_unreachable("Unimplemented");
|
|
}
|
|
virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
|
|
AsmToken ID, OperandVector &Operands) override;
|
|
|
|
virtual bool ParseDirective(AsmToken DirectiveID) override;
|
|
};
|
|
|
|
/// HexagonOperand - Instances of this class represent a parsed Hexagon machine
|
|
/// instruction.
|
|
struct HexagonOperand : public MCParsedAsmOperand {
|
|
enum KindTy { Token, Immediate, Register } Kind;
|
|
|
|
SMLoc StartLoc, EndLoc;
|
|
|
|
struct TokTy {
|
|
const char *Data;
|
|
unsigned Length;
|
|
};
|
|
|
|
struct RegTy {
|
|
unsigned RegNum;
|
|
};
|
|
|
|
struct ImmTy {
|
|
const MCExpr *Val;
|
|
};
|
|
|
|
struct InstTy {
|
|
OperandVector *SubInsts;
|
|
};
|
|
|
|
union {
|
|
struct TokTy Tok;
|
|
struct RegTy Reg;
|
|
struct ImmTy Imm;
|
|
};
|
|
|
|
HexagonOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
|
|
|
|
public:
|
|
HexagonOperand(const HexagonOperand &o) : MCParsedAsmOperand() {
|
|
Kind = o.Kind;
|
|
StartLoc = o.StartLoc;
|
|
EndLoc = o.EndLoc;
|
|
switch (Kind) {
|
|
case Register:
|
|
Reg = o.Reg;
|
|
break;
|
|
case Immediate:
|
|
Imm = o.Imm;
|
|
break;
|
|
case Token:
|
|
Tok = o.Tok;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// getStartLoc - Get the location of the first token of this operand.
|
|
SMLoc getStartLoc() const { return StartLoc; }
|
|
|
|
/// getEndLoc - Get the location of the last token of this operand.
|
|
SMLoc getEndLoc() const { return EndLoc; }
|
|
|
|
unsigned getReg() const {
|
|
assert(Kind == Register && "Invalid access!");
|
|
return Reg.RegNum;
|
|
}
|
|
|
|
const MCExpr *getImm() const {
|
|
assert(Kind == Immediate && "Invalid access!");
|
|
return Imm.Val;
|
|
}
|
|
|
|
bool isToken() const { return Kind == Token; }
|
|
bool isImm() const { return Kind == Immediate; }
|
|
bool isMem() const { llvm_unreachable("No isMem"); }
|
|
bool isReg() const { return Kind == Register; }
|
|
|
|
bool CheckImmRange(int immBits, int zeroBits, bool isSigned,
|
|
bool isRelocatable, bool Extendable) const {
|
|
if (Kind == Immediate) {
|
|
const MCExpr *myMCExpr = &HexagonMCInstrInfo::getExpr(*getImm());
|
|
if (HexagonMCInstrInfo::mustExtend(*Imm.Val) && !Extendable)
|
|
return false;
|
|
int64_t Res;
|
|
if (myMCExpr->evaluateAsAbsolute(Res)) {
|
|
int bits = immBits + zeroBits;
|
|
// Field bit range is zerobits + bits
|
|
// zeroBits must be 0
|
|
if (Res & ((1 << zeroBits) - 1))
|
|
return false;
|
|
if (isSigned) {
|
|
if (Res < (1LL << (bits - 1)) && Res >= -(1LL << (bits - 1)))
|
|
return true;
|
|
} else {
|
|
if (bits == 64)
|
|
return true;
|
|
if (Res >= 0)
|
|
return ((uint64_t)Res < (uint64_t)(1ULL << bits)) ? true : false;
|
|
else {
|
|
const int64_t high_bit_set = 1ULL << 63;
|
|
const uint64_t mask = (high_bit_set >> (63 - bits));
|
|
return (((uint64_t)Res & mask) == mask) ? true : false;
|
|
}
|
|
}
|
|
} else if (myMCExpr->getKind() == MCExpr::SymbolRef && isRelocatable)
|
|
return true;
|
|
else if (myMCExpr->getKind() == MCExpr::Binary ||
|
|
myMCExpr->getKind() == MCExpr::Unary)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool isf32Ext() const { return false; }
|
|
bool iss32Imm() const { return CheckImmRange(32, 0, true, true, false); }
|
|
bool iss23_2Imm() const { return CheckImmRange(23, 2, true, true, false); }
|
|
bool iss8Imm() const { return CheckImmRange(8, 0, true, false, false); }
|
|
bool iss8Imm64() const { return CheckImmRange(8, 0, true, true, false); }
|
|
bool iss7Imm() const { return CheckImmRange(7, 0, true, false, false); }
|
|
bool iss6Imm() const { return CheckImmRange(6, 0, true, false, false); }
|
|
bool iss4Imm() const { return CheckImmRange(4, 0, true, false, false); }
|
|
bool iss4_0Imm() const { return CheckImmRange(4, 0, true, false, false); }
|
|
bool iss4_1Imm() const { return CheckImmRange(4, 1, true, false, false); }
|
|
bool iss4_2Imm() const { return CheckImmRange(4, 2, true, false, false); }
|
|
bool iss4_3Imm() const { return CheckImmRange(4, 3, true, false, false); }
|
|
bool iss4_6Imm() const { return CheckImmRange(4, 0, true, false, false); }
|
|
bool iss3_6Imm() const { return CheckImmRange(3, 0, true, false, false); }
|
|
bool iss3Imm() const { return CheckImmRange(3, 0, true, false, false); }
|
|
|
|
bool isu64Imm() const { return CheckImmRange(64, 0, false, true, true); }
|
|
bool isu32Imm() const { return CheckImmRange(32, 0, false, true, false); }
|
|
bool isu26_6Imm() const { return CheckImmRange(26, 6, false, true, false); }
|
|
bool isu16Imm() const { return CheckImmRange(16, 0, false, true, false); }
|
|
bool isu16_0Imm() const { return CheckImmRange(16, 0, false, true, false); }
|
|
bool isu16_1Imm() const { return CheckImmRange(16, 1, false, true, false); }
|
|
bool isu16_2Imm() const { return CheckImmRange(16, 2, false, true, false); }
|
|
bool isu16_3Imm() const { return CheckImmRange(16, 3, false, true, false); }
|
|
bool isu11_3Imm() const { return CheckImmRange(11, 3, false, false, false); }
|
|
bool isu6_0Imm() const { return CheckImmRange(6, 0, false, false, false); }
|
|
bool isu6_1Imm() const { return CheckImmRange(6, 1, false, false, false); }
|
|
bool isu6_2Imm() const { return CheckImmRange(6, 2, false, false, false); }
|
|
bool isu6_3Imm() const { return CheckImmRange(6, 3, false, false, false); }
|
|
bool isu10Imm() const { return CheckImmRange(10, 0, false, false, false); }
|
|
bool isu9Imm() const { return CheckImmRange(9, 0, false, false, false); }
|
|
bool isu8Imm() const { return CheckImmRange(8, 0, false, false, false); }
|
|
bool isu7Imm() const { return CheckImmRange(7, 0, false, false, false); }
|
|
bool isu6Imm() const { return CheckImmRange(6, 0, false, false, false); }
|
|
bool isu5Imm() const { return CheckImmRange(5, 0, false, false, false); }
|
|
bool isu4Imm() const { return CheckImmRange(4, 0, false, false, false); }
|
|
bool isu3Imm() const { return CheckImmRange(3, 0, false, false, false); }
|
|
bool isu2Imm() const { return CheckImmRange(2, 0, false, false, false); }
|
|
bool isu1Imm() const { return CheckImmRange(1, 0, false, false, false); }
|
|
|
|
bool ism6Imm() const { return CheckImmRange(6, 0, false, false, false); }
|
|
bool isn8Imm() const { return CheckImmRange(8, 0, false, false, false); }
|
|
|
|
bool iss16Ext() const { return CheckImmRange(16 + 26, 0, true, true, true); }
|
|
bool iss12Ext() const { return CheckImmRange(12 + 26, 0, true, true, true); }
|
|
bool iss10Ext() const { return CheckImmRange(10 + 26, 0, true, true, true); }
|
|
bool iss9Ext() const { return CheckImmRange(9 + 26, 0, true, true, true); }
|
|
bool iss8Ext() const { return CheckImmRange(8 + 26, 0, true, true, true); }
|
|
bool iss7Ext() const { return CheckImmRange(7 + 26, 0, true, true, true); }
|
|
bool iss6Ext() const { return CheckImmRange(6 + 26, 0, true, true, true); }
|
|
bool iss11_0Ext() const {
|
|
return CheckImmRange(11 + 26, 0, true, true, true);
|
|
}
|
|
bool iss11_1Ext() const {
|
|
return CheckImmRange(11 + 26, 1, true, true, true);
|
|
}
|
|
bool iss11_2Ext() const {
|
|
return CheckImmRange(11 + 26, 2, true, true, true);
|
|
}
|
|
bool iss11_3Ext() const {
|
|
return CheckImmRange(11 + 26, 3, true, true, true);
|
|
}
|
|
|
|
bool isu6Ext() const { return CheckImmRange(6 + 26, 0, false, true, true); }
|
|
bool isu7Ext() const { return CheckImmRange(7 + 26, 0, false, true, true); }
|
|
bool isu8Ext() const { return CheckImmRange(8 + 26, 0, false, true, true); }
|
|
bool isu9Ext() const { return CheckImmRange(9 + 26, 0, false, true, true); }
|
|
bool isu10Ext() const { return CheckImmRange(10 + 26, 0, false, true, true); }
|
|
bool isu6_0Ext() const { return CheckImmRange(6 + 26, 0, false, true, true); }
|
|
bool isu6_1Ext() const { return CheckImmRange(6 + 26, 1, false, true, true); }
|
|
bool isu6_2Ext() const { return CheckImmRange(6 + 26, 2, false, true, true); }
|
|
bool isu6_3Ext() const { return CheckImmRange(6 + 26, 3, false, true, true); }
|
|
bool isu32MustExt() const { return isImm(); }
|
|
|
|
void addRegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::createReg(getReg()));
|
|
}
|
|
|
|
void addImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::createExpr(getImm()));
|
|
}
|
|
|
|
void addSignedImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
HexagonMCExpr *Expr =
|
|
const_cast<HexagonMCExpr *>(cast<HexagonMCExpr>(getImm()));
|
|
int64_t Value;
|
|
if (!Expr->evaluateAsAbsolute(Value)) {
|
|
Inst.addOperand(MCOperand::createExpr(Expr));
|
|
return;
|
|
}
|
|
int64_t Extended = SignExtend64(Value, 32);
|
|
if ((Extended < 0) != (Value < 0))
|
|
Expr->setSignMismatch();
|
|
Inst.addOperand(MCOperand::createExpr(Expr));
|
|
}
|
|
|
|
void addf32ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
|
|
void adds32ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds23_2ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds8ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds8Imm64Operands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds6ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds4ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds4_0ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds4_1ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds4_2ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds4_3ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds3ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
|
|
void addu64ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu32ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu26_6ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu16ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu16_0ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu16_1ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu16_2ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu16_3ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu11_3ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu10ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu9ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu8ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu7ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu6ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu6_0ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu6_1ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu6_2ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu6_3ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu5ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu4ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu3ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu2ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu1ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
|
|
void addm6ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addn8ImmOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
|
|
void adds16ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds12ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds10ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds9ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds8ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds6ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds11_0ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds11_1ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds11_2ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
void adds11_3ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addSignedImmOperands(Inst, N);
|
|
}
|
|
|
|
void addu6ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu7ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu8ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu9ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu10ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu6_0ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu6_1ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu6_2ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu6_3ExtOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
void addu32MustExtOperands(MCInst &Inst, unsigned N) const {
|
|
addImmOperands(Inst, N);
|
|
}
|
|
|
|
void adds4_6ImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
const MCConstantExpr *CE =
|
|
dyn_cast<MCConstantExpr>(&HexagonMCInstrInfo::getExpr(*getImm()));
|
|
Inst.addOperand(MCOperand::createImm(CE->getValue() * 64));
|
|
}
|
|
|
|
void adds3_6ImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
const MCConstantExpr *CE =
|
|
dyn_cast<MCConstantExpr>(&HexagonMCInstrInfo::getExpr(*getImm()));
|
|
Inst.addOperand(MCOperand::createImm(CE->getValue() * 64));
|
|
}
|
|
|
|
StringRef getToken() const {
|
|
assert(Kind == Token && "Invalid access!");
|
|
return StringRef(Tok.Data, Tok.Length);
|
|
}
|
|
|
|
virtual void print(raw_ostream &OS) const;
|
|
|
|
static std::unique_ptr<HexagonOperand> CreateToken(StringRef Str, SMLoc S) {
|
|
HexagonOperand *Op = new HexagonOperand(Token);
|
|
Op->Tok.Data = Str.data();
|
|
Op->Tok.Length = Str.size();
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = S;
|
|
return std::unique_ptr<HexagonOperand>(Op);
|
|
}
|
|
|
|
static std::unique_ptr<HexagonOperand> CreateReg(unsigned RegNum, SMLoc S,
|
|
SMLoc E) {
|
|
HexagonOperand *Op = new HexagonOperand(Register);
|
|
Op->Reg.RegNum = RegNum;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return std::unique_ptr<HexagonOperand>(Op);
|
|
}
|
|
|
|
static std::unique_ptr<HexagonOperand> CreateImm(const MCExpr *Val, SMLoc S,
|
|
SMLoc E) {
|
|
HexagonOperand *Op = new HexagonOperand(Immediate);
|
|
Op->Imm.Val = Val;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return std::unique_ptr<HexagonOperand>(Op);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
void HexagonOperand::print(raw_ostream &OS) const {
|
|
switch (Kind) {
|
|
case Immediate:
|
|
getImm()->print(OS, nullptr);
|
|
break;
|
|
case Register:
|
|
OS << "<register R";
|
|
OS << getReg() << ">";
|
|
break;
|
|
case Token:
|
|
OS << "'" << getToken() << "'";
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool HexagonAsmParser::finishBundle(SMLoc IDLoc, MCStreamer &Out) {
|
|
DEBUG(dbgs() << "Bundle:");
|
|
DEBUG(MCB.dump_pretty(dbgs()));
|
|
DEBUG(dbgs() << "--\n");
|
|
|
|
// Check the bundle for errors.
|
|
const MCRegisterInfo *RI = getContext().getRegisterInfo();
|
|
HexagonMCChecker Check(MCII, getSTI(), MCB, MCB, *RI);
|
|
|
|
bool CheckOk = HexagonMCInstrInfo::canonicalizePacket(MCII, getSTI(),
|
|
getContext(), MCB,
|
|
&Check);
|
|
|
|
while (Check.getNextErrInfo() == true) {
|
|
unsigned Reg = Check.getErrRegister();
|
|
Twine R(RI->getName(Reg));
|
|
|
|
uint64_t Err = Check.getError();
|
|
if (Err != HexagonMCErrInfo::CHECK_SUCCESS) {
|
|
if (HexagonMCErrInfo::CHECK_ERROR_BRANCHES & Err)
|
|
Error(IDLoc,
|
|
"unconditional branch cannot precede another branch in packet");
|
|
|
|
if (HexagonMCErrInfo::CHECK_ERROR_NEWP & Err ||
|
|
HexagonMCErrInfo::CHECK_ERROR_NEWV & Err)
|
|
Error(IDLoc, "register `" + R +
|
|
"' used with `.new' "
|
|
"but not validly modified in the same packet");
|
|
|
|
if (HexagonMCErrInfo::CHECK_ERROR_REGISTERS & Err)
|
|
Error(IDLoc, "register `" + R + "' modified more than once");
|
|
|
|
if (HexagonMCErrInfo::CHECK_ERROR_READONLY & Err)
|
|
Error(IDLoc, "cannot write to read-only register `" + R + "'");
|
|
|
|
if (HexagonMCErrInfo::CHECK_ERROR_LOOP & Err)
|
|
Error(IDLoc, "loop-setup and some branch instructions "
|
|
"cannot be in the same packet");
|
|
|
|
if (HexagonMCErrInfo::CHECK_ERROR_ENDLOOP & Err) {
|
|
Twine N(HexagonMCInstrInfo::isInnerLoop(MCB) ? '0' : '1');
|
|
Error(IDLoc, "packet marked with `:endloop" + N + "' " +
|
|
"cannot contain instructions that modify register " +
|
|
"`" + R + "'");
|
|
}
|
|
|
|
if (HexagonMCErrInfo::CHECK_ERROR_SOLO & Err)
|
|
Error(IDLoc,
|
|
"instruction cannot appear in packet with other instructions");
|
|
|
|
if (HexagonMCErrInfo::CHECK_ERROR_NOSLOTS & Err)
|
|
Error(IDLoc, "too many slots used in packet");
|
|
|
|
if (Err & HexagonMCErrInfo::CHECK_ERROR_SHUFFLE) {
|
|
uint64_t Erm = Check.getShuffleError();
|
|
|
|
if (HexagonShuffler::SHUFFLE_ERROR_INVALID == Erm)
|
|
Error(IDLoc, "invalid instruction packet");
|
|
else if (HexagonShuffler::SHUFFLE_ERROR_STORES == Erm)
|
|
Error(IDLoc, "invalid instruction packet: too many stores");
|
|
else if (HexagonShuffler::SHUFFLE_ERROR_LOADS == Erm)
|
|
Error(IDLoc, "invalid instruction packet: too many loads");
|
|
else if (HexagonShuffler::SHUFFLE_ERROR_BRANCHES == Erm)
|
|
Error(IDLoc, "too many branches in packet");
|
|
else if (HexagonShuffler::SHUFFLE_ERROR_NOSLOTS == Erm)
|
|
Error(IDLoc, "invalid instruction packet: out of slots");
|
|
else if (HexagonShuffler::SHUFFLE_ERROR_SLOTS == Erm)
|
|
Error(IDLoc, "invalid instruction packet: slot error");
|
|
else if (HexagonShuffler::SHUFFLE_ERROR_ERRATA2 == Erm)
|
|
Error(IDLoc, "v60 packet violation");
|
|
else if (HexagonShuffler::SHUFFLE_ERROR_STORE_LOAD_CONFLICT == Erm)
|
|
Error(IDLoc, "slot 0 instruction does not allow slot 1 store");
|
|
else
|
|
Error(IDLoc, "unknown error in instruction packet");
|
|
}
|
|
}
|
|
|
|
unsigned Warn = Check.getWarning();
|
|
if (Warn != HexagonMCErrInfo::CHECK_SUCCESS) {
|
|
if (HexagonMCErrInfo::CHECK_WARN_CURRENT & Warn)
|
|
Warning(IDLoc, "register `" + R + "' used with `.cur' "
|
|
"but not used in the same packet");
|
|
else if (HexagonMCErrInfo::CHECK_WARN_TEMPORARY & Warn)
|
|
Warning(IDLoc, "register `" + R + "' used with `.tmp' "
|
|
"but not used in the same packet");
|
|
}
|
|
}
|
|
|
|
if (CheckOk) {
|
|
MCB.setLoc(IDLoc);
|
|
if (HexagonMCInstrInfo::bundleSize(MCB) == 0) {
|
|
assert(!HexagonMCInstrInfo::isInnerLoop(MCB));
|
|
assert(!HexagonMCInstrInfo::isOuterLoop(MCB));
|
|
// Empty packets are valid yet aren't emitted
|
|
return false;
|
|
}
|
|
Out.EmitInstruction(MCB, getSTI());
|
|
} else {
|
|
// If compounding and duplexing didn't reduce the size below
|
|
// 4 or less we have a packet that is too big.
|
|
if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE) {
|
|
Error(IDLoc, "invalid instruction packet: out of slots");
|
|
return true; // Error
|
|
}
|
|
}
|
|
|
|
return false; // No error
|
|
}
|
|
|
|
bool HexagonAsmParser::matchBundleOptions() {
|
|
MCAsmParser &Parser = getParser();
|
|
while (true) {
|
|
if (!Parser.getTok().is(AsmToken::Colon))
|
|
return false;
|
|
Lex();
|
|
StringRef Option = Parser.getTok().getString();
|
|
if (Option.compare_lower("endloop0") == 0)
|
|
HexagonMCInstrInfo::setInnerLoop(MCB);
|
|
else if (Option.compare_lower("endloop1") == 0)
|
|
HexagonMCInstrInfo::setOuterLoop(MCB);
|
|
else if (Option.compare_lower("mem_noshuf") == 0)
|
|
HexagonMCInstrInfo::setMemReorderDisabled(MCB);
|
|
else if (Option.compare_lower("mem_shuf") == 0)
|
|
HexagonMCInstrInfo::setMemStoreReorderEnabled(MCB);
|
|
else
|
|
return true;
|
|
Lex();
|
|
}
|
|
}
|
|
|
|
// For instruction aliases, immediates are generated rather than
|
|
// MCConstantExpr. Convert them for uniform MCExpr.
|
|
// Also check for signed/unsigned mismatches and warn
|
|
void HexagonAsmParser::canonicalizeImmediates(MCInst &MCI) {
|
|
MCInst NewInst;
|
|
NewInst.setOpcode(MCI.getOpcode());
|
|
for (MCOperand &I : MCI)
|
|
if (I.isImm()) {
|
|
int64_t Value (I.getImm());
|
|
NewInst.addOperand(MCOperand::createExpr(HexagonMCExpr::create(
|
|
MCConstantExpr::create(Value, getContext()), getContext())));
|
|
}
|
|
else {
|
|
if (I.isExpr() && cast<HexagonMCExpr>(I.getExpr())->signMismatch() &&
|
|
WarnSignedMismatch)
|
|
Warning (MCI.getLoc(), "Signed/Unsigned mismatch");
|
|
NewInst.addOperand(I);
|
|
}
|
|
MCI = NewInst;
|
|
}
|
|
|
|
bool HexagonAsmParser::matchOneInstruction(MCInst &MCI, SMLoc IDLoc,
|
|
OperandVector &InstOperands,
|
|
uint64_t &ErrorInfo,
|
|
bool MatchingInlineAsm) {
|
|
// Perform matching with tablegen asmmatcher generated function
|
|
int result =
|
|
MatchInstructionImpl(InstOperands, MCI, ErrorInfo, MatchingInlineAsm);
|
|
if (result == Match_Success) {
|
|
MCI.setLoc(IDLoc);
|
|
canonicalizeImmediates(MCI);
|
|
result = processInstruction(MCI, InstOperands, IDLoc);
|
|
|
|
DEBUG(dbgs() << "Insn:");
|
|
DEBUG(MCI.dump_pretty(dbgs()));
|
|
DEBUG(dbgs() << "\n\n");
|
|
|
|
MCI.setLoc(IDLoc);
|
|
}
|
|
|
|
// Create instruction operand for bundle instruction
|
|
// Break this into a separate function Code here is less readable
|
|
// Think about how to get an instruction error to report correctly.
|
|
// SMLoc will return the "{"
|
|
switch (result) {
|
|
default:
|
|
break;
|
|
case Match_Success:
|
|
return false;
|
|
case Match_MissingFeature:
|
|
return Error(IDLoc, "invalid instruction");
|
|
case Match_MnemonicFail:
|
|
return Error(IDLoc, "unrecognized instruction");
|
|
case Match_InvalidOperand:
|
|
SMLoc ErrorLoc = IDLoc;
|
|
if (ErrorInfo != ~0U) {
|
|
if (ErrorInfo >= InstOperands.size())
|
|
return Error(IDLoc, "too few operands for instruction");
|
|
|
|
ErrorLoc = (static_cast<HexagonOperand *>(InstOperands[ErrorInfo].get()))
|
|
->getStartLoc();
|
|
if (ErrorLoc == SMLoc())
|
|
ErrorLoc = IDLoc;
|
|
}
|
|
return Error(ErrorLoc, "invalid operand for instruction");
|
|
}
|
|
llvm_unreachable("Implement any new match types added!");
|
|
}
|
|
|
|
bool HexagonAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
|
|
OperandVector &Operands,
|
|
MCStreamer &Out,
|
|
uint64_t &ErrorInfo,
|
|
bool MatchingInlineAsm) {
|
|
if (!InBrackets) {
|
|
MCB.clear();
|
|
MCB.addOperand(MCOperand::createImm(0));
|
|
}
|
|
HexagonOperand &FirstOperand = static_cast<HexagonOperand &>(*Operands[0]);
|
|
if (FirstOperand.isToken() && FirstOperand.getToken() == "{") {
|
|
assert(Operands.size() == 1 && "Brackets should be by themselves");
|
|
if (InBrackets) {
|
|
getParser().Error(IDLoc, "Already in a packet");
|
|
return true;
|
|
}
|
|
InBrackets = true;
|
|
return false;
|
|
}
|
|
if (FirstOperand.isToken() && FirstOperand.getToken() == "}") {
|
|
assert(Operands.size() == 1 && "Brackets should be by themselves");
|
|
if (!InBrackets) {
|
|
getParser().Error(IDLoc, "Not in a packet");
|
|
return true;
|
|
}
|
|
InBrackets = false;
|
|
if (matchBundleOptions())
|
|
return true;
|
|
return finishBundle(IDLoc, Out);
|
|
}
|
|
MCInst *SubInst = new (getParser().getContext()) MCInst;
|
|
if (matchOneInstruction(*SubInst, IDLoc, Operands, ErrorInfo,
|
|
MatchingInlineAsm))
|
|
return true;
|
|
HexagonMCInstrInfo::extendIfNeeded(
|
|
getParser().getContext(), MCII, MCB, *SubInst);
|
|
MCB.addOperand(MCOperand::createInst(SubInst));
|
|
if (!InBrackets)
|
|
return finishBundle(IDLoc, Out);
|
|
return false;
|
|
}
|
|
|
|
/// ParseDirective parses the Hexagon specific directives
|
|
bool HexagonAsmParser::ParseDirective(AsmToken DirectiveID) {
|
|
StringRef IDVal = DirectiveID.getIdentifier();
|
|
if ((IDVal.lower() == ".word") || (IDVal.lower() == ".4byte"))
|
|
return ParseDirectiveValue(4, DirectiveID.getLoc());
|
|
if (IDVal.lower() == ".short" || IDVal.lower() == ".hword" ||
|
|
IDVal.lower() == ".half")
|
|
return ParseDirectiveValue(2, DirectiveID.getLoc());
|
|
if (IDVal.lower() == ".falign")
|
|
return ParseDirectiveFalign(256, DirectiveID.getLoc());
|
|
if ((IDVal.lower() == ".lcomm") || (IDVal.lower() == ".lcommon"))
|
|
return ParseDirectiveComm(true, DirectiveID.getLoc());
|
|
if ((IDVal.lower() == ".comm") || (IDVal.lower() == ".common"))
|
|
return ParseDirectiveComm(false, DirectiveID.getLoc());
|
|
if (IDVal.lower() == ".subsection")
|
|
return ParseDirectiveSubsection(DirectiveID.getLoc());
|
|
|
|
return true;
|
|
}
|
|
bool HexagonAsmParser::ParseDirectiveSubsection(SMLoc L) {
|
|
const MCExpr *Subsection = 0;
|
|
int64_t Res;
|
|
|
|
assert((getLexer().isNot(AsmToken::EndOfStatement)) &&
|
|
"Invalid subsection directive");
|
|
getParser().parseExpression(Subsection);
|
|
|
|
if (!Subsection->evaluateAsAbsolute(Res))
|
|
return Error(L, "Cannot evaluate subsection number");
|
|
|
|
if (getLexer().isNot(AsmToken::EndOfStatement))
|
|
return TokError("unexpected token in directive");
|
|
|
|
// 0-8192 is the hard-coded range in MCObjectStreamper.cpp, this keeps the
|
|
// negative subsections together and in the same order but at the opposite
|
|
// end of the section. Only legacy hexagon-gcc created assembly code
|
|
// used negative subsections.
|
|
if ((Res < 0) && (Res > -8193))
|
|
Subsection = HexagonMCExpr::create(
|
|
MCConstantExpr::create(8192 + Res, getContext()), getContext());
|
|
|
|
getStreamer().SubSection(Subsection);
|
|
return false;
|
|
}
|
|
|
|
/// ::= .falign [expression]
|
|
bool HexagonAsmParser::ParseDirectiveFalign(unsigned Size, SMLoc L) {
|
|
|
|
int64_t MaxBytesToFill = 15;
|
|
|
|
// if there is an arguement
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
const MCExpr *Value;
|
|
SMLoc ExprLoc = L;
|
|
|
|
// Make sure we have a number (false is returned if expression is a number)
|
|
if (getParser().parseExpression(Value) == false) {
|
|
// Make sure this is a number that is in range
|
|
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
|
|
uint64_t IntValue = MCE->getValue();
|
|
if (!isUIntN(Size, IntValue) && !isIntN(Size, IntValue))
|
|
return Error(ExprLoc, "literal value out of range (256) for falign");
|
|
MaxBytesToFill = IntValue;
|
|
Lex();
|
|
} else {
|
|
return Error(ExprLoc, "not a valid expression for falign directive");
|
|
}
|
|
}
|
|
|
|
getTargetStreamer().emitFAlign(16, MaxBytesToFill);
|
|
Lex();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ::= .word [ expression (, expression)* ]
|
|
bool HexagonAsmParser::ParseDirectiveValue(unsigned Size, SMLoc L) {
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
|
|
for (;;) {
|
|
const MCExpr *Value;
|
|
SMLoc ExprLoc = L;
|
|
if (getParser().parseExpression(Value))
|
|
return true;
|
|
|
|
// Special case constant expressions to match code generator.
|
|
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
|
|
assert(Size <= 8 && "Invalid size");
|
|
uint64_t IntValue = MCE->getValue();
|
|
if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
|
|
return Error(ExprLoc, "literal value out of range for directive");
|
|
getStreamer().EmitIntValue(IntValue, Size);
|
|
} else
|
|
getStreamer().EmitValue(Value, Size);
|
|
|
|
if (getLexer().is(AsmToken::EndOfStatement))
|
|
break;
|
|
|
|
// FIXME: Improve diagnostic.
|
|
if (getLexer().isNot(AsmToken::Comma))
|
|
return TokError("unexpected token in directive");
|
|
Lex();
|
|
}
|
|
}
|
|
|
|
Lex();
|
|
return false;
|
|
}
|
|
|
|
// This is largely a copy of AsmParser's ParseDirectiveComm extended to
|
|
// accept a 3rd argument, AccessAlignment which indicates the smallest
|
|
// memory access made to the symbol, expressed in bytes. If no
|
|
// AccessAlignment is specified it defaults to the Alignment Value.
|
|
// Hexagon's .lcomm:
|
|
// .lcomm Symbol, Length, Alignment, AccessAlignment
|
|
bool HexagonAsmParser::ParseDirectiveComm(bool IsLocal, SMLoc Loc) {
|
|
// FIXME: need better way to detect if AsmStreamer (upstream removed
|
|
// getKind())
|
|
if (getStreamer().hasRawTextSupport())
|
|
return true; // Only object file output requires special treatment.
|
|
|
|
StringRef Name;
|
|
if (getParser().parseIdentifier(Name))
|
|
return TokError("expected identifier in directive");
|
|
// Handle the identifier as the key symbol.
|
|
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
|
|
|
|
if (getLexer().isNot(AsmToken::Comma))
|
|
return TokError("unexpected token in directive");
|
|
Lex();
|
|
|
|
int64_t Size;
|
|
SMLoc SizeLoc = getLexer().getLoc();
|
|
if (getParser().parseAbsoluteExpression(Size))
|
|
return true;
|
|
|
|
int64_t ByteAlignment = 1;
|
|
SMLoc ByteAlignmentLoc;
|
|
if (getLexer().is(AsmToken::Comma)) {
|
|
Lex();
|
|
ByteAlignmentLoc = getLexer().getLoc();
|
|
if (getParser().parseAbsoluteExpression(ByteAlignment))
|
|
return true;
|
|
if (!isPowerOf2_64(ByteAlignment))
|
|
return Error(ByteAlignmentLoc, "alignment must be a power of 2");
|
|
}
|
|
|
|
int64_t AccessAlignment = 0;
|
|
if (getLexer().is(AsmToken::Comma)) {
|
|
// The optional access argument specifies the size of the smallest memory
|
|
// access to be made to the symbol, expressed in bytes.
|
|
SMLoc AccessAlignmentLoc;
|
|
Lex();
|
|
AccessAlignmentLoc = getLexer().getLoc();
|
|
if (getParser().parseAbsoluteExpression(AccessAlignment))
|
|
return true;
|
|
|
|
if (!isPowerOf2_64(AccessAlignment))
|
|
return Error(AccessAlignmentLoc, "access alignment must be a power of 2");
|
|
}
|
|
|
|
if (getLexer().isNot(AsmToken::EndOfStatement))
|
|
return TokError("unexpected token in '.comm' or '.lcomm' directive");
|
|
|
|
Lex();
|
|
|
|
// NOTE: a size of zero for a .comm should create a undefined symbol
|
|
// but a size of .lcomm creates a bss symbol of size zero.
|
|
if (Size < 0)
|
|
return Error(SizeLoc, "invalid '.comm' or '.lcomm' directive size, can't "
|
|
"be less than zero");
|
|
|
|
// NOTE: The alignment in the directive is a power of 2 value, the assembler
|
|
// may internally end up wanting an alignment in bytes.
|
|
// FIXME: Diagnose overflow.
|
|
if (ByteAlignment < 0)
|
|
return Error(ByteAlignmentLoc, "invalid '.comm' or '.lcomm' directive "
|
|
"alignment, can't be less than zero");
|
|
|
|
if (!Sym->isUndefined())
|
|
return Error(Loc, "invalid symbol redefinition");
|
|
|
|
HexagonMCELFStreamer &HexagonELFStreamer =
|
|
static_cast<HexagonMCELFStreamer &>(getStreamer());
|
|
if (IsLocal) {
|
|
HexagonELFStreamer.HexagonMCEmitLocalCommonSymbol(Sym, Size, ByteAlignment,
|
|
AccessAlignment);
|
|
return false;
|
|
}
|
|
|
|
HexagonELFStreamer.HexagonMCEmitCommonSymbol(Sym, Size, ByteAlignment,
|
|
AccessAlignment);
|
|
return false;
|
|
}
|
|
|
|
// validate register against architecture
|
|
bool HexagonAsmParser::RegisterMatchesArch(unsigned MatchNum) const {
|
|
return true;
|
|
}
|
|
|
|
// extern "C" void LLVMInitializeHexagonAsmLexer();
|
|
|
|
/// Force static initialization.
|
|
extern "C" void LLVMInitializeHexagonAsmParser() {
|
|
RegisterMCAsmParser<HexagonAsmParser> X(TheHexagonTarget);
|
|
}
|
|
|
|
#define GET_MATCHER_IMPLEMENTATION
|
|
#define GET_REGISTER_MATCHER
|
|
#include "HexagonGenAsmMatcher.inc"
|
|
|
|
namespace {
|
|
bool previousEqual(OperandVector &Operands, size_t Index, StringRef String) {
|
|
if (Index >= Operands.size())
|
|
return false;
|
|
MCParsedAsmOperand &Operand = *Operands[Operands.size() - Index - 1];
|
|
if (!Operand.isToken())
|
|
return false;
|
|
return static_cast<HexagonOperand &>(Operand).getToken().equals_lower(String);
|
|
}
|
|
bool previousIsLoop(OperandVector &Operands, size_t Index) {
|
|
return previousEqual(Operands, Index, "loop0") ||
|
|
previousEqual(Operands, Index, "loop1") ||
|
|
previousEqual(Operands, Index, "sp1loop0") ||
|
|
previousEqual(Operands, Index, "sp2loop0") ||
|
|
previousEqual(Operands, Index, "sp3loop0");
|
|
}
|
|
}
|
|
|
|
bool HexagonAsmParser::splitIdentifier(OperandVector &Operands) {
|
|
AsmToken const &Token = getParser().getTok();
|
|
StringRef String = Token.getString();
|
|
SMLoc Loc = Token.getLoc();
|
|
Lex();
|
|
do {
|
|
std::pair<StringRef, StringRef> HeadTail = String.split('.');
|
|
if (!HeadTail.first.empty())
|
|
Operands.push_back(HexagonOperand::CreateToken(HeadTail.first, Loc));
|
|
if (!HeadTail.second.empty())
|
|
Operands.push_back(HexagonOperand::CreateToken(
|
|
String.substr(HeadTail.first.size(), 1), Loc));
|
|
String = HeadTail.second;
|
|
} while (!String.empty());
|
|
return false;
|
|
}
|
|
|
|
bool HexagonAsmParser::parseOperand(OperandVector &Operands) {
|
|
unsigned Register;
|
|
SMLoc Begin;
|
|
SMLoc End;
|
|
MCAsmLexer &Lexer = getLexer();
|
|
if (!ParseRegister(Register, Begin, End)) {
|
|
if (!ErrorMissingParenthesis)
|
|
switch (Register) {
|
|
default:
|
|
break;
|
|
case Hexagon::P0:
|
|
case Hexagon::P1:
|
|
case Hexagon::P2:
|
|
case Hexagon::P3:
|
|
if (previousEqual(Operands, 0, "if")) {
|
|
if (WarnMissingParenthesis)
|
|
Warning (Begin, "Missing parenthesis around predicate register");
|
|
static char const *LParen = "(";
|
|
static char const *RParen = ")";
|
|
Operands.push_back(HexagonOperand::CreateToken(LParen, Begin));
|
|
Operands.push_back(HexagonOperand::CreateReg(Register, Begin, End));
|
|
const AsmToken &MaybeDotNew = Lexer.getTok();
|
|
if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) &&
|
|
MaybeDotNew.getString().equals_lower(".new"))
|
|
splitIdentifier(Operands);
|
|
Operands.push_back(HexagonOperand::CreateToken(RParen, Begin));
|
|
return false;
|
|
}
|
|
if (previousEqual(Operands, 0, "!") &&
|
|
previousEqual(Operands, 1, "if")) {
|
|
if (WarnMissingParenthesis)
|
|
Warning (Begin, "Missing parenthesis around predicate register");
|
|
static char const *LParen = "(";
|
|
static char const *RParen = ")";
|
|
Operands.insert(Operands.end () - 1,
|
|
HexagonOperand::CreateToken(LParen, Begin));
|
|
Operands.push_back(HexagonOperand::CreateReg(Register, Begin, End));
|
|
const AsmToken &MaybeDotNew = Lexer.getTok();
|
|
if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) &&
|
|
MaybeDotNew.getString().equals_lower(".new"))
|
|
splitIdentifier(Operands);
|
|
Operands.push_back(HexagonOperand::CreateToken(RParen, Begin));
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
Operands.push_back(HexagonOperand::CreateReg(
|
|
Register, Begin, End));
|
|
return false;
|
|
}
|
|
return splitIdentifier(Operands);
|
|
}
|
|
|
|
bool HexagonAsmParser::isLabel(AsmToken &Token) {
|
|
MCAsmLexer &Lexer = getLexer();
|
|
AsmToken const &Second = Lexer.getTok();
|
|
AsmToken Third = Lexer.peekTok();
|
|
StringRef String = Token.getString();
|
|
if (Token.is(AsmToken::TokenKind::LCurly) ||
|
|
Token.is(AsmToken::TokenKind::RCurly))
|
|
return false;
|
|
if (!Token.is(AsmToken::TokenKind::Identifier))
|
|
return true;
|
|
if (!matchRegister(String.lower()))
|
|
return true;
|
|
(void)Second;
|
|
assert(Second.is(AsmToken::Colon));
|
|
StringRef Raw (String.data(), Third.getString().data() - String.data() +
|
|
Third.getString().size());
|
|
std::string Collapsed = Raw;
|
|
Collapsed.erase(remove_if(Collapsed, isspace), Collapsed.end());
|
|
StringRef Whole = Collapsed;
|
|
std::pair<StringRef, StringRef> DotSplit = Whole.split('.');
|
|
if (!matchRegister(DotSplit.first.lower()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool HexagonAsmParser::handleNoncontigiousRegister(bool Contigious, SMLoc &Loc) {
|
|
if (!Contigious && ErrorNoncontigiousRegister) {
|
|
Error(Loc, "Register name is not contigious");
|
|
return true;
|
|
}
|
|
if (!Contigious && WarnNoncontigiousRegister)
|
|
Warning(Loc, "Register name is not contigious");
|
|
return false;
|
|
}
|
|
|
|
bool HexagonAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) {
|
|
MCAsmLexer &Lexer = getLexer();
|
|
StartLoc = getLexer().getLoc();
|
|
SmallVector<AsmToken, 5> Lookahead;
|
|
StringRef RawString(Lexer.getTok().getString().data(), 0);
|
|
bool Again = Lexer.is(AsmToken::Identifier);
|
|
bool NeededWorkaround = false;
|
|
while (Again) {
|
|
AsmToken const &Token = Lexer.getTok();
|
|
RawString = StringRef(RawString.data(),
|
|
Token.getString().data() - RawString.data () +
|
|
Token.getString().size());
|
|
Lookahead.push_back(Token);
|
|
Lexer.Lex();
|
|
bool Contigious = Lexer.getTok().getString().data() ==
|
|
Lookahead.back().getString().data() +
|
|
Lookahead.back().getString().size();
|
|
bool Type = Lexer.is(AsmToken::Identifier) || Lexer.is(AsmToken::Dot) ||
|
|
Lexer.is(AsmToken::Integer) || Lexer.is(AsmToken::Real) ||
|
|
Lexer.is(AsmToken::Colon);
|
|
bool Workaround = Lexer.is(AsmToken::Colon) ||
|
|
Lookahead.back().is(AsmToken::Colon);
|
|
Again = (Contigious && Type) || (Workaround && Type);
|
|
NeededWorkaround = NeededWorkaround || (Again && !(Contigious && Type));
|
|
}
|
|
std::string Collapsed = RawString;
|
|
Collapsed.erase(remove_if(Collapsed, isspace), Collapsed.end());
|
|
StringRef FullString = Collapsed;
|
|
std::pair<StringRef, StringRef> DotSplit = FullString.split('.');
|
|
unsigned DotReg = matchRegister(DotSplit.first.lower());
|
|
if (DotReg != Hexagon::NoRegister && RegisterMatchesArch(DotReg)) {
|
|
if (DotSplit.second.empty()) {
|
|
RegNo = DotReg;
|
|
EndLoc = Lexer.getLoc();
|
|
if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
|
|
return true;
|
|
return false;
|
|
} else {
|
|
RegNo = DotReg;
|
|
size_t First = RawString.find('.');
|
|
StringRef DotString (RawString.data() + First, RawString.size() - First);
|
|
Lexer.UnLex(AsmToken(AsmToken::Identifier, DotString));
|
|
EndLoc = Lexer.getLoc();
|
|
if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
|
|
return true;
|
|
return false;
|
|
}
|
|
}
|
|
std::pair<StringRef, StringRef> ColonSplit = StringRef(FullString).split(':');
|
|
unsigned ColonReg = matchRegister(ColonSplit.first.lower());
|
|
if (ColonReg != Hexagon::NoRegister && RegisterMatchesArch(DotReg)) {
|
|
Lexer.UnLex(Lookahead.back());
|
|
Lookahead.pop_back();
|
|
Lexer.UnLex(Lookahead.back());
|
|
Lookahead.pop_back();
|
|
RegNo = ColonReg;
|
|
EndLoc = Lexer.getLoc();
|
|
if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
|
|
return true;
|
|
return false;
|
|
}
|
|
while (!Lookahead.empty()) {
|
|
Lexer.UnLex(Lookahead.back());
|
|
Lookahead.pop_back();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool HexagonAsmParser::implicitExpressionLocation(OperandVector &Operands) {
|
|
if (previousEqual(Operands, 0, "call"))
|
|
return true;
|
|
if (previousEqual(Operands, 0, "jump"))
|
|
if (!getLexer().getTok().is(AsmToken::Colon))
|
|
return true;
|
|
if (previousEqual(Operands, 0, "(") && previousIsLoop(Operands, 1))
|
|
return true;
|
|
if (previousEqual(Operands, 1, ":") && previousEqual(Operands, 2, "jump") &&
|
|
(previousEqual(Operands, 0, "nt") || previousEqual(Operands, 0, "t")))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool HexagonAsmParser::parseExpression(MCExpr const *& Expr) {
|
|
llvm::SmallVector<AsmToken, 4> Tokens;
|
|
MCAsmLexer &Lexer = getLexer();
|
|
bool Done = false;
|
|
static char const * Comma = ",";
|
|
do {
|
|
Tokens.emplace_back (Lexer.getTok());
|
|
Lex();
|
|
switch (Tokens.back().getKind())
|
|
{
|
|
case AsmToken::TokenKind::Hash:
|
|
if (Tokens.size () > 1)
|
|
if ((Tokens.end () - 2)->getKind() == AsmToken::TokenKind::Plus) {
|
|
Tokens.insert(Tokens.end() - 2,
|
|
AsmToken(AsmToken::TokenKind::Comma, Comma));
|
|
Done = true;
|
|
}
|
|
break;
|
|
case AsmToken::TokenKind::RCurly:
|
|
case AsmToken::TokenKind::EndOfStatement:
|
|
case AsmToken::TokenKind::Eof:
|
|
Done = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} while (!Done);
|
|
while (!Tokens.empty()) {
|
|
Lexer.UnLex(Tokens.back());
|
|
Tokens.pop_back();
|
|
}
|
|
return getParser().parseExpression(Expr);
|
|
}
|
|
|
|
bool HexagonAsmParser::parseExpressionOrOperand(OperandVector &Operands) {
|
|
if (implicitExpressionLocation(Operands)) {
|
|
MCAsmParser &Parser = getParser();
|
|
SMLoc Loc = Parser.getLexer().getLoc();
|
|
MCExpr const *Expr = nullptr;
|
|
bool Error = parseExpression(Expr);
|
|
Expr = HexagonMCExpr::create(Expr, getContext());
|
|
if (!Error)
|
|
Operands.push_back(HexagonOperand::CreateImm(Expr, Loc, Loc));
|
|
return Error;
|
|
}
|
|
return parseOperand(Operands);
|
|
}
|
|
|
|
/// Parse an instruction.
|
|
bool HexagonAsmParser::parseInstruction(OperandVector &Operands) {
|
|
MCAsmParser &Parser = getParser();
|
|
MCAsmLexer &Lexer = getLexer();
|
|
while (true) {
|
|
AsmToken const &Token = Parser.getTok();
|
|
switch (Token.getKind()) {
|
|
case AsmToken::EndOfStatement: {
|
|
Lex();
|
|
return false;
|
|
}
|
|
case AsmToken::LCurly: {
|
|
if (!Operands.empty())
|
|
return true;
|
|
Operands.push_back(
|
|
HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
|
|
Lex();
|
|
return false;
|
|
}
|
|
case AsmToken::RCurly: {
|
|
if (Operands.empty()) {
|
|
Operands.push_back(
|
|
HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
|
|
Lex();
|
|
}
|
|
return false;
|
|
}
|
|
case AsmToken::Comma: {
|
|
Lex();
|
|
continue;
|
|
}
|
|
case AsmToken::EqualEqual:
|
|
case AsmToken::ExclaimEqual:
|
|
case AsmToken::GreaterEqual:
|
|
case AsmToken::GreaterGreater:
|
|
case AsmToken::LessEqual:
|
|
case AsmToken::LessLess: {
|
|
Operands.push_back(HexagonOperand::CreateToken(
|
|
Token.getString().substr(0, 1), Token.getLoc()));
|
|
Operands.push_back(HexagonOperand::CreateToken(
|
|
Token.getString().substr(1, 1), Token.getLoc()));
|
|
Lex();
|
|
continue;
|
|
}
|
|
case AsmToken::Hash: {
|
|
bool MustNotExtend = false;
|
|
bool ImplicitExpression = implicitExpressionLocation(Operands);
|
|
SMLoc ExprLoc = Lexer.getLoc();
|
|
if (!ImplicitExpression)
|
|
Operands.push_back(
|
|
HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
|
|
Lex();
|
|
bool MustExtend = false;
|
|
bool HiOnly = false;
|
|
bool LoOnly = false;
|
|
if (Lexer.is(AsmToken::Hash)) {
|
|
Lex();
|
|
MustExtend = true;
|
|
} else if (ImplicitExpression)
|
|
MustNotExtend = true;
|
|
AsmToken const &Token = Parser.getTok();
|
|
if (Token.is(AsmToken::Identifier)) {
|
|
StringRef String = Token.getString();
|
|
if (String.lower() == "hi") {
|
|
HiOnly = true;
|
|
} else if (String.lower() == "lo") {
|
|
LoOnly = true;
|
|
}
|
|
if (HiOnly || LoOnly) {
|
|
AsmToken LParen = Lexer.peekTok();
|
|
if (!LParen.is(AsmToken::LParen)) {
|
|
HiOnly = false;
|
|
LoOnly = false;
|
|
} else {
|
|
Lex();
|
|
}
|
|
}
|
|
}
|
|
MCExpr const *Expr = nullptr;
|
|
if (parseExpression(Expr))
|
|
return true;
|
|
int64_t Value;
|
|
MCContext &Context = Parser.getContext();
|
|
assert(Expr != nullptr);
|
|
if (Expr->evaluateAsAbsolute(Value)) {
|
|
if (HiOnly)
|
|
Expr = MCBinaryExpr::createLShr(
|
|
Expr, MCConstantExpr::create(16, Context), Context);
|
|
if (HiOnly || LoOnly)
|
|
Expr = MCBinaryExpr::createAnd(Expr,
|
|
MCConstantExpr::create(0xffff, Context),
|
|
Context);
|
|
} else {
|
|
MCValue Value;
|
|
if (Expr->evaluateAsRelocatable(Value, nullptr, nullptr)) {
|
|
if (!Value.isAbsolute()) {
|
|
switch(Value.getAccessVariant()) {
|
|
case MCSymbolRefExpr::VariantKind::VK_TPREL:
|
|
case MCSymbolRefExpr::VariantKind::VK_DTPREL:
|
|
// Don't lazy extend these expression variants
|
|
MustNotExtend = !MustExtend;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Expr = HexagonMCExpr::create(Expr, Context);
|
|
HexagonMCInstrInfo::setMustNotExtend(*Expr, MustNotExtend);
|
|
HexagonMCInstrInfo::setMustExtend(*Expr, MustExtend);
|
|
std::unique_ptr<HexagonOperand> Operand =
|
|
HexagonOperand::CreateImm(Expr, ExprLoc, ExprLoc);
|
|
Operands.push_back(std::move(Operand));
|
|
continue;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
if (parseExpressionOrOperand(Operands))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool HexagonAsmParser::ParseInstruction(ParseInstructionInfo &Info,
|
|
StringRef Name,
|
|
AsmToken ID,
|
|
OperandVector &Operands) {
|
|
getLexer().UnLex(ID);
|
|
return parseInstruction(Operands);
|
|
}
|
|
|
|
namespace {
|
|
MCInst makeCombineInst(int opCode, MCOperand &Rdd,
|
|
MCOperand &MO1, MCOperand &MO2) {
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(opCode);
|
|
TmpInst.addOperand(Rdd);
|
|
TmpInst.addOperand(MO1);
|
|
TmpInst.addOperand(MO2);
|
|
|
|
return TmpInst;
|
|
}
|
|
}
|
|
|
|
// Define this matcher function after the auto-generated include so we
|
|
// have the match class enum definitions.
|
|
unsigned HexagonAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
|
|
unsigned Kind) {
|
|
HexagonOperand *Op = static_cast<HexagonOperand *>(&AsmOp);
|
|
|
|
switch (Kind) {
|
|
case MCK_0: {
|
|
int64_t Value;
|
|
return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 0
|
|
? Match_Success
|
|
: Match_InvalidOperand;
|
|
}
|
|
case MCK_1: {
|
|
int64_t Value;
|
|
return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 1
|
|
? Match_Success
|
|
: Match_InvalidOperand;
|
|
}
|
|
case MCK__MINUS_1: {
|
|
int64_t Value;
|
|
return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == -1
|
|
? Match_Success
|
|
: Match_InvalidOperand;
|
|
}
|
|
}
|
|
if (Op->Kind == HexagonOperand::Token && Kind != InvalidMatchClass) {
|
|
StringRef myStringRef = StringRef(Op->Tok.Data, Op->Tok.Length);
|
|
if (matchTokenString(myStringRef.lower()) == (MatchClassKind)Kind)
|
|
return Match_Success;
|
|
if (matchTokenString(myStringRef.upper()) == (MatchClassKind)Kind)
|
|
return Match_Success;
|
|
}
|
|
|
|
DEBUG(dbgs() << "Unmatched Operand:");
|
|
DEBUG(Op->dump());
|
|
DEBUG(dbgs() << "\n");
|
|
|
|
return Match_InvalidOperand;
|
|
}
|
|
|
|
void HexagonAsmParser::OutOfRange(SMLoc IDLoc, long long Val, long long Max) {
|
|
std::string errStr;
|
|
raw_string_ostream ES(errStr);
|
|
ES << "value " << Val << "(" << format_hex(Val, 0) << ") out of range: ";
|
|
if (Max >= 0)
|
|
ES << "0-" << Max;
|
|
else
|
|
ES << Max << "-" << (-Max - 1);
|
|
Error(IDLoc, ES.str().c_str());
|
|
}
|
|
|
|
int HexagonAsmParser::processInstruction(MCInst &Inst,
|
|
OperandVector const &Operands,
|
|
SMLoc IDLoc) {
|
|
MCContext &Context = getParser().getContext();
|
|
const MCRegisterInfo *RI = getContext().getRegisterInfo();
|
|
std::string r = "r";
|
|
std::string v = "v";
|
|
std::string Colon = ":";
|
|
|
|
bool is32bit = false; // used to distinguish between CONST32 and CONST64
|
|
switch (Inst.getOpcode()) {
|
|
default:
|
|
break;
|
|
|
|
case Hexagon::A2_iconst: {
|
|
Inst.setOpcode(Hexagon::A2_addi);
|
|
MCOperand Reg = Inst.getOperand(0);
|
|
MCOperand S16 = Inst.getOperand(1);
|
|
HexagonMCInstrInfo::setMustNotExtend(*S16.getExpr());
|
|
HexagonMCInstrInfo::setS23_2_reloc(*S16.getExpr());
|
|
Inst.clear();
|
|
Inst.addOperand(Reg);
|
|
Inst.addOperand(MCOperand::createReg(Hexagon::R0));
|
|
Inst.addOperand(S16);
|
|
break;
|
|
}
|
|
case Hexagon::M4_mpyrr_addr:
|
|
case Hexagon::S4_addi_asl_ri:
|
|
case Hexagon::S4_addi_lsr_ri:
|
|
case Hexagon::S4_andi_asl_ri:
|
|
case Hexagon::S4_andi_lsr_ri:
|
|
case Hexagon::S4_ori_asl_ri:
|
|
case Hexagon::S4_ori_lsr_ri:
|
|
case Hexagon::S4_or_andix:
|
|
case Hexagon::S4_subi_asl_ri:
|
|
case Hexagon::S4_subi_lsr_ri: {
|
|
MCOperand &Ry = Inst.getOperand(0);
|
|
MCOperand &src = Inst.getOperand(2);
|
|
if (RI->getEncodingValue(Ry.getReg()) != RI->getEncodingValue(src.getReg()))
|
|
return Match_InvalidOperand;
|
|
break;
|
|
}
|
|
|
|
case Hexagon::C2_cmpgei: {
|
|
MCOperand &MO = Inst.getOperand(2);
|
|
MO.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
|
|
MO.getExpr(), MCConstantExpr::create(1, Context), Context), Context));
|
|
Inst.setOpcode(Hexagon::C2_cmpgti);
|
|
break;
|
|
}
|
|
|
|
case Hexagon::C2_cmpgeui: {
|
|
MCOperand &MO = Inst.getOperand(2);
|
|
int64_t Value;
|
|
bool Success = MO.getExpr()->evaluateAsAbsolute(Value);
|
|
(void)Success;
|
|
assert(Success && "Assured by matcher");
|
|
if (Value == 0) {
|
|
MCInst TmpInst;
|
|
MCOperand &Pd = Inst.getOperand(0);
|
|
MCOperand &Rt = Inst.getOperand(1);
|
|
TmpInst.setOpcode(Hexagon::C2_cmpeq);
|
|
TmpInst.addOperand(Pd);
|
|
TmpInst.addOperand(Rt);
|
|
TmpInst.addOperand(Rt);
|
|
Inst = TmpInst;
|
|
} else {
|
|
MO.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
|
|
MO.getExpr(), MCConstantExpr::create(1, Context), Context), Context));
|
|
Inst.setOpcode(Hexagon::C2_cmpgtui);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Translate a "$Rdd = $Rss" to "$Rdd = combine($Rs, $Rt)"
|
|
case Hexagon::A2_tfrp: {
|
|
MCOperand &MO = Inst.getOperand(1);
|
|
unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
|
|
std::string R1 = r + llvm::utostr(RegPairNum + 1);
|
|
StringRef Reg1(R1);
|
|
MO.setReg(matchRegister(Reg1));
|
|
// Add a new operand for the second register in the pair.
|
|
std::string R2 = r + llvm::utostr(RegPairNum);
|
|
StringRef Reg2(R2);
|
|
Inst.addOperand(MCOperand::createReg(matchRegister(Reg2)));
|
|
Inst.setOpcode(Hexagon::A2_combinew);
|
|
break;
|
|
}
|
|
|
|
case Hexagon::A2_tfrpt:
|
|
case Hexagon::A2_tfrpf: {
|
|
MCOperand &MO = Inst.getOperand(2);
|
|
unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
|
|
std::string R1 = r + llvm::utostr(RegPairNum + 1);
|
|
StringRef Reg1(R1);
|
|
MO.setReg(matchRegister(Reg1));
|
|
// Add a new operand for the second register in the pair.
|
|
std::string R2 = r + llvm::utostr(RegPairNum);
|
|
StringRef Reg2(R2);
|
|
Inst.addOperand(MCOperand::createReg(matchRegister(Reg2)));
|
|
Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrpt)
|
|
? Hexagon::C2_ccombinewt
|
|
: Hexagon::C2_ccombinewf);
|
|
break;
|
|
}
|
|
case Hexagon::A2_tfrptnew:
|
|
case Hexagon::A2_tfrpfnew: {
|
|
MCOperand &MO = Inst.getOperand(2);
|
|
unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
|
|
std::string R1 = r + llvm::utostr(RegPairNum + 1);
|
|
StringRef Reg1(R1);
|
|
MO.setReg(matchRegister(Reg1));
|
|
// Add a new operand for the second register in the pair.
|
|
std::string R2 = r + llvm::utostr(RegPairNum);
|
|
StringRef Reg2(R2);
|
|
Inst.addOperand(MCOperand::createReg(matchRegister(Reg2)));
|
|
Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrptnew)
|
|
? Hexagon::C2_ccombinewnewt
|
|
: Hexagon::C2_ccombinewnewf);
|
|
break;
|
|
}
|
|
|
|
// Translate a "$Vdd = $Vss" to "$Vdd = vcombine($Vs, $Vt)"
|
|
case Hexagon::V6_vassignp: {
|
|
MCOperand &MO = Inst.getOperand(1);
|
|
unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
|
|
std::string R1 = v + llvm::utostr(RegPairNum + 1);
|
|
MO.setReg(MatchRegisterName(R1));
|
|
// Add a new operand for the second register in the pair.
|
|
std::string R2 = v + llvm::utostr(RegPairNum);
|
|
Inst.addOperand(MCOperand::createReg(MatchRegisterName(R2)));
|
|
Inst.setOpcode(Hexagon::V6_vcombine);
|
|
break;
|
|
}
|
|
|
|
// Translate a "$Rx = CONST32(#imm)" to "$Rx = memw(gp+#LABEL) "
|
|
case Hexagon::CONST32:
|
|
is32bit = true;
|
|
// Translate a "$Rx:y = CONST64(#imm)" to "$Rx:y = memd(gp+#LABEL) "
|
|
case Hexagon::CONST64:
|
|
// FIXME: need better way to detect AsmStreamer (upstream removed getKind())
|
|
if (!Parser.getStreamer().hasRawTextSupport()) {
|
|
MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer());
|
|
MCOperand &MO_1 = Inst.getOperand(1);
|
|
MCOperand &MO_0 = Inst.getOperand(0);
|
|
|
|
// push section onto section stack
|
|
MES->PushSection();
|
|
|
|
std::string myCharStr;
|
|
MCSectionELF *mySection;
|
|
|
|
// check if this as an immediate or a symbol
|
|
int64_t Value;
|
|
bool Absolute = MO_1.getExpr()->evaluateAsAbsolute(Value);
|
|
if (Absolute) {
|
|
// Create a new section - one for each constant
|
|
// Some or all of the zeros are replaced with the given immediate.
|
|
if (is32bit) {
|
|
std::string myImmStr = utohexstr(static_cast<uint32_t>(Value));
|
|
myCharStr = StringRef(".gnu.linkonce.l4.CONST_00000000")
|
|
.drop_back(myImmStr.size())
|
|
.str() +
|
|
myImmStr;
|
|
} else {
|
|
std::string myImmStr = utohexstr(Value);
|
|
myCharStr = StringRef(".gnu.linkonce.l8.CONST_0000000000000000")
|
|
.drop_back(myImmStr.size())
|
|
.str() +
|
|
myImmStr;
|
|
}
|
|
|
|
mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS,
|
|
ELF::SHF_ALLOC | ELF::SHF_WRITE);
|
|
} else if (MO_1.isExpr()) {
|
|
// .lita - for expressions
|
|
myCharStr = ".lita";
|
|
mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS,
|
|
ELF::SHF_ALLOC | ELF::SHF_WRITE);
|
|
} else
|
|
llvm_unreachable("unexpected type of machine operand!");
|
|
|
|
MES->SwitchSection(mySection);
|
|
unsigned byteSize = is32bit ? 4 : 8;
|
|
getStreamer().EmitCodeAlignment(byteSize, byteSize);
|
|
|
|
MCSymbol *Sym;
|
|
|
|
// for symbols, get rid of prepended ".gnu.linkonce.lx."
|
|
|
|
// emit symbol if needed
|
|
if (Absolute) {
|
|
Sym = getContext().getOrCreateSymbol(StringRef(myCharStr.c_str() + 16));
|
|
if (Sym->isUndefined()) {
|
|
getStreamer().EmitLabel(Sym);
|
|
getStreamer().EmitSymbolAttribute(Sym, MCSA_Global);
|
|
getStreamer().EmitIntValue(Value, byteSize);
|
|
}
|
|
} else if (MO_1.isExpr()) {
|
|
const char *StringStart = 0;
|
|
const char *StringEnd = 0;
|
|
if (*Operands[4]->getStartLoc().getPointer() == '#') {
|
|
StringStart = Operands[5]->getStartLoc().getPointer();
|
|
StringEnd = Operands[6]->getStartLoc().getPointer();
|
|
} else { // no pound
|
|
StringStart = Operands[4]->getStartLoc().getPointer();
|
|
StringEnd = Operands[5]->getStartLoc().getPointer();
|
|
}
|
|
|
|
unsigned size = StringEnd - StringStart;
|
|
std::string DotConst = ".CONST_";
|
|
Sym = getContext().getOrCreateSymbol(DotConst +
|
|
StringRef(StringStart, size));
|
|
|
|
if (Sym->isUndefined()) {
|
|
// case where symbol is not yet defined: emit symbol
|
|
getStreamer().EmitLabel(Sym);
|
|
getStreamer().EmitSymbolAttribute(Sym, MCSA_Local);
|
|
getStreamer().EmitValue(MO_1.getExpr(), 4);
|
|
}
|
|
} else
|
|
llvm_unreachable("unexpected type of machine operand!");
|
|
|
|
MES->PopSection();
|
|
|
|
if (Sym) {
|
|
MCInst TmpInst;
|
|
if (is32bit) // 32 bit
|
|
TmpInst.setOpcode(Hexagon::L2_loadrigp);
|
|
else // 64 bit
|
|
TmpInst.setOpcode(Hexagon::L2_loadrdgp);
|
|
|
|
TmpInst.addOperand(MO_0);
|
|
TmpInst.addOperand(
|
|
MCOperand::createExpr(MCSymbolRefExpr::create(Sym, getContext())));
|
|
Inst = TmpInst;
|
|
}
|
|
}
|
|
break;
|
|
|
|
// Translate a "$Rdd = #-imm" to "$Rdd = combine(#[-1,0], #-imm)"
|
|
case Hexagon::A2_tfrpi: {
|
|
MCOperand &Rdd = Inst.getOperand(0);
|
|
MCOperand &MO = Inst.getOperand(1);
|
|
int64_t Value;
|
|
int sVal = (MO.getExpr()->evaluateAsAbsolute(Value) && Value < 0) ? -1 : 0;
|
|
MCOperand imm(MCOperand::createExpr(
|
|
HexagonMCExpr::create(MCConstantExpr::create(sVal, Context), Context)));
|
|
Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, imm, MO);
|
|
break;
|
|
}
|
|
|
|
// Translate a "$Rdd = [#]#imm" to "$Rdd = combine(#, [#]#imm)"
|
|
case Hexagon::TFRI64_V4: {
|
|
MCOperand &Rdd = Inst.getOperand(0);
|
|
MCOperand &MO = Inst.getOperand(1);
|
|
int64_t Value;
|
|
if (MO.getExpr()->evaluateAsAbsolute(Value)) {
|
|
int s8 = Hi_32(Value);
|
|
if (!isInt<8>(s8))
|
|
OutOfRange(IDLoc, s8, -128);
|
|
MCOperand imm(MCOperand::createExpr(HexagonMCExpr::create(
|
|
MCConstantExpr::create(s8, Context), Context))); // upper 32
|
|
auto Expr = HexagonMCExpr::create(
|
|
MCConstantExpr::create(Lo_32(Value), Context), Context);
|
|
HexagonMCInstrInfo::setMustExtend(*Expr, HexagonMCInstrInfo::mustExtend(*MO.getExpr()));
|
|
MCOperand imm2(MCOperand::createExpr(Expr)); // lower 32
|
|
Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, imm2);
|
|
} else {
|
|
MCOperand imm(MCOperand::createExpr(HexagonMCExpr::create(
|
|
MCConstantExpr::create(0, Context), Context))); // upper 32
|
|
Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, MO);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Handle $Rdd = combine(##imm, #imm)"
|
|
case Hexagon::TFRI64_V2_ext: {
|
|
MCOperand &Rdd = Inst.getOperand(0);
|
|
MCOperand &MO1 = Inst.getOperand(1);
|
|
MCOperand &MO2 = Inst.getOperand(2);
|
|
int64_t Value;
|
|
if (MO2.getExpr()->evaluateAsAbsolute(Value)) {
|
|
int s8 = Value;
|
|
if (s8 < -128 || s8 > 127)
|
|
OutOfRange(IDLoc, s8, -128);
|
|
}
|
|
Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, MO1, MO2);
|
|
break;
|
|
}
|
|
|
|
// Handle $Rdd = combine(#imm, ##imm)"
|
|
case Hexagon::A4_combineii: {
|
|
MCOperand &Rdd = Inst.getOperand(0);
|
|
MCOperand &MO1 = Inst.getOperand(1);
|
|
int64_t Value;
|
|
if (MO1.getExpr()->evaluateAsAbsolute(Value)) {
|
|
int s8 = Value;
|
|
if (s8 < -128 || s8 > 127)
|
|
OutOfRange(IDLoc, s8, -128);
|
|
}
|
|
MCOperand &MO2 = Inst.getOperand(2);
|
|
Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, MO1, MO2);
|
|
break;
|
|
}
|
|
|
|
case Hexagon::S2_tableidxb_goodsyntax: {
|
|
Inst.setOpcode(Hexagon::S2_tableidxb);
|
|
break;
|
|
}
|
|
|
|
case Hexagon::S2_tableidxh_goodsyntax: {
|
|
MCInst TmpInst;
|
|
MCOperand &Rx = Inst.getOperand(0);
|
|
MCOperand &_dst_ = Inst.getOperand(1);
|
|
MCOperand &Rs = Inst.getOperand(2);
|
|
MCOperand &Imm4 = Inst.getOperand(3);
|
|
MCOperand &Imm6 = Inst.getOperand(4);
|
|
Imm6.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
|
|
Imm6.getExpr(), MCConstantExpr::create(1, Context), Context), Context));
|
|
TmpInst.setOpcode(Hexagon::S2_tableidxh);
|
|
TmpInst.addOperand(Rx);
|
|
TmpInst.addOperand(_dst_);
|
|
TmpInst.addOperand(Rs);
|
|
TmpInst.addOperand(Imm4);
|
|
TmpInst.addOperand(Imm6);
|
|
Inst = TmpInst;
|
|
break;
|
|
}
|
|
|
|
case Hexagon::S2_tableidxw_goodsyntax: {
|
|
MCInst TmpInst;
|
|
MCOperand &Rx = Inst.getOperand(0);
|
|
MCOperand &_dst_ = Inst.getOperand(1);
|
|
MCOperand &Rs = Inst.getOperand(2);
|
|
MCOperand &Imm4 = Inst.getOperand(3);
|
|
MCOperand &Imm6 = Inst.getOperand(4);
|
|
Imm6.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
|
|
Imm6.getExpr(), MCConstantExpr::create(2, Context), Context), Context));
|
|
TmpInst.setOpcode(Hexagon::S2_tableidxw);
|
|
TmpInst.addOperand(Rx);
|
|
TmpInst.addOperand(_dst_);
|
|
TmpInst.addOperand(Rs);
|
|
TmpInst.addOperand(Imm4);
|
|
TmpInst.addOperand(Imm6);
|
|
Inst = TmpInst;
|
|
break;
|
|
}
|
|
|
|
case Hexagon::S2_tableidxd_goodsyntax: {
|
|
MCInst TmpInst;
|
|
MCOperand &Rx = Inst.getOperand(0);
|
|
MCOperand &_dst_ = Inst.getOperand(1);
|
|
MCOperand &Rs = Inst.getOperand(2);
|
|
MCOperand &Imm4 = Inst.getOperand(3);
|
|
MCOperand &Imm6 = Inst.getOperand(4);
|
|
Imm6.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
|
|
Imm6.getExpr(), MCConstantExpr::create(3, Context), Context), Context));
|
|
TmpInst.setOpcode(Hexagon::S2_tableidxd);
|
|
TmpInst.addOperand(Rx);
|
|
TmpInst.addOperand(_dst_);
|
|
TmpInst.addOperand(Rs);
|
|
TmpInst.addOperand(Imm4);
|
|
TmpInst.addOperand(Imm6);
|
|
Inst = TmpInst;
|
|
break;
|
|
}
|
|
|
|
case Hexagon::M2_mpyui: {
|
|
Inst.setOpcode(Hexagon::M2_mpyi);
|
|
break;
|
|
}
|
|
case Hexagon::M2_mpysmi: {
|
|
MCInst TmpInst;
|
|
MCOperand &Rd = Inst.getOperand(0);
|
|
MCOperand &Rs = Inst.getOperand(1);
|
|
MCOperand &Imm = Inst.getOperand(2);
|
|
int64_t Value;
|
|
MCExpr const &Expr = *Imm.getExpr();
|
|
bool Absolute = Expr.evaluateAsAbsolute(Value);
|
|
assert(Absolute);
|
|
(void)Absolute;
|
|
if (!HexagonMCInstrInfo::mustExtend(Expr)) {
|
|
if (Value < 0 && Value > -256) {
|
|
Imm.setExpr(HexagonMCExpr::create(
|
|
MCConstantExpr::create(Value * -1, Context), Context));
|
|
TmpInst.setOpcode(Hexagon::M2_mpysin);
|
|
} else if (Value < 256 && Value >= 0)
|
|
TmpInst.setOpcode(Hexagon::M2_mpysip);
|
|
else
|
|
return Match_InvalidOperand;
|
|
} else {
|
|
if (Value >= 0)
|
|
TmpInst.setOpcode(Hexagon::M2_mpysip);
|
|
else
|
|
return Match_InvalidOperand;
|
|
}
|
|
TmpInst.addOperand(Rd);
|
|
TmpInst.addOperand(Rs);
|
|
TmpInst.addOperand(Imm);
|
|
Inst = TmpInst;
|
|
break;
|
|
}
|
|
|
|
case Hexagon::S2_asr_i_r_rnd_goodsyntax: {
|
|
MCOperand &Imm = Inst.getOperand(2);
|
|
MCInst TmpInst;
|
|
int64_t Value;
|
|
bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
|
|
assert(Absolute);
|
|
(void)Absolute;
|
|
if (Value == 0) { // convert to $Rd = $Rs
|
|
TmpInst.setOpcode(Hexagon::A2_tfr);
|
|
MCOperand &Rd = Inst.getOperand(0);
|
|
MCOperand &Rs = Inst.getOperand(1);
|
|
TmpInst.addOperand(Rd);
|
|
TmpInst.addOperand(Rs);
|
|
} else {
|
|
Imm.setExpr(HexagonMCExpr::create(
|
|
MCBinaryExpr::createSub(Imm.getExpr(),
|
|
MCConstantExpr::create(1, Context), Context),
|
|
Context));
|
|
TmpInst.setOpcode(Hexagon::S2_asr_i_r_rnd);
|
|
MCOperand &Rd = Inst.getOperand(0);
|
|
MCOperand &Rs = Inst.getOperand(1);
|
|
TmpInst.addOperand(Rd);
|
|
TmpInst.addOperand(Rs);
|
|
TmpInst.addOperand(Imm);
|
|
}
|
|
Inst = TmpInst;
|
|
break;
|
|
}
|
|
|
|
case Hexagon::S2_asr_i_p_rnd_goodsyntax: {
|
|
MCOperand &Rdd = Inst.getOperand(0);
|
|
MCOperand &Rss = Inst.getOperand(1);
|
|
MCOperand &Imm = Inst.getOperand(2);
|
|
int64_t Value;
|
|
bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
|
|
assert(Absolute);
|
|
(void)Absolute;
|
|
if (Value == 0) { // convert to $Rdd = combine ($Rs[0], $Rs[1])
|
|
MCInst TmpInst;
|
|
unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg());
|
|
std::string R1 = r + llvm::utostr(RegPairNum + 1);
|
|
StringRef Reg1(R1);
|
|
Rss.setReg(matchRegister(Reg1));
|
|
// Add a new operand for the second register in the pair.
|
|
std::string R2 = r + llvm::utostr(RegPairNum);
|
|
StringRef Reg2(R2);
|
|
TmpInst.setOpcode(Hexagon::A2_combinew);
|
|
TmpInst.addOperand(Rdd);
|
|
TmpInst.addOperand(Rss);
|
|
TmpInst.addOperand(MCOperand::createReg(matchRegister(Reg2)));
|
|
Inst = TmpInst;
|
|
} else {
|
|
Imm.setExpr(HexagonMCExpr::create(
|
|
MCBinaryExpr::createSub(Imm.getExpr(),
|
|
MCConstantExpr::create(1, Context), Context),
|
|
Context));
|
|
Inst.setOpcode(Hexagon::S2_asr_i_p_rnd);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Hexagon::A4_boundscheck: {
|
|
MCOperand &Rs = Inst.getOperand(1);
|
|
unsigned int RegNum = RI->getEncodingValue(Rs.getReg());
|
|
if (RegNum & 1) { // Odd mapped to raw:hi, regpair is rodd:odd-1, like r3:2
|
|
Inst.setOpcode(Hexagon::A4_boundscheck_hi);
|
|
std::string Name =
|
|
r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
|
|
StringRef RegPair = Name;
|
|
Rs.setReg(matchRegister(RegPair));
|
|
} else { // raw:lo
|
|
Inst.setOpcode(Hexagon::A4_boundscheck_lo);
|
|
std::string Name =
|
|
r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
|
|
StringRef RegPair = Name;
|
|
Rs.setReg(matchRegister(RegPair));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Hexagon::A2_addsp: {
|
|
MCOperand &Rs = Inst.getOperand(1);
|
|
unsigned int RegNum = RI->getEncodingValue(Rs.getReg());
|
|
if (RegNum & 1) { // Odd mapped to raw:hi
|
|
Inst.setOpcode(Hexagon::A2_addsph);
|
|
std::string Name =
|
|
r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
|
|
StringRef RegPair = Name;
|
|
Rs.setReg(matchRegister(RegPair));
|
|
} else { // Even mapped raw:lo
|
|
Inst.setOpcode(Hexagon::A2_addspl);
|
|
std::string Name =
|
|
r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
|
|
StringRef RegPair = Name;
|
|
Rs.setReg(matchRegister(RegPair));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Hexagon::M2_vrcmpys_s1: {
|
|
MCOperand &Rt = Inst.getOperand(2);
|
|
unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
|
|
if (RegNum & 1) { // Odd mapped to sat:raw:hi
|
|
Inst.setOpcode(Hexagon::M2_vrcmpys_s1_h);
|
|
std::string Name =
|
|
r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
|
|
StringRef RegPair = Name;
|
|
Rt.setReg(matchRegister(RegPair));
|
|
} else { // Even mapped sat:raw:lo
|
|
Inst.setOpcode(Hexagon::M2_vrcmpys_s1_l);
|
|
std::string Name =
|
|
r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
|
|
StringRef RegPair = Name;
|
|
Rt.setReg(matchRegister(RegPair));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Hexagon::M2_vrcmpys_acc_s1: {
|
|
MCInst TmpInst;
|
|
MCOperand &Rxx = Inst.getOperand(0);
|
|
MCOperand &Rss = Inst.getOperand(2);
|
|
MCOperand &Rt = Inst.getOperand(3);
|
|
unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
|
|
if (RegNum & 1) { // Odd mapped to sat:raw:hi
|
|
TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_h);
|
|
std::string Name =
|
|
r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
|
|
StringRef RegPair = Name;
|
|
Rt.setReg(matchRegister(RegPair));
|
|
} else { // Even mapped sat:raw:lo
|
|
TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_l);
|
|
std::string Name =
|
|
r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
|
|
StringRef RegPair = Name;
|
|
Rt.setReg(matchRegister(RegPair));
|
|
}
|
|
// Registers are in different positions
|
|
TmpInst.addOperand(Rxx);
|
|
TmpInst.addOperand(Rxx);
|
|
TmpInst.addOperand(Rss);
|
|
TmpInst.addOperand(Rt);
|
|
Inst = TmpInst;
|
|
break;
|
|
}
|
|
|
|
case Hexagon::M2_vrcmpys_s1rp: {
|
|
MCOperand &Rt = Inst.getOperand(2);
|
|
unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
|
|
if (RegNum & 1) { // Odd mapped to rnd:sat:raw:hi
|
|
Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_h);
|
|
std::string Name =
|
|
r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
|
|
StringRef RegPair = Name;
|
|
Rt.setReg(matchRegister(RegPair));
|
|
} else { // Even mapped rnd:sat:raw:lo
|
|
Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_l);
|
|
std::string Name =
|
|
r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
|
|
StringRef RegPair = Name;
|
|
Rt.setReg(matchRegister(RegPair));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Hexagon::S5_asrhub_rnd_sat_goodsyntax: {
|
|
MCOperand &Imm = Inst.getOperand(2);
|
|
int64_t Value;
|
|
bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
|
|
assert(Absolute);
|
|
(void)Absolute;
|
|
if (Value == 0)
|
|
Inst.setOpcode(Hexagon::S2_vsathub);
|
|
else {
|
|
Imm.setExpr(HexagonMCExpr::create(
|
|
MCBinaryExpr::createSub(Imm.getExpr(),
|
|
MCConstantExpr::create(1, Context), Context),
|
|
Context));
|
|
Inst.setOpcode(Hexagon::S5_asrhub_rnd_sat);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Hexagon::S5_vasrhrnd_goodsyntax: {
|
|
MCOperand &Rdd = Inst.getOperand(0);
|
|
MCOperand &Rss = Inst.getOperand(1);
|
|
MCOperand &Imm = Inst.getOperand(2);
|
|
int64_t Value;
|
|
bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
|
|
assert(Absolute);
|
|
(void)Absolute;
|
|
if (Value == 0) {
|
|
MCInst TmpInst;
|
|
unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg());
|
|
std::string R1 = r + llvm::utostr(RegPairNum + 1);
|
|
StringRef Reg1(R1);
|
|
Rss.setReg(matchRegister(Reg1));
|
|
// Add a new operand for the second register in the pair.
|
|
std::string R2 = r + llvm::utostr(RegPairNum);
|
|
StringRef Reg2(R2);
|
|
TmpInst.setOpcode(Hexagon::A2_combinew);
|
|
TmpInst.addOperand(Rdd);
|
|
TmpInst.addOperand(Rss);
|
|
TmpInst.addOperand(MCOperand::createReg(matchRegister(Reg2)));
|
|
Inst = TmpInst;
|
|
} else {
|
|
Imm.setExpr(HexagonMCExpr::create(
|
|
MCBinaryExpr::createSub(Imm.getExpr(),
|
|
MCConstantExpr::create(1, Context), Context),
|
|
Context));
|
|
Inst.setOpcode(Hexagon::S5_vasrhrnd);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Hexagon::A2_not: {
|
|
MCInst TmpInst;
|
|
MCOperand &Rd = Inst.getOperand(0);
|
|
MCOperand &Rs = Inst.getOperand(1);
|
|
TmpInst.setOpcode(Hexagon::A2_subri);
|
|
TmpInst.addOperand(Rd);
|
|
TmpInst.addOperand(MCOperand::createExpr(
|
|
HexagonMCExpr::create(MCConstantExpr::create(-1, Context), Context)));
|
|
TmpInst.addOperand(Rs);
|
|
Inst = TmpInst;
|
|
break;
|
|
}
|
|
} // switch
|
|
|
|
return Match_Success;
|
|
}
|
|
|
|
|
|
unsigned HexagonAsmParser::matchRegister(StringRef Name) {
|
|
if (unsigned Reg = MatchRegisterName(Name))
|
|
return Reg;
|
|
return MatchRegisterAltName(Name);
|
|
}
|