llvm-project/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp

435 lines
18 KiB
C++

//===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a transformation that attaches !callees metadata to
// indirect call sites. For a given call site, the metadata, if present,
// indicates the set of functions the call site could possibly target at
// run-time. This metadata is added to indirect call sites when the set of
// possible targets can be determined by analysis and is known to be small. The
// analysis driving the transformation is similar to constant propagation and
// makes uses of the generic sparse propagation solver.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/CalledValuePropagation.h"
#include "llvm/Analysis/SparsePropagation.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/IPO.h"
using namespace llvm;
#define DEBUG_TYPE "called-value-propagation"
/// The maximum number of functions to track per lattice value. Once the number
/// of functions a call site can possibly target exceeds this threshold, it's
/// lattice value becomes overdefined. The number of possible lattice values is
/// bounded by Ch(F, M), where F is the number of functions in the module and M
/// is MaxFunctionsPerValue. As such, this value should be kept very small. We
/// likely can't do anything useful for call sites with a large number of
/// possible targets, anyway.
static cl::opt<unsigned> MaxFunctionsPerValue(
"cvp-max-functions-per-value", cl::Hidden, cl::init(4),
cl::desc("The maximum number of functions to track per lattice value"));
namespace {
/// To enable interprocedural analysis, we assign LLVM values to the following
/// groups. The register group represents SSA registers, the return group
/// represents the return values of functions, and the memory group represents
/// in-memory values. An LLVM Value can technically be in more than one group.
/// It's necessary to distinguish these groups so we can, for example, track a
/// global variable separately from the value stored at its location.
enum class IPOGrouping { Register, Return, Memory };
/// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
/// The lattice value type used by our custom lattice function. It holds the
/// lattice state, and a set of functions.
class CVPLatticeVal {
public:
/// The states of the lattice values. Only the FunctionSet state is
/// interesting. It indicates the set of functions to which an LLVM value may
/// refer.
enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
/// Comparator for sorting the functions set. We want to keep the order
/// deterministic for testing, etc.
struct Compare {
bool operator()(const Function *LHS, const Function *RHS) const {
return LHS->getName() < RHS->getName();
}
};
CVPLatticeVal() : LatticeState(Undefined) {}
CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
CVPLatticeVal(std::vector<Function *> &&Functions)
: LatticeState(FunctionSet), Functions(std::move(Functions)) {
assert(llvm::is_sorted(this->Functions, Compare()));
}
/// Get a reference to the functions held by this lattice value. The number
/// of functions will be zero for states other than FunctionSet.
const std::vector<Function *> &getFunctions() const {
return Functions;
}
/// Returns true if the lattice value is in the FunctionSet state.
bool isFunctionSet() const { return LatticeState == FunctionSet; }
bool operator==(const CVPLatticeVal &RHS) const {
return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
}
bool operator!=(const CVPLatticeVal &RHS) const {
return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
}
private:
/// Holds the state this lattice value is in.
CVPLatticeStateTy LatticeState;
/// Holds functions indicating the possible targets of call sites. This set
/// is empty for lattice values in the undefined, overdefined, and untracked
/// states. The maximum size of the set is controlled by
/// MaxFunctionsPerValue. Since most LLVM values are expected to be in
/// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
/// small and efficiently copyable.
// FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
std::vector<Function *> Functions;
};
/// The custom lattice function used by the generic sparse propagation solver.
/// It handles merging lattice values and computing new lattice values for
/// constants, arguments, values returned from trackable functions, and values
/// located in trackable global variables. It also computes the lattice values
/// that change as a result of executing instructions.
class CVPLatticeFunc
: public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
public:
CVPLatticeFunc()
: AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
CVPLatticeVal(CVPLatticeVal::Overdefined),
CVPLatticeVal(CVPLatticeVal::Untracked)) {}
/// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
switch (Key.getInt()) {
case IPOGrouping::Register:
if (isa<Instruction>(Key.getPointer())) {
return getUndefVal();
} else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
if (canTrackArgumentsInterprocedurally(A->getParent()))
return getUndefVal();
} else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
return computeConstant(C);
}
return getOverdefinedVal();
case IPOGrouping::Memory:
case IPOGrouping::Return:
if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
if (canTrackGlobalVariableInterprocedurally(GV))
return computeConstant(GV->getInitializer());
} else if (auto *F = cast<Function>(Key.getPointer()))
if (canTrackReturnsInterprocedurally(F))
return getUndefVal();
}
return getOverdefinedVal();
}
/// Merge the two given lattice values. The interesting cases are merging two
/// FunctionSet values and a FunctionSet value with an Undefined value. For
/// these cases, we simply union the function sets. If the size of the union
/// is greater than the maximum functions we track, the merged value is
/// overdefined.
CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
if (X == getOverdefinedVal() || Y == getOverdefinedVal())
return getOverdefinedVal();
if (X == getUndefVal() && Y == getUndefVal())
return getUndefVal();
std::vector<Function *> Union;
std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
Y.getFunctions().begin(), Y.getFunctions().end(),
std::back_inserter(Union), CVPLatticeVal::Compare{});
if (Union.size() > MaxFunctionsPerValue)
return getOverdefinedVal();
return CVPLatticeVal(std::move(Union));
}
/// Compute the lattice values that change as a result of executing the given
/// instruction. The changed values are stored in \p ChangedValues. We handle
/// just a few kinds of instructions since we're only propagating values that
/// can be called.
void ComputeInstructionState(
Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
switch (I.getOpcode()) {
case Instruction::Call:
case Instruction::Invoke:
return visitCallBase(cast<CallBase>(I), ChangedValues, SS);
case Instruction::Load:
return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
case Instruction::Ret:
return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
case Instruction::Select:
return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
case Instruction::Store:
return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
default:
return visitInst(I, ChangedValues, SS);
}
}
/// Print the given CVPLatticeVal to the specified stream.
void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
if (LV == getUndefVal())
OS << "Undefined ";
else if (LV == getOverdefinedVal())
OS << "Overdefined";
else if (LV == getUntrackedVal())
OS << "Untracked ";
else
OS << "FunctionSet";
}
/// Print the given CVPLatticeKey to the specified stream.
void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
if (Key.getInt() == IPOGrouping::Register)
OS << "<reg> ";
else if (Key.getInt() == IPOGrouping::Memory)
OS << "<mem> ";
else if (Key.getInt() == IPOGrouping::Return)
OS << "<ret> ";
if (isa<Function>(Key.getPointer()))
OS << Key.getPointer()->getName();
else
OS << *Key.getPointer();
}
/// We collect a set of indirect calls when visiting call sites. This method
/// returns a reference to that set.
SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; }
private:
/// Holds the indirect calls we encounter during the analysis. We will attach
/// metadata to these calls after the analysis indicating the functions the
/// calls can possibly target.
SmallPtrSet<CallBase *, 32> IndirectCalls;
/// Compute a new lattice value for the given constant. The constant, after
/// stripping any pointer casts, should be a Function. We ignore null
/// pointers as an optimization, since calling these values is undefined
/// behavior.
CVPLatticeVal computeConstant(Constant *C) {
if (isa<ConstantPointerNull>(C))
return CVPLatticeVal(CVPLatticeVal::FunctionSet);
if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
return CVPLatticeVal({F});
return getOverdefinedVal();
}
/// Handle return instructions. The function's return state is the merge of
/// the returned value state and the function's return state.
void visitReturn(ReturnInst &I,
DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
Function *F = I.getParent()->getParent();
if (F->getReturnType()->isVoidTy())
return;
auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
ChangedValues[RetF] =
MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
}
/// Handle call sites. The state of a called function's formal arguments is
/// the merge of the argument state with the call sites corresponding actual
/// argument state. The call site state is the merge of the call site state
/// with the returned value state of the called function.
void visitCallBase(CallBase &CB,
DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
Function *F = CB.getCalledFunction();
auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register);
// If this is an indirect call, save it so we can quickly revisit it when
// attaching metadata.
if (!F)
IndirectCalls.insert(&CB);
// If we can't track the function's return values, there's nothing to do.
if (!F || !canTrackReturnsInterprocedurally(F)) {
// Void return, No need to create and update CVPLattice state as no one
// can use it.
if (CB.getType()->isVoidTy())
return;
ChangedValues[RegI] = getOverdefinedVal();
return;
}
// Inform the solver that the called function is executable, and perform
// the merges for the arguments and return value.
SS.MarkBlockExecutable(&F->front());
auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
for (Argument &A : F->args()) {
auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
auto RegActual =
CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register);
ChangedValues[RegFormal] =
MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
}
// Void return, No need to create and update CVPLattice state as no one can
// use it.
if (CB.getType()->isVoidTy())
return;
ChangedValues[RegI] =
MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
}
/// Handle select instructions. The select instruction state is the merge the
/// true and false value states.
void visitSelect(SelectInst &I,
DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
ChangedValues[RegI] =
MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
}
/// Handle load instructions. If the pointer operand of the load is a global
/// variable, we attempt to track the value. The loaded value state is the
/// merge of the loaded value state with the global variable state.
void visitLoad(LoadInst &I,
DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
ChangedValues[RegI] =
MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
} else {
ChangedValues[RegI] = getOverdefinedVal();
}
}
/// Handle store instructions. If the pointer operand of the store is a
/// global variable, we attempt to track the value. The global variable state
/// is the merge of the stored value state with the global variable state.
void visitStore(StoreInst &I,
DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
if (!GV)
return;
auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
ChangedValues[MemGV] =
MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
}
/// Handle all other instructions. All other instructions are marked
/// overdefined.
void visitInst(Instruction &I,
DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
// Simply bail if this instruction has no user.
if (I.use_empty())
return;
auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
ChangedValues[RegI] = getOverdefinedVal();
}
};
} // namespace
namespace llvm {
/// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
/// must translate between LatticeKeys and LLVM Values when adding Values to
/// its work list and inspecting the state of control-flow related values.
template <> struct LatticeKeyInfo<CVPLatticeKey> {
static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
return Key.getPointer();
}
static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
return CVPLatticeKey(V, IPOGrouping::Register);
}
};
} // namespace llvm
static bool runCVP(Module &M) {
// Our custom lattice function and generic sparse propagation solver.
CVPLatticeFunc Lattice;
SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
// For each function in the module, if we can't track its arguments, let the
// generic solver assume it is executable.
for (Function &F : M)
if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
Solver.MarkBlockExecutable(&F.front());
// Solver our custom lattice. In doing so, we will also build a set of
// indirect call sites.
Solver.Solve();
// Attach metadata to the indirect call sites that were collected indicating
// the set of functions they can possibly target.
bool Changed = false;
MDBuilder MDB(M.getContext());
for (CallBase *C : Lattice.getIndirectCalls()) {
auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register);
CVPLatticeVal LV = Solver.getExistingValueState(RegI);
if (!LV.isFunctionSet() || LV.getFunctions().empty())
continue;
MDNode *Callees = MDB.createCallees(LV.getFunctions());
C->setMetadata(LLVMContext::MD_callees, Callees);
Changed = true;
}
return Changed;
}
PreservedAnalyses CalledValuePropagationPass::run(Module &M,
ModuleAnalysisManager &) {
runCVP(M);
return PreservedAnalyses::all();
}
namespace {
class CalledValuePropagationLegacyPass : public ModulePass {
public:
static char ID;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
CalledValuePropagationLegacyPass() : ModulePass(ID) {
initializeCalledValuePropagationLegacyPassPass(
*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
if (skipModule(M))
return false;
return runCVP(M);
}
};
} // namespace
char CalledValuePropagationLegacyPass::ID = 0;
INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
"Called Value Propagation", false, false)
ModulePass *llvm::createCalledValuePropagationPass() {
return new CalledValuePropagationLegacyPass();
}