forked from OSchip/llvm-project
1834 lines
68 KiB
C++
1834 lines
68 KiB
C++
//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code dealing with code generation of C++ expressions
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CGCUDARuntime.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CGObjCRuntime.h"
|
|
#include "CGDebugInfo.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
|
|
llvm::Value *Callee,
|
|
ReturnValueSlot ReturnValue,
|
|
llvm::Value *This,
|
|
llvm::Value *VTT,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd) {
|
|
assert(MD->isInstance() &&
|
|
"Trying to emit a member call expr on a static method!");
|
|
|
|
CallArgList Args;
|
|
|
|
// Push the this ptr.
|
|
Args.add(RValue::get(This), MD->getThisType(getContext()));
|
|
|
|
// If there is a VTT parameter, emit it.
|
|
if (VTT) {
|
|
QualType T = getContext().getPointerType(getContext().VoidPtrTy);
|
|
Args.add(RValue::get(VTT), T);
|
|
}
|
|
|
|
const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
|
|
RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
|
|
|
|
// And the rest of the call args.
|
|
EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
|
|
|
|
return EmitCall(CGM.getTypes().arrangeFunctionCall(FPT->getResultType(), Args,
|
|
FPT->getExtInfo(),
|
|
required),
|
|
Callee, ReturnValue, Args, MD);
|
|
}
|
|
|
|
static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
|
|
const Expr *E = Base;
|
|
|
|
while (true) {
|
|
E = E->IgnoreParens();
|
|
if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
|
|
if (CE->getCastKind() == CK_DerivedToBase ||
|
|
CE->getCastKind() == CK_UncheckedDerivedToBase ||
|
|
CE->getCastKind() == CK_NoOp) {
|
|
E = CE->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
QualType DerivedType = E->getType();
|
|
if (const PointerType *PTy = DerivedType->getAs<PointerType>())
|
|
DerivedType = PTy->getPointeeType();
|
|
|
|
return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
|
|
}
|
|
|
|
// FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
|
|
// quite what we want.
|
|
static const Expr *skipNoOpCastsAndParens(const Expr *E) {
|
|
while (true) {
|
|
if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
|
|
E = PE->getSubExpr();
|
|
continue;
|
|
}
|
|
|
|
if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
|
|
if (CE->getCastKind() == CK_NoOp) {
|
|
E = CE->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
|
|
if (UO->getOpcode() == UO_Extension) {
|
|
E = UO->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
return E;
|
|
}
|
|
}
|
|
|
|
/// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
|
|
/// expr can be devirtualized.
|
|
static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
|
|
const Expr *Base,
|
|
const CXXMethodDecl *MD) {
|
|
|
|
// When building with -fapple-kext, all calls must go through the vtable since
|
|
// the kernel linker can do runtime patching of vtables.
|
|
if (Context.getLangOpts().AppleKext)
|
|
return false;
|
|
|
|
// If the most derived class is marked final, we know that no subclass can
|
|
// override this member function and so we can devirtualize it. For example:
|
|
//
|
|
// struct A { virtual void f(); }
|
|
// struct B final : A { };
|
|
//
|
|
// void f(B *b) {
|
|
// b->f();
|
|
// }
|
|
//
|
|
const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
|
|
if (MostDerivedClassDecl->hasAttr<FinalAttr>())
|
|
return true;
|
|
|
|
// If the member function is marked 'final', we know that it can't be
|
|
// overridden and can therefore devirtualize it.
|
|
if (MD->hasAttr<FinalAttr>())
|
|
return true;
|
|
|
|
// Similarly, if the class itself is marked 'final' it can't be overridden
|
|
// and we can therefore devirtualize the member function call.
|
|
if (MD->getParent()->hasAttr<FinalAttr>())
|
|
return true;
|
|
|
|
Base = skipNoOpCastsAndParens(Base);
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
// This is a record decl. We know the type and can devirtualize it.
|
|
return VD->getType()->isRecordType();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// We can always devirtualize calls on temporary object expressions.
|
|
if (isa<CXXConstructExpr>(Base))
|
|
return true;
|
|
|
|
// And calls on bound temporaries.
|
|
if (isa<CXXBindTemporaryExpr>(Base))
|
|
return true;
|
|
|
|
// Check if this is a call expr that returns a record type.
|
|
if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
|
|
return CE->getCallReturnType()->isRecordType();
|
|
|
|
// We can't devirtualize the call.
|
|
return false;
|
|
}
|
|
|
|
// Note: This function also emit constructor calls to support a MSVC
|
|
// extensions allowing explicit constructor function call.
|
|
RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
|
|
ReturnValueSlot ReturnValue) {
|
|
const Expr *callee = CE->getCallee()->IgnoreParens();
|
|
|
|
if (isa<BinaryOperator>(callee))
|
|
return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
|
|
|
|
const MemberExpr *ME = cast<MemberExpr>(callee);
|
|
const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
|
|
|
|
CGDebugInfo *DI = getDebugInfo();
|
|
if (DI && CGM.getCodeGenOpts().LimitDebugInfo
|
|
&& !isa<CallExpr>(ME->getBase())) {
|
|
QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
|
|
if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
|
|
DI->getOrCreateRecordType(PTy->getPointeeType(),
|
|
MD->getParent()->getLocation());
|
|
}
|
|
}
|
|
|
|
if (MD->isStatic()) {
|
|
// The method is static, emit it as we would a regular call.
|
|
llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
|
|
return EmitCall(getContext().getPointerType(MD->getType()), Callee,
|
|
ReturnValue, CE->arg_begin(), CE->arg_end());
|
|
}
|
|
|
|
// Compute the object pointer.
|
|
llvm::Value *This;
|
|
if (ME->isArrow())
|
|
This = EmitScalarExpr(ME->getBase());
|
|
else
|
|
This = EmitLValue(ME->getBase()).getAddress();
|
|
|
|
if (MD->isTrivial()) {
|
|
if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
|
|
if (isa<CXXConstructorDecl>(MD) &&
|
|
cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
|
|
return RValue::get(0);
|
|
|
|
if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
|
|
// We don't like to generate the trivial copy/move assignment operator
|
|
// when it isn't necessary; just produce the proper effect here.
|
|
llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
|
|
EmitAggregateCopy(This, RHS, CE->getType());
|
|
return RValue::get(This);
|
|
}
|
|
|
|
if (isa<CXXConstructorDecl>(MD) &&
|
|
cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
|
|
// Trivial move and copy ctor are the same.
|
|
llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
|
|
EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
|
|
CE->arg_begin(), CE->arg_end());
|
|
return RValue::get(This);
|
|
}
|
|
llvm_unreachable("unknown trivial member function");
|
|
}
|
|
|
|
// Compute the function type we're calling.
|
|
const CGFunctionInfo *FInfo = 0;
|
|
if (isa<CXXDestructorDecl>(MD))
|
|
FInfo = &CGM.getTypes().arrangeCXXDestructor(cast<CXXDestructorDecl>(MD),
|
|
Dtor_Complete);
|
|
else if (isa<CXXConstructorDecl>(MD))
|
|
FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(
|
|
cast<CXXConstructorDecl>(MD),
|
|
Ctor_Complete);
|
|
else
|
|
FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD);
|
|
|
|
llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo);
|
|
|
|
// C++ [class.virtual]p12:
|
|
// Explicit qualification with the scope operator (5.1) suppresses the
|
|
// virtual call mechanism.
|
|
//
|
|
// We also don't emit a virtual call if the base expression has a record type
|
|
// because then we know what the type is.
|
|
bool UseVirtualCall;
|
|
UseVirtualCall = MD->isVirtual() && !ME->hasQualifier()
|
|
&& !canDevirtualizeMemberFunctionCalls(getContext(),
|
|
ME->getBase(), MD);
|
|
llvm::Value *Callee;
|
|
if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
if (UseVirtualCall) {
|
|
Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
|
|
} else {
|
|
if (getContext().getLangOpts().AppleKext &&
|
|
MD->isVirtual() &&
|
|
ME->hasQualifier())
|
|
Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
|
|
else
|
|
Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
|
|
}
|
|
} else if (const CXXConstructorDecl *Ctor =
|
|
dyn_cast<CXXConstructorDecl>(MD)) {
|
|
Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
|
|
} else if (UseVirtualCall) {
|
|
Callee = BuildVirtualCall(MD, This, Ty);
|
|
} else {
|
|
if (getContext().getLangOpts().AppleKext &&
|
|
MD->isVirtual() &&
|
|
ME->hasQualifier())
|
|
Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
|
|
else
|
|
Callee = CGM.GetAddrOfFunction(MD, Ty);
|
|
}
|
|
|
|
return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
|
|
CE->arg_begin(), CE->arg_end());
|
|
}
|
|
|
|
RValue
|
|
CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
|
|
ReturnValueSlot ReturnValue) {
|
|
const BinaryOperator *BO =
|
|
cast<BinaryOperator>(E->getCallee()->IgnoreParens());
|
|
const Expr *BaseExpr = BO->getLHS();
|
|
const Expr *MemFnExpr = BO->getRHS();
|
|
|
|
const MemberPointerType *MPT =
|
|
MemFnExpr->getType()->castAs<MemberPointerType>();
|
|
|
|
const FunctionProtoType *FPT =
|
|
MPT->getPointeeType()->castAs<FunctionProtoType>();
|
|
const CXXRecordDecl *RD =
|
|
cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
|
|
|
|
// Get the member function pointer.
|
|
llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
|
|
|
|
// Emit the 'this' pointer.
|
|
llvm::Value *This;
|
|
|
|
if (BO->getOpcode() == BO_PtrMemI)
|
|
This = EmitScalarExpr(BaseExpr);
|
|
else
|
|
This = EmitLValue(BaseExpr).getAddress();
|
|
|
|
// Ask the ABI to load the callee. Note that This is modified.
|
|
llvm::Value *Callee =
|
|
CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
|
|
|
|
CallArgList Args;
|
|
|
|
QualType ThisType =
|
|
getContext().getPointerType(getContext().getTagDeclType(RD));
|
|
|
|
// Push the this ptr.
|
|
Args.add(RValue::get(This), ThisType);
|
|
|
|
// And the rest of the call args
|
|
EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
|
|
return EmitCall(CGM.getTypes().arrangeFunctionCall(Args, FPT), Callee,
|
|
ReturnValue, Args);
|
|
}
|
|
|
|
RValue
|
|
CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
|
|
const CXXMethodDecl *MD,
|
|
ReturnValueSlot ReturnValue) {
|
|
assert(MD->isInstance() &&
|
|
"Trying to emit a member call expr on a static method!");
|
|
LValue LV = EmitLValue(E->getArg(0));
|
|
llvm::Value *This = LV.getAddress();
|
|
|
|
if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
|
|
MD->isTrivial()) {
|
|
llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
|
|
QualType Ty = E->getType();
|
|
EmitAggregateCopy(This, Src, Ty);
|
|
return RValue::get(This);
|
|
}
|
|
|
|
llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
|
|
return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
|
|
E->arg_begin() + 1, E->arg_end());
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
|
|
ReturnValueSlot ReturnValue) {
|
|
return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
|
|
}
|
|
|
|
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
|
|
llvm::Value *DestPtr,
|
|
const CXXRecordDecl *Base) {
|
|
if (Base->isEmpty())
|
|
return;
|
|
|
|
DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
|
|
|
|
const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
|
|
CharUnits Size = Layout.getNonVirtualSize();
|
|
CharUnits Align = Layout.getNonVirtualAlign();
|
|
|
|
llvm::Value *SizeVal = CGF.CGM.getSize(Size);
|
|
|
|
// If the type contains a pointer to data member we can't memset it to zero.
|
|
// Instead, create a null constant and copy it to the destination.
|
|
// TODO: there are other patterns besides zero that we can usefully memset,
|
|
// like -1, which happens to be the pattern used by member-pointers.
|
|
// TODO: isZeroInitializable can be over-conservative in the case where a
|
|
// virtual base contains a member pointer.
|
|
if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
|
|
llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
|
|
|
|
llvm::GlobalVariable *NullVariable =
|
|
new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
|
|
/*isConstant=*/true,
|
|
llvm::GlobalVariable::PrivateLinkage,
|
|
NullConstant, Twine());
|
|
NullVariable->setAlignment(Align.getQuantity());
|
|
llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
|
|
|
|
// Get and call the appropriate llvm.memcpy overload.
|
|
CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, just memset the whole thing to zero. This is legal
|
|
// because in LLVM, all default initializers (other than the ones we just
|
|
// handled above) are guaranteed to have a bit pattern of all zeros.
|
|
CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
|
|
Align.getQuantity());
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
|
|
AggValueSlot Dest) {
|
|
assert(!Dest.isIgnored() && "Must have a destination!");
|
|
const CXXConstructorDecl *CD = E->getConstructor();
|
|
|
|
// If we require zero initialization before (or instead of) calling the
|
|
// constructor, as can be the case with a non-user-provided default
|
|
// constructor, emit the zero initialization now, unless destination is
|
|
// already zeroed.
|
|
if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
|
|
switch (E->getConstructionKind()) {
|
|
case CXXConstructExpr::CK_Delegating:
|
|
assert(0 && "Delegating constructor should not need zeroing");
|
|
case CXXConstructExpr::CK_Complete:
|
|
EmitNullInitialization(Dest.getAddr(), E->getType());
|
|
break;
|
|
case CXXConstructExpr::CK_VirtualBase:
|
|
case CXXConstructExpr::CK_NonVirtualBase:
|
|
EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If this is a call to a trivial default constructor, do nothing.
|
|
if (CD->isTrivial() && CD->isDefaultConstructor())
|
|
return;
|
|
|
|
// Elide the constructor if we're constructing from a temporary.
|
|
// The temporary check is required because Sema sets this on NRVO
|
|
// returns.
|
|
if (getContext().getLangOpts().ElideConstructors && E->isElidable()) {
|
|
assert(getContext().hasSameUnqualifiedType(E->getType(),
|
|
E->getArg(0)->getType()));
|
|
if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
|
|
EmitAggExpr(E->getArg(0), Dest);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (const ConstantArrayType *arrayType
|
|
= getContext().getAsConstantArrayType(E->getType())) {
|
|
EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
|
|
E->arg_begin(), E->arg_end());
|
|
} else {
|
|
CXXCtorType Type = Ctor_Complete;
|
|
bool ForVirtualBase = false;
|
|
|
|
switch (E->getConstructionKind()) {
|
|
case CXXConstructExpr::CK_Delegating:
|
|
// We should be emitting a constructor; GlobalDecl will assert this
|
|
Type = CurGD.getCtorType();
|
|
break;
|
|
|
|
case CXXConstructExpr::CK_Complete:
|
|
Type = Ctor_Complete;
|
|
break;
|
|
|
|
case CXXConstructExpr::CK_VirtualBase:
|
|
ForVirtualBase = true;
|
|
// fall-through
|
|
|
|
case CXXConstructExpr::CK_NonVirtualBase:
|
|
Type = Ctor_Base;
|
|
}
|
|
|
|
// Call the constructor.
|
|
EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(),
|
|
E->arg_begin(), E->arg_end());
|
|
}
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
|
|
llvm::Value *Src,
|
|
const Expr *Exp) {
|
|
if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
|
|
Exp = E->getSubExpr();
|
|
assert(isa<CXXConstructExpr>(Exp) &&
|
|
"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
|
|
const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
|
|
const CXXConstructorDecl *CD = E->getConstructor();
|
|
RunCleanupsScope Scope(*this);
|
|
|
|
// If we require zero initialization before (or instead of) calling the
|
|
// constructor, as can be the case with a non-user-provided default
|
|
// constructor, emit the zero initialization now.
|
|
// FIXME. Do I still need this for a copy ctor synthesis?
|
|
if (E->requiresZeroInitialization())
|
|
EmitNullInitialization(Dest, E->getType());
|
|
|
|
assert(!getContext().getAsConstantArrayType(E->getType())
|
|
&& "EmitSynthesizedCXXCopyCtor - Copied-in Array");
|
|
EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
|
|
E->arg_begin(), E->arg_end());
|
|
}
|
|
|
|
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
|
|
const CXXNewExpr *E) {
|
|
if (!E->isArray())
|
|
return CharUnits::Zero();
|
|
|
|
// No cookie is required if the operator new[] being used is the
|
|
// reserved placement operator new[].
|
|
if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
|
|
return CharUnits::Zero();
|
|
|
|
return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
|
|
}
|
|
|
|
static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
|
|
const CXXNewExpr *e,
|
|
unsigned minElements,
|
|
llvm::Value *&numElements,
|
|
llvm::Value *&sizeWithoutCookie) {
|
|
QualType type = e->getAllocatedType();
|
|
|
|
if (!e->isArray()) {
|
|
CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
|
|
sizeWithoutCookie
|
|
= llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
|
|
return sizeWithoutCookie;
|
|
}
|
|
|
|
// The width of size_t.
|
|
unsigned sizeWidth = CGF.SizeTy->getBitWidth();
|
|
|
|
// Figure out the cookie size.
|
|
llvm::APInt cookieSize(sizeWidth,
|
|
CalculateCookiePadding(CGF, e).getQuantity());
|
|
|
|
// Emit the array size expression.
|
|
// We multiply the size of all dimensions for NumElements.
|
|
// e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
|
|
numElements = CGF.EmitScalarExpr(e->getArraySize());
|
|
assert(isa<llvm::IntegerType>(numElements->getType()));
|
|
|
|
// The number of elements can be have an arbitrary integer type;
|
|
// essentially, we need to multiply it by a constant factor, add a
|
|
// cookie size, and verify that the result is representable as a
|
|
// size_t. That's just a gloss, though, and it's wrong in one
|
|
// important way: if the count is negative, it's an error even if
|
|
// the cookie size would bring the total size >= 0.
|
|
bool isSigned
|
|
= e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
|
|
llvm::IntegerType *numElementsType
|
|
= cast<llvm::IntegerType>(numElements->getType());
|
|
unsigned numElementsWidth = numElementsType->getBitWidth();
|
|
|
|
// Compute the constant factor.
|
|
llvm::APInt arraySizeMultiplier(sizeWidth, 1);
|
|
while (const ConstantArrayType *CAT
|
|
= CGF.getContext().getAsConstantArrayType(type)) {
|
|
type = CAT->getElementType();
|
|
arraySizeMultiplier *= CAT->getSize();
|
|
}
|
|
|
|
CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
|
|
llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
|
|
typeSizeMultiplier *= arraySizeMultiplier;
|
|
|
|
// This will be a size_t.
|
|
llvm::Value *size;
|
|
|
|
// If someone is doing 'new int[42]' there is no need to do a dynamic check.
|
|
// Don't bloat the -O0 code.
|
|
if (llvm::ConstantInt *numElementsC =
|
|
dyn_cast<llvm::ConstantInt>(numElements)) {
|
|
const llvm::APInt &count = numElementsC->getValue();
|
|
|
|
bool hasAnyOverflow = false;
|
|
|
|
// If 'count' was a negative number, it's an overflow.
|
|
if (isSigned && count.isNegative())
|
|
hasAnyOverflow = true;
|
|
|
|
// We want to do all this arithmetic in size_t. If numElements is
|
|
// wider than that, check whether it's already too big, and if so,
|
|
// overflow.
|
|
else if (numElementsWidth > sizeWidth &&
|
|
numElementsWidth - sizeWidth > count.countLeadingZeros())
|
|
hasAnyOverflow = true;
|
|
|
|
// Okay, compute a count at the right width.
|
|
llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
|
|
|
|
// If there is a brace-initializer, we cannot allocate fewer elements than
|
|
// there are initializers. If we do, that's treated like an overflow.
|
|
if (adjustedCount.ult(minElements))
|
|
hasAnyOverflow = true;
|
|
|
|
// Scale numElements by that. This might overflow, but we don't
|
|
// care because it only overflows if allocationSize does, too, and
|
|
// if that overflows then we shouldn't use this.
|
|
numElements = llvm::ConstantInt::get(CGF.SizeTy,
|
|
adjustedCount * arraySizeMultiplier);
|
|
|
|
// Compute the size before cookie, and track whether it overflowed.
|
|
bool overflow;
|
|
llvm::APInt allocationSize
|
|
= adjustedCount.umul_ov(typeSizeMultiplier, overflow);
|
|
hasAnyOverflow |= overflow;
|
|
|
|
// Add in the cookie, and check whether it's overflowed.
|
|
if (cookieSize != 0) {
|
|
// Save the current size without a cookie. This shouldn't be
|
|
// used if there was overflow.
|
|
sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
|
|
|
|
allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
|
|
hasAnyOverflow |= overflow;
|
|
}
|
|
|
|
// On overflow, produce a -1 so operator new will fail.
|
|
if (hasAnyOverflow) {
|
|
size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
|
|
} else {
|
|
size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
|
|
}
|
|
|
|
// Otherwise, we might need to use the overflow intrinsics.
|
|
} else {
|
|
// There are up to five conditions we need to test for:
|
|
// 1) if isSigned, we need to check whether numElements is negative;
|
|
// 2) if numElementsWidth > sizeWidth, we need to check whether
|
|
// numElements is larger than something representable in size_t;
|
|
// 3) if minElements > 0, we need to check whether numElements is smaller
|
|
// than that.
|
|
// 4) we need to compute
|
|
// sizeWithoutCookie := numElements * typeSizeMultiplier
|
|
// and check whether it overflows; and
|
|
// 5) if we need a cookie, we need to compute
|
|
// size := sizeWithoutCookie + cookieSize
|
|
// and check whether it overflows.
|
|
|
|
llvm::Value *hasOverflow = 0;
|
|
|
|
// If numElementsWidth > sizeWidth, then one way or another, we're
|
|
// going to have to do a comparison for (2), and this happens to
|
|
// take care of (1), too.
|
|
if (numElementsWidth > sizeWidth) {
|
|
llvm::APInt threshold(numElementsWidth, 1);
|
|
threshold <<= sizeWidth;
|
|
|
|
llvm::Value *thresholdV
|
|
= llvm::ConstantInt::get(numElementsType, threshold);
|
|
|
|
hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
|
|
numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
|
|
|
|
// Otherwise, if we're signed, we want to sext up to size_t.
|
|
} else if (isSigned) {
|
|
if (numElementsWidth < sizeWidth)
|
|
numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
|
|
|
|
// If there's a non-1 type size multiplier, then we can do the
|
|
// signedness check at the same time as we do the multiply
|
|
// because a negative number times anything will cause an
|
|
// unsigned overflow. Otherwise, we have to do it here. But at least
|
|
// in this case, we can subsume the >= minElements check.
|
|
if (typeSizeMultiplier == 1)
|
|
hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
|
|
llvm::ConstantInt::get(CGF.SizeTy, minElements));
|
|
|
|
// Otherwise, zext up to size_t if necessary.
|
|
} else if (numElementsWidth < sizeWidth) {
|
|
numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
|
|
}
|
|
|
|
assert(numElements->getType() == CGF.SizeTy);
|
|
|
|
if (minElements) {
|
|
// Don't allow allocation of fewer elements than we have initializers.
|
|
if (!hasOverflow) {
|
|
hasOverflow = CGF.Builder.CreateICmpULT(numElements,
|
|
llvm::ConstantInt::get(CGF.SizeTy, minElements));
|
|
} else if (numElementsWidth > sizeWidth) {
|
|
// The other existing overflow subsumes this check.
|
|
// We do an unsigned comparison, since any signed value < -1 is
|
|
// taken care of either above or below.
|
|
hasOverflow = CGF.Builder.CreateOr(hasOverflow,
|
|
CGF.Builder.CreateICmpULT(numElements,
|
|
llvm::ConstantInt::get(CGF.SizeTy, minElements)));
|
|
}
|
|
}
|
|
|
|
size = numElements;
|
|
|
|
// Multiply by the type size if necessary. This multiplier
|
|
// includes all the factors for nested arrays.
|
|
//
|
|
// This step also causes numElements to be scaled up by the
|
|
// nested-array factor if necessary. Overflow on this computation
|
|
// can be ignored because the result shouldn't be used if
|
|
// allocation fails.
|
|
if (typeSizeMultiplier != 1) {
|
|
llvm::Value *umul_with_overflow
|
|
= CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
|
|
|
|
llvm::Value *tsmV =
|
|
llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
|
|
llvm::Value *result =
|
|
CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
|
|
|
|
llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
|
|
if (hasOverflow)
|
|
hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
|
|
else
|
|
hasOverflow = overflowed;
|
|
|
|
size = CGF.Builder.CreateExtractValue(result, 0);
|
|
|
|
// Also scale up numElements by the array size multiplier.
|
|
if (arraySizeMultiplier != 1) {
|
|
// If the base element type size is 1, then we can re-use the
|
|
// multiply we just did.
|
|
if (typeSize.isOne()) {
|
|
assert(arraySizeMultiplier == typeSizeMultiplier);
|
|
numElements = size;
|
|
|
|
// Otherwise we need a separate multiply.
|
|
} else {
|
|
llvm::Value *asmV =
|
|
llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
|
|
numElements = CGF.Builder.CreateMul(numElements, asmV);
|
|
}
|
|
}
|
|
} else {
|
|
// numElements doesn't need to be scaled.
|
|
assert(arraySizeMultiplier == 1);
|
|
}
|
|
|
|
// Add in the cookie size if necessary.
|
|
if (cookieSize != 0) {
|
|
sizeWithoutCookie = size;
|
|
|
|
llvm::Value *uadd_with_overflow
|
|
= CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
|
|
|
|
llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
|
|
llvm::Value *result =
|
|
CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
|
|
|
|
llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
|
|
if (hasOverflow)
|
|
hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
|
|
else
|
|
hasOverflow = overflowed;
|
|
|
|
size = CGF.Builder.CreateExtractValue(result, 0);
|
|
}
|
|
|
|
// If we had any possibility of dynamic overflow, make a select to
|
|
// overwrite 'size' with an all-ones value, which should cause
|
|
// operator new to throw.
|
|
if (hasOverflow)
|
|
size = CGF.Builder.CreateSelect(hasOverflow,
|
|
llvm::Constant::getAllOnesValue(CGF.SizeTy),
|
|
size);
|
|
}
|
|
|
|
if (cookieSize == 0)
|
|
sizeWithoutCookie = size;
|
|
else
|
|
assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
|
|
|
|
return size;
|
|
}
|
|
|
|
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
|
|
QualType AllocType, llvm::Value *NewPtr) {
|
|
|
|
CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
|
|
if (!CGF.hasAggregateLLVMType(AllocType))
|
|
CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType,
|
|
Alignment),
|
|
false);
|
|
else if (AllocType->isAnyComplexType())
|
|
CGF.EmitComplexExprIntoAddr(Init, NewPtr,
|
|
AllocType.isVolatileQualified());
|
|
else {
|
|
AggValueSlot Slot
|
|
= AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
|
|
AggValueSlot::IsDestructed,
|
|
AggValueSlot::DoesNotNeedGCBarriers,
|
|
AggValueSlot::IsNotAliased);
|
|
CGF.EmitAggExpr(Init, Slot);
|
|
|
|
CGF.MaybeEmitStdInitializerListCleanup(NewPtr, Init);
|
|
}
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
|
|
QualType elementType,
|
|
llvm::Value *beginPtr,
|
|
llvm::Value *numElements) {
|
|
if (!E->hasInitializer())
|
|
return; // We have a POD type.
|
|
|
|
llvm::Value *explicitPtr = beginPtr;
|
|
// Find the end of the array, hoisted out of the loop.
|
|
llvm::Value *endPtr =
|
|
Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end");
|
|
|
|
unsigned initializerElements = 0;
|
|
|
|
const Expr *Init = E->getInitializer();
|
|
llvm::AllocaInst *endOfInit = 0;
|
|
QualType::DestructionKind dtorKind = elementType.isDestructedType();
|
|
EHScopeStack::stable_iterator cleanup;
|
|
llvm::Instruction *cleanupDominator = 0;
|
|
// If the initializer is an initializer list, first do the explicit elements.
|
|
if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
|
|
initializerElements = ILE->getNumInits();
|
|
|
|
// Enter a partial-destruction cleanup if necessary.
|
|
if (needsEHCleanup(dtorKind)) {
|
|
// In principle we could tell the cleanup where we are more
|
|
// directly, but the control flow can get so varied here that it
|
|
// would actually be quite complex. Therefore we go through an
|
|
// alloca.
|
|
endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit");
|
|
cleanupDominator = Builder.CreateStore(beginPtr, endOfInit);
|
|
pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType,
|
|
getDestroyer(dtorKind));
|
|
cleanup = EHStack.stable_begin();
|
|
}
|
|
|
|
for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
|
|
// Tell the cleanup that it needs to destroy up to this
|
|
// element. TODO: some of these stores can be trivially
|
|
// observed to be unnecessary.
|
|
if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit);
|
|
StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr);
|
|
explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next");
|
|
}
|
|
|
|
// The remaining elements are filled with the array filler expression.
|
|
Init = ILE->getArrayFiller();
|
|
}
|
|
|
|
// Create the continuation block.
|
|
llvm::BasicBlock *contBB = createBasicBlock("new.loop.end");
|
|
|
|
// If the number of elements isn't constant, we have to now check if there is
|
|
// anything left to initialize.
|
|
if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) {
|
|
// If all elements have already been initialized, skip the whole loop.
|
|
if (constNum->getZExtValue() <= initializerElements) {
|
|
// If there was a cleanup, deactivate it.
|
|
if (cleanupDominator)
|
|
DeactivateCleanupBlock(cleanup, cleanupDominator);;
|
|
return;
|
|
}
|
|
} else {
|
|
llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty");
|
|
llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr,
|
|
"array.isempty");
|
|
Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB);
|
|
EmitBlock(nonEmptyBB);
|
|
}
|
|
|
|
// Enter the loop.
|
|
llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
|
|
llvm::BasicBlock *loopBB = createBasicBlock("new.loop");
|
|
|
|
EmitBlock(loopBB);
|
|
|
|
// Set up the current-element phi.
|
|
llvm::PHINode *curPtr =
|
|
Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur");
|
|
curPtr->addIncoming(explicitPtr, entryBB);
|
|
|
|
// Store the new cleanup position for irregular cleanups.
|
|
if (endOfInit) Builder.CreateStore(curPtr, endOfInit);
|
|
|
|
// Enter a partial-destruction cleanup if necessary.
|
|
if (!cleanupDominator && needsEHCleanup(dtorKind)) {
|
|
pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType,
|
|
getDestroyer(dtorKind));
|
|
cleanup = EHStack.stable_begin();
|
|
cleanupDominator = Builder.CreateUnreachable();
|
|
}
|
|
|
|
// Emit the initializer into this element.
|
|
StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr);
|
|
|
|
// Leave the cleanup if we entered one.
|
|
if (cleanupDominator) {
|
|
DeactivateCleanupBlock(cleanup, cleanupDominator);
|
|
cleanupDominator->eraseFromParent();
|
|
}
|
|
|
|
// Advance to the next element.
|
|
llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next");
|
|
|
|
// Check whether we've gotten to the end of the array and, if so,
|
|
// exit the loop.
|
|
llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend");
|
|
Builder.CreateCondBr(isEnd, contBB, loopBB);
|
|
curPtr->addIncoming(nextPtr, Builder.GetInsertBlock());
|
|
|
|
EmitBlock(contBB);
|
|
}
|
|
|
|
static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
|
|
llvm::Value *NewPtr, llvm::Value *Size) {
|
|
CGF.EmitCastToVoidPtr(NewPtr);
|
|
CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
|
|
CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
|
|
Alignment.getQuantity(), false);
|
|
}
|
|
|
|
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
|
|
QualType ElementType,
|
|
llvm::Value *NewPtr,
|
|
llvm::Value *NumElements,
|
|
llvm::Value *AllocSizeWithoutCookie) {
|
|
const Expr *Init = E->getInitializer();
|
|
if (E->isArray()) {
|
|
if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){
|
|
CXXConstructorDecl *Ctor = CCE->getConstructor();
|
|
bool RequiresZeroInitialization = false;
|
|
if (Ctor->isTrivial()) {
|
|
// If new expression did not specify value-initialization, then there
|
|
// is no initialization.
|
|
if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
|
|
return;
|
|
|
|
if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
|
|
// Optimization: since zero initialization will just set the memory
|
|
// to all zeroes, generate a single memset to do it in one shot.
|
|
EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
|
|
return;
|
|
}
|
|
|
|
RequiresZeroInitialization = true;
|
|
}
|
|
|
|
CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
|
|
CCE->arg_begin(), CCE->arg_end(),
|
|
RequiresZeroInitialization);
|
|
return;
|
|
} else if (Init && isa<ImplicitValueInitExpr>(Init) &&
|
|
CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
|
|
// Optimization: since zero initialization will just set the memory
|
|
// to all zeroes, generate a single memset to do it in one shot.
|
|
EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
|
|
return;
|
|
}
|
|
CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements);
|
|
return;
|
|
}
|
|
|
|
if (!Init)
|
|
return;
|
|
|
|
StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
|
|
}
|
|
|
|
namespace {
|
|
/// A cleanup to call the given 'operator delete' function upon
|
|
/// abnormal exit from a new expression.
|
|
class CallDeleteDuringNew : public EHScopeStack::Cleanup {
|
|
size_t NumPlacementArgs;
|
|
const FunctionDecl *OperatorDelete;
|
|
llvm::Value *Ptr;
|
|
llvm::Value *AllocSize;
|
|
|
|
RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
|
|
|
|
public:
|
|
static size_t getExtraSize(size_t NumPlacementArgs) {
|
|
return NumPlacementArgs * sizeof(RValue);
|
|
}
|
|
|
|
CallDeleteDuringNew(size_t NumPlacementArgs,
|
|
const FunctionDecl *OperatorDelete,
|
|
llvm::Value *Ptr,
|
|
llvm::Value *AllocSize)
|
|
: NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
|
|
Ptr(Ptr), AllocSize(AllocSize) {}
|
|
|
|
void setPlacementArg(unsigned I, RValue Arg) {
|
|
assert(I < NumPlacementArgs && "index out of range");
|
|
getPlacementArgs()[I] = Arg;
|
|
}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) {
|
|
const FunctionProtoType *FPT
|
|
= OperatorDelete->getType()->getAs<FunctionProtoType>();
|
|
assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
|
|
(FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
|
|
|
|
CallArgList DeleteArgs;
|
|
|
|
// The first argument is always a void*.
|
|
FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
|
|
DeleteArgs.add(RValue::get(Ptr), *AI++);
|
|
|
|
// A member 'operator delete' can take an extra 'size_t' argument.
|
|
if (FPT->getNumArgs() == NumPlacementArgs + 2)
|
|
DeleteArgs.add(RValue::get(AllocSize), *AI++);
|
|
|
|
// Pass the rest of the arguments, which must match exactly.
|
|
for (unsigned I = 0; I != NumPlacementArgs; ++I)
|
|
DeleteArgs.add(getPlacementArgs()[I], *AI++);
|
|
|
|
// Call 'operator delete'.
|
|
CGF.EmitCall(CGF.CGM.getTypes().arrangeFunctionCall(DeleteArgs, FPT),
|
|
CGF.CGM.GetAddrOfFunction(OperatorDelete),
|
|
ReturnValueSlot(), DeleteArgs, OperatorDelete);
|
|
}
|
|
};
|
|
|
|
/// A cleanup to call the given 'operator delete' function upon
|
|
/// abnormal exit from a new expression when the new expression is
|
|
/// conditional.
|
|
class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
|
|
size_t NumPlacementArgs;
|
|
const FunctionDecl *OperatorDelete;
|
|
DominatingValue<RValue>::saved_type Ptr;
|
|
DominatingValue<RValue>::saved_type AllocSize;
|
|
|
|
DominatingValue<RValue>::saved_type *getPlacementArgs() {
|
|
return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
|
|
}
|
|
|
|
public:
|
|
static size_t getExtraSize(size_t NumPlacementArgs) {
|
|
return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
|
|
}
|
|
|
|
CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
|
|
const FunctionDecl *OperatorDelete,
|
|
DominatingValue<RValue>::saved_type Ptr,
|
|
DominatingValue<RValue>::saved_type AllocSize)
|
|
: NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
|
|
Ptr(Ptr), AllocSize(AllocSize) {}
|
|
|
|
void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
|
|
assert(I < NumPlacementArgs && "index out of range");
|
|
getPlacementArgs()[I] = Arg;
|
|
}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) {
|
|
const FunctionProtoType *FPT
|
|
= OperatorDelete->getType()->getAs<FunctionProtoType>();
|
|
assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
|
|
(FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
|
|
|
|
CallArgList DeleteArgs;
|
|
|
|
// The first argument is always a void*.
|
|
FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
|
|
DeleteArgs.add(Ptr.restore(CGF), *AI++);
|
|
|
|
// A member 'operator delete' can take an extra 'size_t' argument.
|
|
if (FPT->getNumArgs() == NumPlacementArgs + 2) {
|
|
RValue RV = AllocSize.restore(CGF);
|
|
DeleteArgs.add(RV, *AI++);
|
|
}
|
|
|
|
// Pass the rest of the arguments, which must match exactly.
|
|
for (unsigned I = 0; I != NumPlacementArgs; ++I) {
|
|
RValue RV = getPlacementArgs()[I].restore(CGF);
|
|
DeleteArgs.add(RV, *AI++);
|
|
}
|
|
|
|
// Call 'operator delete'.
|
|
CGF.EmitCall(CGF.CGM.getTypes().arrangeFunctionCall(DeleteArgs, FPT),
|
|
CGF.CGM.GetAddrOfFunction(OperatorDelete),
|
|
ReturnValueSlot(), DeleteArgs, OperatorDelete);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Enter a cleanup to call 'operator delete' if the initializer in a
|
|
/// new-expression throws.
|
|
static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
|
|
const CXXNewExpr *E,
|
|
llvm::Value *NewPtr,
|
|
llvm::Value *AllocSize,
|
|
const CallArgList &NewArgs) {
|
|
// If we're not inside a conditional branch, then the cleanup will
|
|
// dominate and we can do the easier (and more efficient) thing.
|
|
if (!CGF.isInConditionalBranch()) {
|
|
CallDeleteDuringNew *Cleanup = CGF.EHStack
|
|
.pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
|
|
E->getNumPlacementArgs(),
|
|
E->getOperatorDelete(),
|
|
NewPtr, AllocSize);
|
|
for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
|
|
Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
|
|
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we need to save all this stuff.
|
|
DominatingValue<RValue>::saved_type SavedNewPtr =
|
|
DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
|
|
DominatingValue<RValue>::saved_type SavedAllocSize =
|
|
DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
|
|
|
|
CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
|
|
.pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
|
|
E->getNumPlacementArgs(),
|
|
E->getOperatorDelete(),
|
|
SavedNewPtr,
|
|
SavedAllocSize);
|
|
for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
|
|
Cleanup->setPlacementArg(I,
|
|
DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
|
|
|
|
CGF.initFullExprCleanup();
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
|
|
// The element type being allocated.
|
|
QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
|
|
|
|
// 1. Build a call to the allocation function.
|
|
FunctionDecl *allocator = E->getOperatorNew();
|
|
const FunctionProtoType *allocatorType =
|
|
allocator->getType()->castAs<FunctionProtoType>();
|
|
|
|
CallArgList allocatorArgs;
|
|
|
|
// The allocation size is the first argument.
|
|
QualType sizeType = getContext().getSizeType();
|
|
|
|
// If there is a brace-initializer, cannot allocate fewer elements than inits.
|
|
unsigned minElements = 0;
|
|
if (E->isArray() && E->hasInitializer()) {
|
|
if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
|
|
minElements = ILE->getNumInits();
|
|
}
|
|
|
|
llvm::Value *numElements = 0;
|
|
llvm::Value *allocSizeWithoutCookie = 0;
|
|
llvm::Value *allocSize =
|
|
EmitCXXNewAllocSize(*this, E, minElements, numElements,
|
|
allocSizeWithoutCookie);
|
|
|
|
allocatorArgs.add(RValue::get(allocSize), sizeType);
|
|
|
|
// Emit the rest of the arguments.
|
|
// FIXME: Ideally, this should just use EmitCallArgs.
|
|
CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
|
|
|
|
// First, use the types from the function type.
|
|
// We start at 1 here because the first argument (the allocation size)
|
|
// has already been emitted.
|
|
for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
|
|
++i, ++placementArg) {
|
|
QualType argType = allocatorType->getArgType(i);
|
|
|
|
assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
|
|
placementArg->getType()) &&
|
|
"type mismatch in call argument!");
|
|
|
|
EmitCallArg(allocatorArgs, *placementArg, argType);
|
|
}
|
|
|
|
// Either we've emitted all the call args, or we have a call to a
|
|
// variadic function.
|
|
assert((placementArg == E->placement_arg_end() ||
|
|
allocatorType->isVariadic()) &&
|
|
"Extra arguments to non-variadic function!");
|
|
|
|
// If we still have any arguments, emit them using the type of the argument.
|
|
for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
|
|
placementArg != placementArgsEnd; ++placementArg) {
|
|
EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
|
|
}
|
|
|
|
// Emit the allocation call. If the allocator is a global placement
|
|
// operator, just "inline" it directly.
|
|
RValue RV;
|
|
if (allocator->isReservedGlobalPlacementOperator()) {
|
|
assert(allocatorArgs.size() == 2);
|
|
RV = allocatorArgs[1].RV;
|
|
// TODO: kill any unnecessary computations done for the size
|
|
// argument.
|
|
} else {
|
|
RV = EmitCall(CGM.getTypes().arrangeFunctionCall(allocatorArgs,
|
|
allocatorType),
|
|
CGM.GetAddrOfFunction(allocator), ReturnValueSlot(),
|
|
allocatorArgs, allocator);
|
|
}
|
|
|
|
// Emit a null check on the allocation result if the allocation
|
|
// function is allowed to return null (because it has a non-throwing
|
|
// exception spec; for this part, we inline
|
|
// CXXNewExpr::shouldNullCheckAllocation()) and we have an
|
|
// interesting initializer.
|
|
bool nullCheck = allocatorType->isNothrow(getContext()) &&
|
|
(!allocType.isPODType(getContext()) || E->hasInitializer());
|
|
|
|
llvm::BasicBlock *nullCheckBB = 0;
|
|
llvm::BasicBlock *contBB = 0;
|
|
|
|
llvm::Value *allocation = RV.getScalarVal();
|
|
unsigned AS =
|
|
cast<llvm::PointerType>(allocation->getType())->getAddressSpace();
|
|
|
|
// The null-check means that the initializer is conditionally
|
|
// evaluated.
|
|
ConditionalEvaluation conditional(*this);
|
|
|
|
if (nullCheck) {
|
|
conditional.begin(*this);
|
|
|
|
nullCheckBB = Builder.GetInsertBlock();
|
|
llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
|
|
contBB = createBasicBlock("new.cont");
|
|
|
|
llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
|
|
Builder.CreateCondBr(isNull, contBB, notNullBB);
|
|
EmitBlock(notNullBB);
|
|
}
|
|
|
|
// If there's an operator delete, enter a cleanup to call it if an
|
|
// exception is thrown.
|
|
EHScopeStack::stable_iterator operatorDeleteCleanup;
|
|
llvm::Instruction *cleanupDominator = 0;
|
|
if (E->getOperatorDelete() &&
|
|
!E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
|
|
EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
|
|
operatorDeleteCleanup = EHStack.stable_begin();
|
|
cleanupDominator = Builder.CreateUnreachable();
|
|
}
|
|
|
|
assert((allocSize == allocSizeWithoutCookie) ==
|
|
CalculateCookiePadding(*this, E).isZero());
|
|
if (allocSize != allocSizeWithoutCookie) {
|
|
assert(E->isArray());
|
|
allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
|
|
numElements,
|
|
E, allocType);
|
|
}
|
|
|
|
llvm::Type *elementPtrTy
|
|
= ConvertTypeForMem(allocType)->getPointerTo(AS);
|
|
llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
|
|
|
|
EmitNewInitializer(*this, E, allocType, result, numElements,
|
|
allocSizeWithoutCookie);
|
|
if (E->isArray()) {
|
|
// NewPtr is a pointer to the base element type. If we're
|
|
// allocating an array of arrays, we'll need to cast back to the
|
|
// array pointer type.
|
|
llvm::Type *resultType = ConvertTypeForMem(E->getType());
|
|
if (result->getType() != resultType)
|
|
result = Builder.CreateBitCast(result, resultType);
|
|
}
|
|
|
|
// Deactivate the 'operator delete' cleanup if we finished
|
|
// initialization.
|
|
if (operatorDeleteCleanup.isValid()) {
|
|
DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
|
|
cleanupDominator->eraseFromParent();
|
|
}
|
|
|
|
if (nullCheck) {
|
|
conditional.end(*this);
|
|
|
|
llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
|
|
EmitBlock(contBB);
|
|
|
|
llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
|
|
PHI->addIncoming(result, notNullBB);
|
|
PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
|
|
nullCheckBB);
|
|
|
|
result = PHI;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
|
|
llvm::Value *Ptr,
|
|
QualType DeleteTy) {
|
|
assert(DeleteFD->getOverloadedOperator() == OO_Delete);
|
|
|
|
const FunctionProtoType *DeleteFTy =
|
|
DeleteFD->getType()->getAs<FunctionProtoType>();
|
|
|
|
CallArgList DeleteArgs;
|
|
|
|
// Check if we need to pass the size to the delete operator.
|
|
llvm::Value *Size = 0;
|
|
QualType SizeTy;
|
|
if (DeleteFTy->getNumArgs() == 2) {
|
|
SizeTy = DeleteFTy->getArgType(1);
|
|
CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
|
|
Size = llvm::ConstantInt::get(ConvertType(SizeTy),
|
|
DeleteTypeSize.getQuantity());
|
|
}
|
|
|
|
QualType ArgTy = DeleteFTy->getArgType(0);
|
|
llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
|
|
DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
|
|
|
|
if (Size)
|
|
DeleteArgs.add(RValue::get(Size), SizeTy);
|
|
|
|
// Emit the call to delete.
|
|
EmitCall(CGM.getTypes().arrangeFunctionCall(DeleteArgs, DeleteFTy),
|
|
CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(),
|
|
DeleteArgs, DeleteFD);
|
|
}
|
|
|
|
namespace {
|
|
/// Calls the given 'operator delete' on a single object.
|
|
struct CallObjectDelete : EHScopeStack::Cleanup {
|
|
llvm::Value *Ptr;
|
|
const FunctionDecl *OperatorDelete;
|
|
QualType ElementType;
|
|
|
|
CallObjectDelete(llvm::Value *Ptr,
|
|
const FunctionDecl *OperatorDelete,
|
|
QualType ElementType)
|
|
: Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) {
|
|
CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Emit the code for deleting a single object.
|
|
static void EmitObjectDelete(CodeGenFunction &CGF,
|
|
const FunctionDecl *OperatorDelete,
|
|
llvm::Value *Ptr,
|
|
QualType ElementType,
|
|
bool UseGlobalDelete) {
|
|
// Find the destructor for the type, if applicable. If the
|
|
// destructor is virtual, we'll just emit the vcall and return.
|
|
const CXXDestructorDecl *Dtor = 0;
|
|
if (const RecordType *RT = ElementType->getAs<RecordType>()) {
|
|
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
|
|
Dtor = RD->getDestructor();
|
|
|
|
if (Dtor->isVirtual()) {
|
|
if (UseGlobalDelete) {
|
|
// If we're supposed to call the global delete, make sure we do so
|
|
// even if the destructor throws.
|
|
CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
|
|
Ptr, OperatorDelete,
|
|
ElementType);
|
|
}
|
|
|
|
llvm::Type *Ty =
|
|
CGF.getTypes().GetFunctionType(
|
|
CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete));
|
|
|
|
llvm::Value *Callee
|
|
= CGF.BuildVirtualCall(Dtor,
|
|
UseGlobalDelete? Dtor_Complete : Dtor_Deleting,
|
|
Ptr, Ty);
|
|
CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0,
|
|
0, 0);
|
|
|
|
if (UseGlobalDelete) {
|
|
CGF.PopCleanupBlock();
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make sure that we call delete even if the dtor throws.
|
|
// This doesn't have to a conditional cleanup because we're going
|
|
// to pop it off in a second.
|
|
CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
|
|
Ptr, OperatorDelete, ElementType);
|
|
|
|
if (Dtor)
|
|
CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
|
|
/*ForVirtualBase=*/false, Ptr);
|
|
else if (CGF.getLangOpts().ObjCAutoRefCount &&
|
|
ElementType->isObjCLifetimeType()) {
|
|
switch (ElementType.getObjCLifetime()) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
break;
|
|
|
|
case Qualifiers::OCL_Strong: {
|
|
// Load the pointer value.
|
|
llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
|
|
ElementType.isVolatileQualified());
|
|
|
|
CGF.EmitARCRelease(PtrValue, /*precise*/ true);
|
|
break;
|
|
}
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
CGF.EmitARCDestroyWeak(Ptr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
CGF.PopCleanupBlock();
|
|
}
|
|
|
|
namespace {
|
|
/// Calls the given 'operator delete' on an array of objects.
|
|
struct CallArrayDelete : EHScopeStack::Cleanup {
|
|
llvm::Value *Ptr;
|
|
const FunctionDecl *OperatorDelete;
|
|
llvm::Value *NumElements;
|
|
QualType ElementType;
|
|
CharUnits CookieSize;
|
|
|
|
CallArrayDelete(llvm::Value *Ptr,
|
|
const FunctionDecl *OperatorDelete,
|
|
llvm::Value *NumElements,
|
|
QualType ElementType,
|
|
CharUnits CookieSize)
|
|
: Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
|
|
ElementType(ElementType), CookieSize(CookieSize) {}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) {
|
|
const FunctionProtoType *DeleteFTy =
|
|
OperatorDelete->getType()->getAs<FunctionProtoType>();
|
|
assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
|
|
|
|
CallArgList Args;
|
|
|
|
// Pass the pointer as the first argument.
|
|
QualType VoidPtrTy = DeleteFTy->getArgType(0);
|
|
llvm::Value *DeletePtr
|
|
= CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
|
|
Args.add(RValue::get(DeletePtr), VoidPtrTy);
|
|
|
|
// Pass the original requested size as the second argument.
|
|
if (DeleteFTy->getNumArgs() == 2) {
|
|
QualType size_t = DeleteFTy->getArgType(1);
|
|
llvm::IntegerType *SizeTy
|
|
= cast<llvm::IntegerType>(CGF.ConvertType(size_t));
|
|
|
|
CharUnits ElementTypeSize =
|
|
CGF.CGM.getContext().getTypeSizeInChars(ElementType);
|
|
|
|
// The size of an element, multiplied by the number of elements.
|
|
llvm::Value *Size
|
|
= llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
|
|
Size = CGF.Builder.CreateMul(Size, NumElements);
|
|
|
|
// Plus the size of the cookie if applicable.
|
|
if (!CookieSize.isZero()) {
|
|
llvm::Value *CookieSizeV
|
|
= llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
|
|
Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
|
|
}
|
|
|
|
Args.add(RValue::get(Size), size_t);
|
|
}
|
|
|
|
// Emit the call to delete.
|
|
CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(Args, DeleteFTy),
|
|
CGF.CGM.GetAddrOfFunction(OperatorDelete),
|
|
ReturnValueSlot(), Args, OperatorDelete);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Emit the code for deleting an array of objects.
|
|
static void EmitArrayDelete(CodeGenFunction &CGF,
|
|
const CXXDeleteExpr *E,
|
|
llvm::Value *deletedPtr,
|
|
QualType elementType) {
|
|
llvm::Value *numElements = 0;
|
|
llvm::Value *allocatedPtr = 0;
|
|
CharUnits cookieSize;
|
|
CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
|
|
numElements, allocatedPtr, cookieSize);
|
|
|
|
assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
|
|
|
|
// Make sure that we call delete even if one of the dtors throws.
|
|
const FunctionDecl *operatorDelete = E->getOperatorDelete();
|
|
CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
|
|
allocatedPtr, operatorDelete,
|
|
numElements, elementType,
|
|
cookieSize);
|
|
|
|
// Destroy the elements.
|
|
if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
|
|
assert(numElements && "no element count for a type with a destructor!");
|
|
|
|
llvm::Value *arrayEnd =
|
|
CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
|
|
|
|
// Note that it is legal to allocate a zero-length array, and we
|
|
// can never fold the check away because the length should always
|
|
// come from a cookie.
|
|
CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
|
|
CGF.getDestroyer(dtorKind),
|
|
/*checkZeroLength*/ true,
|
|
CGF.needsEHCleanup(dtorKind));
|
|
}
|
|
|
|
// Pop the cleanup block.
|
|
CGF.PopCleanupBlock();
|
|
}
|
|
|
|
void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
|
|
|
|
// Get at the argument before we performed the implicit conversion
|
|
// to void*.
|
|
const Expr *Arg = E->getArgument();
|
|
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
|
|
if (ICE->getCastKind() != CK_UserDefinedConversion &&
|
|
ICE->getType()->isVoidPointerType())
|
|
Arg = ICE->getSubExpr();
|
|
else
|
|
break;
|
|
}
|
|
|
|
llvm::Value *Ptr = EmitScalarExpr(Arg);
|
|
|
|
// Null check the pointer.
|
|
llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
|
|
llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
|
|
|
|
llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
|
|
|
|
Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
|
|
EmitBlock(DeleteNotNull);
|
|
|
|
// We might be deleting a pointer to array. If so, GEP down to the
|
|
// first non-array element.
|
|
// (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
|
|
QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
|
|
if (DeleteTy->isConstantArrayType()) {
|
|
llvm::Value *Zero = Builder.getInt32(0);
|
|
SmallVector<llvm::Value*,8> GEP;
|
|
|
|
GEP.push_back(Zero); // point at the outermost array
|
|
|
|
// For each layer of array type we're pointing at:
|
|
while (const ConstantArrayType *Arr
|
|
= getContext().getAsConstantArrayType(DeleteTy)) {
|
|
// 1. Unpeel the array type.
|
|
DeleteTy = Arr->getElementType();
|
|
|
|
// 2. GEP to the first element of the array.
|
|
GEP.push_back(Zero);
|
|
}
|
|
|
|
Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
|
|
}
|
|
|
|
assert(ConvertTypeForMem(DeleteTy) ==
|
|
cast<llvm::PointerType>(Ptr->getType())->getElementType());
|
|
|
|
if (E->isArrayForm()) {
|
|
EmitArrayDelete(*this, E, Ptr, DeleteTy);
|
|
} else {
|
|
EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
|
|
E->isGlobalDelete());
|
|
}
|
|
|
|
EmitBlock(DeleteEnd);
|
|
}
|
|
|
|
static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
|
|
// void __cxa_bad_typeid();
|
|
llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
|
|
|
|
return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
|
|
}
|
|
|
|
static void EmitBadTypeidCall(CodeGenFunction &CGF) {
|
|
llvm::Value *Fn = getBadTypeidFn(CGF);
|
|
CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
|
|
CGF.Builder.CreateUnreachable();
|
|
}
|
|
|
|
static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
|
|
const Expr *E,
|
|
llvm::Type *StdTypeInfoPtrTy) {
|
|
// Get the vtable pointer.
|
|
llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
|
|
|
|
// C++ [expr.typeid]p2:
|
|
// If the glvalue expression is obtained by applying the unary * operator to
|
|
// a pointer and the pointer is a null pointer value, the typeid expression
|
|
// throws the std::bad_typeid exception.
|
|
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
|
|
if (UO->getOpcode() == UO_Deref) {
|
|
llvm::BasicBlock *BadTypeidBlock =
|
|
CGF.createBasicBlock("typeid.bad_typeid");
|
|
llvm::BasicBlock *EndBlock =
|
|
CGF.createBasicBlock("typeid.end");
|
|
|
|
llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
|
|
CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
|
|
|
|
CGF.EmitBlock(BadTypeidBlock);
|
|
EmitBadTypeidCall(CGF);
|
|
CGF.EmitBlock(EndBlock);
|
|
}
|
|
}
|
|
|
|
llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
|
|
StdTypeInfoPtrTy->getPointerTo());
|
|
|
|
// Load the type info.
|
|
Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
|
|
return CGF.Builder.CreateLoad(Value);
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
|
|
llvm::Type *StdTypeInfoPtrTy =
|
|
ConvertType(E->getType())->getPointerTo();
|
|
|
|
if (E->isTypeOperand()) {
|
|
llvm::Constant *TypeInfo =
|
|
CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
|
|
return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
|
|
}
|
|
|
|
// C++ [expr.typeid]p2:
|
|
// When typeid is applied to a glvalue expression whose type is a
|
|
// polymorphic class type, the result refers to a std::type_info object
|
|
// representing the type of the most derived object (that is, the dynamic
|
|
// type) to which the glvalue refers.
|
|
if (E->getExprOperand()->isGLValue()) {
|
|
if (const RecordType *RT =
|
|
E->getExprOperand()->getType()->getAs<RecordType>()) {
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
if (RD->isPolymorphic())
|
|
return EmitTypeidFromVTable(*this, E->getExprOperand(),
|
|
StdTypeInfoPtrTy);
|
|
}
|
|
}
|
|
|
|
QualType OperandTy = E->getExprOperand()->getType();
|
|
return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
|
|
StdTypeInfoPtrTy);
|
|
}
|
|
|
|
static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
|
|
// void *__dynamic_cast(const void *sub,
|
|
// const abi::__class_type_info *src,
|
|
// const abi::__class_type_info *dst,
|
|
// std::ptrdiff_t src2dst_offset);
|
|
|
|
llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
|
|
llvm::Type *PtrDiffTy =
|
|
CGF.ConvertType(CGF.getContext().getPointerDiffType());
|
|
|
|
llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
|
|
|
|
llvm::FunctionType *FTy =
|
|
llvm::FunctionType::get(Int8PtrTy, Args, false);
|
|
|
|
return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast");
|
|
}
|
|
|
|
static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
|
|
// void __cxa_bad_cast();
|
|
llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
|
|
return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
|
|
}
|
|
|
|
static void EmitBadCastCall(CodeGenFunction &CGF) {
|
|
llvm::Value *Fn = getBadCastFn(CGF);
|
|
CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
|
|
CGF.Builder.CreateUnreachable();
|
|
}
|
|
|
|
static llvm::Value *
|
|
EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
|
|
QualType SrcTy, QualType DestTy,
|
|
llvm::BasicBlock *CastEnd) {
|
|
llvm::Type *PtrDiffLTy =
|
|
CGF.ConvertType(CGF.getContext().getPointerDiffType());
|
|
llvm::Type *DestLTy = CGF.ConvertType(DestTy);
|
|
|
|
if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
|
|
if (PTy->getPointeeType()->isVoidType()) {
|
|
// C++ [expr.dynamic.cast]p7:
|
|
// If T is "pointer to cv void," then the result is a pointer to the
|
|
// most derived object pointed to by v.
|
|
|
|
// Get the vtable pointer.
|
|
llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
|
|
|
|
// Get the offset-to-top from the vtable.
|
|
llvm::Value *OffsetToTop =
|
|
CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
|
|
OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
|
|
|
|
// Finally, add the offset to the pointer.
|
|
Value = CGF.EmitCastToVoidPtr(Value);
|
|
Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
|
|
|
|
return CGF.Builder.CreateBitCast(Value, DestLTy);
|
|
}
|
|
}
|
|
|
|
QualType SrcRecordTy;
|
|
QualType DestRecordTy;
|
|
|
|
if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
|
|
SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
|
|
DestRecordTy = DestPTy->getPointeeType();
|
|
} else {
|
|
SrcRecordTy = SrcTy;
|
|
DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
|
|
}
|
|
|
|
assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
|
|
assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
|
|
|
|
llvm::Value *SrcRTTI =
|
|
CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
|
|
llvm::Value *DestRTTI =
|
|
CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
|
|
|
|
// FIXME: Actually compute a hint here.
|
|
llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL);
|
|
|
|
// Emit the call to __dynamic_cast.
|
|
Value = CGF.EmitCastToVoidPtr(Value);
|
|
Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value,
|
|
SrcRTTI, DestRTTI, OffsetHint);
|
|
Value = CGF.Builder.CreateBitCast(Value, DestLTy);
|
|
|
|
/// C++ [expr.dynamic.cast]p9:
|
|
/// A failed cast to reference type throws std::bad_cast
|
|
if (DestTy->isReferenceType()) {
|
|
llvm::BasicBlock *BadCastBlock =
|
|
CGF.createBasicBlock("dynamic_cast.bad_cast");
|
|
|
|
llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
|
|
CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
|
|
|
|
CGF.EmitBlock(BadCastBlock);
|
|
EmitBadCastCall(CGF);
|
|
}
|
|
|
|
return Value;
|
|
}
|
|
|
|
static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
|
|
QualType DestTy) {
|
|
llvm::Type *DestLTy = CGF.ConvertType(DestTy);
|
|
if (DestTy->isPointerType())
|
|
return llvm::Constant::getNullValue(DestLTy);
|
|
|
|
/// C++ [expr.dynamic.cast]p9:
|
|
/// A failed cast to reference type throws std::bad_cast
|
|
EmitBadCastCall(CGF);
|
|
|
|
CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
|
|
return llvm::UndefValue::get(DestLTy);
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
|
|
const CXXDynamicCastExpr *DCE) {
|
|
QualType DestTy = DCE->getTypeAsWritten();
|
|
|
|
if (DCE->isAlwaysNull())
|
|
return EmitDynamicCastToNull(*this, DestTy);
|
|
|
|
QualType SrcTy = DCE->getSubExpr()->getType();
|
|
|
|
// C++ [expr.dynamic.cast]p4:
|
|
// If the value of v is a null pointer value in the pointer case, the result
|
|
// is the null pointer value of type T.
|
|
bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
|
|
|
|
llvm::BasicBlock *CastNull = 0;
|
|
llvm::BasicBlock *CastNotNull = 0;
|
|
llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
|
|
|
|
if (ShouldNullCheckSrcValue) {
|
|
CastNull = createBasicBlock("dynamic_cast.null");
|
|
CastNotNull = createBasicBlock("dynamic_cast.notnull");
|
|
|
|
llvm::Value *IsNull = Builder.CreateIsNull(Value);
|
|
Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
|
|
EmitBlock(CastNotNull);
|
|
}
|
|
|
|
Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
|
|
|
|
if (ShouldNullCheckSrcValue) {
|
|
EmitBranch(CastEnd);
|
|
|
|
EmitBlock(CastNull);
|
|
EmitBranch(CastEnd);
|
|
}
|
|
|
|
EmitBlock(CastEnd);
|
|
|
|
if (ShouldNullCheckSrcValue) {
|
|
llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
|
|
PHI->addIncoming(Value, CastNotNull);
|
|
PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
|
|
|
|
Value = PHI;
|
|
}
|
|
|
|
return Value;
|
|
}
|
|
|
|
void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
|
|
RunCleanupsScope Scope(*this);
|
|
LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
|
|
Slot.getAlignment());
|
|
|
|
CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
|
|
for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
|
|
e = E->capture_init_end();
|
|
i != e; ++i, ++CurField) {
|
|
// Emit initialization
|
|
|
|
LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
|
|
ArrayRef<VarDecl *> ArrayIndexes;
|
|
if (CurField->getType()->isArrayType())
|
|
ArrayIndexes = E->getCaptureInitIndexVars(i);
|
|
EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
|
|
}
|
|
}
|