forked from OSchip/llvm-project
1018 lines
33 KiB
C++
1018 lines
33 KiB
C++
//===-- VEInstrInfo.cpp - VE Instruction Information ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the VE implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VEInstrInfo.h"
|
|
#include "VE.h"
|
|
#include "VEMachineFunctionInfo.h"
|
|
#include "VESubtarget.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
|
|
#define DEBUG_TYPE "ve-instr-info"
|
|
|
|
using namespace llvm;
|
|
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#include "VEGenInstrInfo.inc"
|
|
|
|
// Pin the vtable to this file.
|
|
void VEInstrInfo::anchor() {}
|
|
|
|
VEInstrInfo::VEInstrInfo(VESubtarget &ST)
|
|
: VEGenInstrInfo(VE::ADJCALLSTACKDOWN, VE::ADJCALLSTACKUP), RI() {}
|
|
|
|
static bool IsIntegerCC(unsigned CC) { return (CC < VECC::CC_AF); }
|
|
|
|
static VECC::CondCode GetOppositeBranchCondition(VECC::CondCode CC) {
|
|
switch (CC) {
|
|
case VECC::CC_IG:
|
|
return VECC::CC_ILE;
|
|
case VECC::CC_IL:
|
|
return VECC::CC_IGE;
|
|
case VECC::CC_INE:
|
|
return VECC::CC_IEQ;
|
|
case VECC::CC_IEQ:
|
|
return VECC::CC_INE;
|
|
case VECC::CC_IGE:
|
|
return VECC::CC_IL;
|
|
case VECC::CC_ILE:
|
|
return VECC::CC_IG;
|
|
case VECC::CC_AF:
|
|
return VECC::CC_AT;
|
|
case VECC::CC_G:
|
|
return VECC::CC_LENAN;
|
|
case VECC::CC_L:
|
|
return VECC::CC_GENAN;
|
|
case VECC::CC_NE:
|
|
return VECC::CC_EQNAN;
|
|
case VECC::CC_EQ:
|
|
return VECC::CC_NENAN;
|
|
case VECC::CC_GE:
|
|
return VECC::CC_LNAN;
|
|
case VECC::CC_LE:
|
|
return VECC::CC_GNAN;
|
|
case VECC::CC_NUM:
|
|
return VECC::CC_NAN;
|
|
case VECC::CC_NAN:
|
|
return VECC::CC_NUM;
|
|
case VECC::CC_GNAN:
|
|
return VECC::CC_LE;
|
|
case VECC::CC_LNAN:
|
|
return VECC::CC_GE;
|
|
case VECC::CC_NENAN:
|
|
return VECC::CC_EQ;
|
|
case VECC::CC_EQNAN:
|
|
return VECC::CC_NE;
|
|
case VECC::CC_GENAN:
|
|
return VECC::CC_L;
|
|
case VECC::CC_LENAN:
|
|
return VECC::CC_G;
|
|
case VECC::CC_AT:
|
|
return VECC::CC_AF;
|
|
case VECC::UNKNOWN:
|
|
return VECC::UNKNOWN;
|
|
}
|
|
llvm_unreachable("Invalid cond code");
|
|
}
|
|
|
|
// Treat a branch relative long always instruction as unconditional branch.
|
|
// For example, br.l.t and br.l.
|
|
static bool isUncondBranchOpcode(int Opc) {
|
|
using namespace llvm::VE;
|
|
|
|
#define BRKIND(NAME) (Opc == NAME##a || Opc == NAME##a_nt || Opc == NAME##a_t)
|
|
// VE has other branch relative always instructions for word/double/float,
|
|
// but we use only long branches in our lower. So, sanity check it here.
|
|
assert(!BRKIND(BRCFW) && !BRKIND(BRCFD) && !BRKIND(BRCFS) &&
|
|
"Branch relative word/double/float always instructions should not be "
|
|
"used!");
|
|
return BRKIND(BRCFL);
|
|
#undef BRKIND
|
|
}
|
|
|
|
// Treat branch relative conditional as conditional branch instructions.
|
|
// For example, brgt.l.t and brle.s.nt.
|
|
static bool isCondBranchOpcode(int Opc) {
|
|
using namespace llvm::VE;
|
|
|
|
#define BRKIND(NAME) \
|
|
(Opc == NAME##rr || Opc == NAME##rr_nt || Opc == NAME##rr_t || \
|
|
Opc == NAME##ir || Opc == NAME##ir_nt || Opc == NAME##ir_t)
|
|
return BRKIND(BRCFL) || BRKIND(BRCFW) || BRKIND(BRCFD) || BRKIND(BRCFS);
|
|
#undef BRKIND
|
|
}
|
|
|
|
// Treat branch long always instructions as indirect branch.
|
|
// For example, b.l.t and b.l.
|
|
static bool isIndirectBranchOpcode(int Opc) {
|
|
using namespace llvm::VE;
|
|
|
|
#define BRKIND(NAME) \
|
|
(Opc == NAME##ari || Opc == NAME##ari_nt || Opc == NAME##ari_t)
|
|
// VE has other branch always instructions for word/double/float, but
|
|
// we use only long branches in our lower. So, sanity check it here.
|
|
assert(!BRKIND(BCFW) && !BRKIND(BCFD) && !BRKIND(BCFS) &&
|
|
"Branch word/double/float always instructions should not be used!");
|
|
return BRKIND(BCFL);
|
|
#undef BRKIND
|
|
}
|
|
|
|
static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
|
|
SmallVectorImpl<MachineOperand> &Cond) {
|
|
Cond.push_back(MachineOperand::CreateImm(LastInst->getOperand(0).getImm()));
|
|
Cond.push_back(LastInst->getOperand(1));
|
|
Cond.push_back(LastInst->getOperand(2));
|
|
Target = LastInst->getOperand(3).getMBB();
|
|
}
|
|
|
|
bool VEInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end())
|
|
return false;
|
|
|
|
if (!isUnpredicatedTerminator(*I))
|
|
return false;
|
|
|
|
// Get the last instruction in the block.
|
|
MachineInstr *LastInst = &*I;
|
|
unsigned LastOpc = LastInst->getOpcode();
|
|
|
|
// If there is only one terminator instruction, process it.
|
|
if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
|
|
if (isUncondBranchOpcode(LastOpc)) {
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
if (isCondBranchOpcode(LastOpc)) {
|
|
// Block ends with fall-through condbranch.
|
|
parseCondBranch(LastInst, TBB, Cond);
|
|
return false;
|
|
}
|
|
return true; // Can't handle indirect branch.
|
|
}
|
|
|
|
// Get the instruction before it if it is a terminator.
|
|
MachineInstr *SecondLastInst = &*I;
|
|
unsigned SecondLastOpc = SecondLastInst->getOpcode();
|
|
|
|
// If AllowModify is true and the block ends with two or more unconditional
|
|
// branches, delete all but the first unconditional branch.
|
|
if (AllowModify && isUncondBranchOpcode(LastOpc)) {
|
|
while (isUncondBranchOpcode(SecondLastOpc)) {
|
|
LastInst->eraseFromParent();
|
|
LastInst = SecondLastInst;
|
|
LastOpc = LastInst->getOpcode();
|
|
if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
|
|
// Return now the only terminator is an unconditional branch.
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
SecondLastInst = &*I;
|
|
SecondLastOpc = SecondLastInst->getOpcode();
|
|
}
|
|
}
|
|
|
|
// If there are three terminators, we don't know what sort of block this is.
|
|
if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
|
|
return true;
|
|
|
|
// If the block ends with a B and a Bcc, handle it.
|
|
if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
|
|
parseCondBranch(SecondLastInst, TBB, Cond);
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
// If the block ends with two unconditional branches, handle it. The second
|
|
// one is not executed.
|
|
if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
// ...likewise if it ends with an indirect branch followed by an unconditional
|
|
// branch.
|
|
if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
|
|
I = LastInst;
|
|
if (AllowModify)
|
|
I->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, can't handle this.
|
|
return true;
|
|
}
|
|
|
|
unsigned VEInstrInfo::insertBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
ArrayRef<MachineOperand> Cond,
|
|
const DebugLoc &DL, int *BytesAdded) const {
|
|
assert(TBB && "insertBranch must not be told to insert a fallthrough");
|
|
assert((Cond.size() == 3 || Cond.size() == 0) &&
|
|
"VE branch conditions should have three component!");
|
|
assert(!BytesAdded && "code size not handled");
|
|
if (Cond.empty()) {
|
|
// Uncondition branch
|
|
assert(!FBB && "Unconditional branch with multiple successors!");
|
|
BuildMI(&MBB, DL, get(VE::BRCFLa_t))
|
|
.addMBB(TBB);
|
|
return 1;
|
|
}
|
|
|
|
// Conditional branch
|
|
// (BRCFir CC sy sz addr)
|
|
assert(Cond[0].isImm() && Cond[2].isReg() && "not implemented");
|
|
|
|
unsigned opc[2];
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
MachineFunction *MF = MBB.getParent();
|
|
const MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
unsigned Reg = Cond[2].getReg();
|
|
if (IsIntegerCC(Cond[0].getImm())) {
|
|
if (TRI->getRegSizeInBits(Reg, MRI) == 32) {
|
|
opc[0] = VE::BRCFWir;
|
|
opc[1] = VE::BRCFWrr;
|
|
} else {
|
|
opc[0] = VE::BRCFLir;
|
|
opc[1] = VE::BRCFLrr;
|
|
}
|
|
} else {
|
|
if (TRI->getRegSizeInBits(Reg, MRI) == 32) {
|
|
opc[0] = VE::BRCFSir;
|
|
opc[1] = VE::BRCFSrr;
|
|
} else {
|
|
opc[0] = VE::BRCFDir;
|
|
opc[1] = VE::BRCFDrr;
|
|
}
|
|
}
|
|
if (Cond[1].isImm()) {
|
|
BuildMI(&MBB, DL, get(opc[0]))
|
|
.add(Cond[0]) // condition code
|
|
.add(Cond[1]) // lhs
|
|
.add(Cond[2]) // rhs
|
|
.addMBB(TBB);
|
|
} else {
|
|
BuildMI(&MBB, DL, get(opc[1]))
|
|
.add(Cond[0])
|
|
.add(Cond[1])
|
|
.add(Cond[2])
|
|
.addMBB(TBB);
|
|
}
|
|
|
|
if (!FBB)
|
|
return 1;
|
|
|
|
BuildMI(&MBB, DL, get(VE::BRCFLa_t))
|
|
.addMBB(FBB);
|
|
return 2;
|
|
}
|
|
|
|
unsigned VEInstrInfo::removeBranch(MachineBasicBlock &MBB,
|
|
int *BytesRemoved) const {
|
|
assert(!BytesRemoved && "code size not handled");
|
|
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
unsigned Count = 0;
|
|
while (I != MBB.begin()) {
|
|
--I;
|
|
|
|
if (I->isDebugValue())
|
|
continue;
|
|
|
|
if (!isUncondBranchOpcode(I->getOpcode()) &&
|
|
!isCondBranchOpcode(I->getOpcode()))
|
|
break; // Not a branch
|
|
|
|
I->eraseFromParent();
|
|
I = MBB.end();
|
|
++Count;
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
bool VEInstrInfo::reverseBranchCondition(
|
|
SmallVectorImpl<MachineOperand> &Cond) const {
|
|
VECC::CondCode CC = static_cast<VECC::CondCode>(Cond[0].getImm());
|
|
Cond[0].setImm(GetOppositeBranchCondition(CC));
|
|
return false;
|
|
}
|
|
|
|
static bool IsAliasOfSX(Register Reg) {
|
|
return VE::I32RegClass.contains(Reg) || VE::I64RegClass.contains(Reg) ||
|
|
VE::F32RegClass.contains(Reg);
|
|
}
|
|
|
|
static void copyPhysSubRegs(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, const DebugLoc &DL,
|
|
MCRegister DestReg, MCRegister SrcReg, bool KillSrc,
|
|
const MCInstrDesc &MCID, unsigned int NumSubRegs,
|
|
const unsigned *SubRegIdx,
|
|
const TargetRegisterInfo *TRI) {
|
|
MachineInstr *MovMI = nullptr;
|
|
|
|
for (unsigned Idx = 0; Idx != NumSubRegs; ++Idx) {
|
|
Register SubDest = TRI->getSubReg(DestReg, SubRegIdx[Idx]);
|
|
Register SubSrc = TRI->getSubReg(SrcReg, SubRegIdx[Idx]);
|
|
assert(SubDest && SubSrc && "Bad sub-register");
|
|
|
|
if (MCID.getOpcode() == VE::ORri) {
|
|
// generate "ORri, dest, src, 0" instruction.
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, I, DL, MCID, SubDest).addReg(SubSrc).addImm(0);
|
|
MovMI = MIB.getInstr();
|
|
} else {
|
|
llvm_unreachable("Unexpected reg-to-reg copy instruction");
|
|
}
|
|
}
|
|
// Add implicit super-register defs and kills to the last MovMI.
|
|
MovMI->addRegisterDefined(DestReg, TRI);
|
|
if (KillSrc)
|
|
MovMI->addRegisterKilled(SrcReg, TRI, true);
|
|
}
|
|
|
|
void VEInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, const DebugLoc &DL,
|
|
MCRegister DestReg, MCRegister SrcReg,
|
|
bool KillSrc) const {
|
|
|
|
if (IsAliasOfSX(SrcReg) && IsAliasOfSX(DestReg)) {
|
|
BuildMI(MBB, I, DL, get(VE::ORri), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addImm(0);
|
|
} else if (VE::V64RegClass.contains(DestReg, SrcReg)) {
|
|
// Generate following instructions
|
|
// %sw16 = LEA32zii 256
|
|
// VORmvl %dest, (0)1, %src, %sw16
|
|
// TODO: reuse a register if vl is already assigned to a register
|
|
// FIXME: it would be better to scavenge a register here instead of
|
|
// reserving SX16 all of the time.
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
Register TmpReg = VE::SX16;
|
|
Register SubTmp = TRI->getSubReg(TmpReg, VE::sub_i32);
|
|
BuildMI(MBB, I, DL, get(VE::LEAzii), TmpReg)
|
|
.addImm(0)
|
|
.addImm(0)
|
|
.addImm(256);
|
|
MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(VE::VORmvl), DestReg)
|
|
.addImm(M1(0)) // Represent (0)1.
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addReg(SubTmp, getKillRegState(true));
|
|
MIB.getInstr()->addRegisterKilled(TmpReg, TRI, true);
|
|
} else if (VE::F128RegClass.contains(DestReg, SrcReg)) {
|
|
// Use two instructions.
|
|
const unsigned SubRegIdx[] = {VE::sub_even, VE::sub_odd};
|
|
unsigned int NumSubRegs = 2;
|
|
copyPhysSubRegs(MBB, I, DL, DestReg, SrcReg, KillSrc, get(VE::ORri),
|
|
NumSubRegs, SubRegIdx, &getRegisterInfo());
|
|
} else {
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
dbgs() << "Impossible reg-to-reg copy from " << printReg(SrcReg, TRI)
|
|
<< " to " << printReg(DestReg, TRI) << "\n";
|
|
llvm_unreachable("Impossible reg-to-reg copy");
|
|
}
|
|
}
|
|
|
|
/// isLoadFromStackSlot - If the specified machine instruction is a direct
|
|
/// load from a stack slot, return the virtual or physical register number of
|
|
/// the destination along with the FrameIndex of the loaded stack slot. If
|
|
/// not, return 0. This predicate must return 0 if the instruction has
|
|
/// any side effects other than loading from the stack slot.
|
|
unsigned VEInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
if (MI.getOpcode() == VE::LDrii || // I64
|
|
MI.getOpcode() == VE::LDLSXrii || // I32
|
|
MI.getOpcode() == VE::LDUrii || // F32
|
|
MI.getOpcode() == VE::LDQrii // F128 (pseudo)
|
|
) {
|
|
if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
|
|
MI.getOperand(2).getImm() == 0 && MI.getOperand(3).isImm() &&
|
|
MI.getOperand(3).getImm() == 0) {
|
|
FrameIndex = MI.getOperand(1).getIndex();
|
|
return MI.getOperand(0).getReg();
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// isStoreToStackSlot - If the specified machine instruction is a direct
|
|
/// store to a stack slot, return the virtual or physical register number of
|
|
/// the source reg along with the FrameIndex of the loaded stack slot. If
|
|
/// not, return 0. This predicate must return 0 if the instruction has
|
|
/// any side effects other than storing to the stack slot.
|
|
unsigned VEInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
if (MI.getOpcode() == VE::STrii || // I64
|
|
MI.getOpcode() == VE::STLrii || // I32
|
|
MI.getOpcode() == VE::STUrii || // F32
|
|
MI.getOpcode() == VE::STQrii // F128 (pseudo)
|
|
) {
|
|
if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
|
|
MI.getOperand(1).getImm() == 0 && MI.getOperand(2).isImm() &&
|
|
MI.getOperand(2).getImm() == 0) {
|
|
FrameIndex = MI.getOperand(0).getIndex();
|
|
return MI.getOperand(3).getReg();
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void VEInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
Register SrcReg, bool isKill, int FI,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
DebugLoc DL;
|
|
if (I != MBB.end())
|
|
DL = I->getDebugLoc();
|
|
|
|
MachineFunction *MF = MBB.getParent();
|
|
const MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
|
|
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
|
|
|
|
// On the order of operands here: think "[FrameIdx + 0] = SrcReg".
|
|
if (RC == &VE::I64RegClass) {
|
|
BuildMI(MBB, I, DL, get(VE::STrii))
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addImm(0)
|
|
.addReg(SrcReg, getKillRegState(isKill))
|
|
.addMemOperand(MMO);
|
|
} else if (RC == &VE::I32RegClass) {
|
|
BuildMI(MBB, I, DL, get(VE::STLrii))
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addImm(0)
|
|
.addReg(SrcReg, getKillRegState(isKill))
|
|
.addMemOperand(MMO);
|
|
} else if (RC == &VE::F32RegClass) {
|
|
BuildMI(MBB, I, DL, get(VE::STUrii))
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addImm(0)
|
|
.addReg(SrcReg, getKillRegState(isKill))
|
|
.addMemOperand(MMO);
|
|
} else if (VE::F128RegClass.hasSubClassEq(RC)) {
|
|
BuildMI(MBB, I, DL, get(VE::STQrii))
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addImm(0)
|
|
.addReg(SrcReg, getKillRegState(isKill))
|
|
.addMemOperand(MMO);
|
|
} else
|
|
report_fatal_error("Can't store this register to stack slot");
|
|
}
|
|
|
|
void VEInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
Register DestReg, int FI,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
DebugLoc DL;
|
|
if (I != MBB.end())
|
|
DL = I->getDebugLoc();
|
|
|
|
MachineFunction *MF = MBB.getParent();
|
|
const MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
|
|
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
|
|
|
|
if (RC == &VE::I64RegClass) {
|
|
BuildMI(MBB, I, DL, get(VE::LDrii), DestReg)
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addImm(0)
|
|
.addMemOperand(MMO);
|
|
} else if (RC == &VE::I32RegClass) {
|
|
BuildMI(MBB, I, DL, get(VE::LDLSXrii), DestReg)
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addImm(0)
|
|
.addMemOperand(MMO);
|
|
} else if (RC == &VE::F32RegClass) {
|
|
BuildMI(MBB, I, DL, get(VE::LDUrii), DestReg)
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addImm(0)
|
|
.addMemOperand(MMO);
|
|
} else if (VE::F128RegClass.hasSubClassEq(RC)) {
|
|
BuildMI(MBB, I, DL, get(VE::LDQrii), DestReg)
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addImm(0)
|
|
.addMemOperand(MMO);
|
|
} else
|
|
report_fatal_error("Can't load this register from stack slot");
|
|
}
|
|
|
|
bool VEInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
|
|
Register Reg, MachineRegisterInfo *MRI) const {
|
|
LLVM_DEBUG(dbgs() << "FoldImmediate\n");
|
|
|
|
LLVM_DEBUG(dbgs() << "checking DefMI\n");
|
|
int64_t ImmVal;
|
|
switch (DefMI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
case VE::ORim:
|
|
// General move small immediate instruction on VE.
|
|
LLVM_DEBUG(dbgs() << "checking ORim\n");
|
|
LLVM_DEBUG(DefMI.dump());
|
|
// FIXME: We may need to support FPImm too.
|
|
assert(DefMI.getOperand(1).isImm());
|
|
assert(DefMI.getOperand(2).isImm());
|
|
ImmVal =
|
|
DefMI.getOperand(1).getImm() + mimm2Val(DefMI.getOperand(2).getImm());
|
|
LLVM_DEBUG(dbgs() << "ImmVal is " << ImmVal << "\n");
|
|
break;
|
|
case VE::LEAzii:
|
|
// General move immediate instruction on VE.
|
|
LLVM_DEBUG(dbgs() << "checking LEAzii\n");
|
|
LLVM_DEBUG(DefMI.dump());
|
|
// FIXME: We may need to support FPImm too.
|
|
assert(DefMI.getOperand(2).isImm());
|
|
if (!DefMI.getOperand(3).isImm())
|
|
// LEAzii may refer label
|
|
return false;
|
|
ImmVal = DefMI.getOperand(2).getImm() + DefMI.getOperand(3).getImm();
|
|
LLVM_DEBUG(dbgs() << "ImmVal is " << ImmVal << "\n");
|
|
break;
|
|
}
|
|
|
|
// Try to fold like below:
|
|
// %1:i64 = ORim 0, 0(1)
|
|
// %2:i64 = CMPSLrr %0, %1
|
|
// To
|
|
// %2:i64 = CMPSLrm %0, 0(1)
|
|
//
|
|
// Another example:
|
|
// %1:i64 = ORim 6, 0(1)
|
|
// %2:i64 = CMPSLrr %1, %0
|
|
// To
|
|
// %2:i64 = CMPSLir 6, %0
|
|
//
|
|
// Support commutable instructions like below:
|
|
// %1:i64 = ORim 6, 0(1)
|
|
// %2:i64 = ADDSLrr %1, %0
|
|
// To
|
|
// %2:i64 = ADDSLri %0, 6
|
|
//
|
|
// FIXME: Need to support i32. Current implementtation requires
|
|
// EXTRACT_SUBREG, so input has following COPY and it avoids folding:
|
|
// %1:i64 = ORim 6, 0(1)
|
|
// %2:i32 = COPY %1.sub_i32
|
|
// %3:i32 = ADDSWSXrr %0, %2
|
|
// FIXME: Need to support shift, cmov, and more instructions.
|
|
// FIXME: Need to support lvl too, but LVLGen runs after peephole-opt.
|
|
|
|
LLVM_DEBUG(dbgs() << "checking UseMI\n");
|
|
LLVM_DEBUG(UseMI.dump());
|
|
unsigned NewUseOpcSImm7;
|
|
unsigned NewUseOpcMImm;
|
|
enum InstType {
|
|
rr2ri_rm, // rr -> ri or rm, commutable
|
|
rr2ir_rm, // rr -> ir or rm
|
|
} InstType;
|
|
|
|
using namespace llvm::VE;
|
|
#define INSTRKIND(NAME) \
|
|
case NAME##rr: \
|
|
NewUseOpcSImm7 = NAME##ri; \
|
|
NewUseOpcMImm = NAME##rm; \
|
|
InstType = rr2ri_rm; \
|
|
break
|
|
#define NCINSTRKIND(NAME) \
|
|
case NAME##rr: \
|
|
NewUseOpcSImm7 = NAME##ir; \
|
|
NewUseOpcMImm = NAME##rm; \
|
|
InstType = rr2ir_rm; \
|
|
break
|
|
|
|
switch (UseMI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
|
|
INSTRKIND(ADDUL);
|
|
INSTRKIND(ADDSWSX);
|
|
INSTRKIND(ADDSWZX);
|
|
INSTRKIND(ADDSL);
|
|
NCINSTRKIND(SUBUL);
|
|
NCINSTRKIND(SUBSWSX);
|
|
NCINSTRKIND(SUBSWZX);
|
|
NCINSTRKIND(SUBSL);
|
|
INSTRKIND(MULUL);
|
|
INSTRKIND(MULSWSX);
|
|
INSTRKIND(MULSWZX);
|
|
INSTRKIND(MULSL);
|
|
NCINSTRKIND(DIVUL);
|
|
NCINSTRKIND(DIVSWSX);
|
|
NCINSTRKIND(DIVSWZX);
|
|
NCINSTRKIND(DIVSL);
|
|
NCINSTRKIND(CMPUL);
|
|
NCINSTRKIND(CMPSWSX);
|
|
NCINSTRKIND(CMPSWZX);
|
|
NCINSTRKIND(CMPSL);
|
|
INSTRKIND(MAXSWSX);
|
|
INSTRKIND(MAXSWZX);
|
|
INSTRKIND(MAXSL);
|
|
INSTRKIND(MINSWSX);
|
|
INSTRKIND(MINSWZX);
|
|
INSTRKIND(MINSL);
|
|
INSTRKIND(AND);
|
|
INSTRKIND(OR);
|
|
INSTRKIND(XOR);
|
|
INSTRKIND(EQV);
|
|
NCINSTRKIND(NND);
|
|
NCINSTRKIND(MRG);
|
|
}
|
|
|
|
#undef INSTRKIND
|
|
|
|
unsigned NewUseOpc;
|
|
unsigned UseIdx;
|
|
bool Commute = false;
|
|
LLVM_DEBUG(dbgs() << "checking UseMI operands\n");
|
|
switch (InstType) {
|
|
case rr2ri_rm:
|
|
UseIdx = 2;
|
|
if (UseMI.getOperand(1).getReg() == Reg) {
|
|
Commute = true;
|
|
} else {
|
|
assert(UseMI.getOperand(2).getReg() == Reg);
|
|
}
|
|
if (isInt<7>(ImmVal)) {
|
|
// This ImmVal matches to SImm7 slot, so change UseOpc to an instruction
|
|
// holds a simm7 slot.
|
|
NewUseOpc = NewUseOpcSImm7;
|
|
} else if (isMImmVal(ImmVal)) {
|
|
// Similarly, change UseOpc to an instruction holds a mimm slot.
|
|
NewUseOpc = NewUseOpcMImm;
|
|
ImmVal = val2MImm(ImmVal);
|
|
} else
|
|
return false;
|
|
break;
|
|
case rr2ir_rm:
|
|
if (UseMI.getOperand(1).getReg() == Reg) {
|
|
// Check immediate value whether it matchs to the UseMI instruction.
|
|
if (!isInt<7>(ImmVal))
|
|
return false;
|
|
NewUseOpc = NewUseOpcSImm7;
|
|
UseIdx = 1;
|
|
} else {
|
|
assert(UseMI.getOperand(2).getReg() == Reg);
|
|
// Check immediate value whether it matchs to the UseMI instruction.
|
|
if (!isMImmVal(ImmVal))
|
|
return false;
|
|
NewUseOpc = NewUseOpcMImm;
|
|
ImmVal = val2MImm(ImmVal);
|
|
UseIdx = 2;
|
|
}
|
|
break;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "modifying UseMI\n");
|
|
bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
|
|
UseMI.setDesc(get(NewUseOpc));
|
|
if (Commute) {
|
|
UseMI.getOperand(1).setReg(UseMI.getOperand(UseIdx).getReg());
|
|
}
|
|
UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
|
|
if (DeleteDef)
|
|
DefMI.eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
Register VEInstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
|
|
VEMachineFunctionInfo *VEFI = MF->getInfo<VEMachineFunctionInfo>();
|
|
Register GlobalBaseReg = VEFI->getGlobalBaseReg();
|
|
if (GlobalBaseReg != 0)
|
|
return GlobalBaseReg;
|
|
|
|
// We use %s15 (%got) as a global base register
|
|
GlobalBaseReg = VE::SX15;
|
|
|
|
// Insert a pseudo instruction to set the GlobalBaseReg into the first
|
|
// MBB of the function
|
|
MachineBasicBlock &FirstMBB = MF->front();
|
|
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
|
|
DebugLoc dl;
|
|
BuildMI(FirstMBB, MBBI, dl, get(VE::GETGOT), GlobalBaseReg);
|
|
VEFI->setGlobalBaseReg(GlobalBaseReg);
|
|
return GlobalBaseReg;
|
|
}
|
|
|
|
static Register getVM512Upper(Register reg) {
|
|
return (reg - VE::VMP0) * 2 + VE::VM0;
|
|
}
|
|
|
|
static Register getVM512Lower(Register reg) { return getVM512Upper(reg) + 1; }
|
|
|
|
static void addOperandsForVFMK(MachineInstrBuilder &MIB, MachineInstr &MI,
|
|
bool Upper) {
|
|
// VM512
|
|
MIB.addReg(Upper ? getVM512Upper(MI.getOperand(0).getReg())
|
|
: getVM512Lower(MI.getOperand(0).getReg()));
|
|
|
|
switch (MI.getNumExplicitOperands()) {
|
|
default:
|
|
report_fatal_error("unexpected number of operands for pvfmk");
|
|
case 2: // _Ml: VM512, VL
|
|
// VL
|
|
MIB.addReg(MI.getOperand(1).getReg());
|
|
break;
|
|
case 4: // _Mvl: VM512, CC, VR, VL
|
|
// CC
|
|
MIB.addImm(MI.getOperand(1).getImm());
|
|
// VR
|
|
MIB.addReg(MI.getOperand(2).getReg());
|
|
// VL
|
|
MIB.addReg(MI.getOperand(3).getReg());
|
|
break;
|
|
case 5: // _MvMl: VM512, CC, VR, VM512, VL
|
|
// CC
|
|
MIB.addImm(MI.getOperand(1).getImm());
|
|
// VR
|
|
MIB.addReg(MI.getOperand(2).getReg());
|
|
// VM512
|
|
MIB.addReg(Upper ? getVM512Upper(MI.getOperand(3).getReg())
|
|
: getVM512Lower(MI.getOperand(3).getReg()));
|
|
// VL
|
|
MIB.addReg(MI.getOperand(4).getReg());
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void expandPseudoVFMK(const TargetInstrInfo &TI, MachineInstr &MI) {
|
|
// replace to pvfmk.w.up and pvfmk.w.lo
|
|
// replace to pvfmk.s.up and pvfmk.s.lo
|
|
|
|
static std::map<unsigned, std::pair<unsigned, unsigned>> VFMKMap = {
|
|
{VE::VFMKyal, {VE::VFMKLal, VE::VFMKLal}},
|
|
{VE::VFMKynal, {VE::VFMKLnal, VE::VFMKLnal}},
|
|
{VE::VFMKWyvl, {VE::PVFMKWUPvl, VE::PVFMKWLOvl}},
|
|
{VE::VFMKWyvyl, {VE::PVFMKWUPvml, VE::PVFMKWLOvml}},
|
|
{VE::VFMKSyvl, {VE::PVFMKSUPvl, VE::PVFMKSLOvl}},
|
|
{VE::VFMKSyvyl, {VE::PVFMKSUPvml, VE::PVFMKSLOvml}},
|
|
};
|
|
|
|
unsigned Opcode = MI.getOpcode();
|
|
|
|
auto Found = VFMKMap.find(Opcode);
|
|
if (Found == VFMKMap.end())
|
|
report_fatal_error("unexpected opcode for pseudo vfmk");
|
|
|
|
unsigned OpcodeUpper = (*Found).second.first;
|
|
unsigned OpcodeLower = (*Found).second.second;
|
|
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
MachineInstrBuilder Bu = BuildMI(*MBB, MI, DL, TI.get(OpcodeUpper));
|
|
addOperandsForVFMK(Bu, MI, /* Upper */ true);
|
|
MachineInstrBuilder Bl = BuildMI(*MBB, MI, DL, TI.get(OpcodeLower));
|
|
addOperandsForVFMK(Bl, MI, /* Upper */ false);
|
|
|
|
MI.eraseFromParent();
|
|
}
|
|
|
|
bool VEInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
|
|
switch (MI.getOpcode()) {
|
|
case VE::EXTEND_STACK: {
|
|
return expandExtendStackPseudo(MI);
|
|
}
|
|
case VE::EXTEND_STACK_GUARD: {
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return true;
|
|
}
|
|
case VE::GETSTACKTOP: {
|
|
return expandGetStackTopPseudo(MI);
|
|
}
|
|
|
|
case VE::LVMyir:
|
|
case VE::LVMyim:
|
|
case VE::LVMyir_y:
|
|
case VE::LVMyim_y: {
|
|
Register VMXu = getVM512Upper(MI.getOperand(0).getReg());
|
|
Register VMXl = getVM512Lower(MI.getOperand(0).getReg());
|
|
int64_t Imm = MI.getOperand(1).getImm();
|
|
bool IsSrcReg =
|
|
MI.getOpcode() == VE::LVMyir || MI.getOpcode() == VE::LVMyir_y;
|
|
Register Src = IsSrcReg ? MI.getOperand(2).getReg() : VE::NoRegister;
|
|
int64_t MImm = IsSrcReg ? 0 : MI.getOperand(2).getImm();
|
|
bool KillSrc = IsSrcReg ? MI.getOperand(2).isKill() : false;
|
|
Register VMX = VMXl;
|
|
if (Imm >= 4) {
|
|
VMX = VMXu;
|
|
Imm -= 4;
|
|
}
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
switch (MI.getOpcode()) {
|
|
case VE::LVMyir:
|
|
BuildMI(*MBB, MI, DL, get(VE::LVMir))
|
|
.addDef(VMX)
|
|
.addImm(Imm)
|
|
.addReg(Src, getKillRegState(KillSrc));
|
|
break;
|
|
case VE::LVMyim:
|
|
BuildMI(*MBB, MI, DL, get(VE::LVMim))
|
|
.addDef(VMX)
|
|
.addImm(Imm)
|
|
.addImm(MImm);
|
|
break;
|
|
case VE::LVMyir_y:
|
|
assert(MI.getOperand(0).getReg() == MI.getOperand(3).getReg() &&
|
|
"LVMyir_y has different register in 3rd operand");
|
|
BuildMI(*MBB, MI, DL, get(VE::LVMir_m))
|
|
.addDef(VMX)
|
|
.addImm(Imm)
|
|
.addReg(Src, getKillRegState(KillSrc))
|
|
.addReg(VMX);
|
|
break;
|
|
case VE::LVMyim_y:
|
|
assert(MI.getOperand(0).getReg() == MI.getOperand(3).getReg() &&
|
|
"LVMyim_y has different register in 3rd operand");
|
|
BuildMI(*MBB, MI, DL, get(VE::LVMim_m))
|
|
.addDef(VMX)
|
|
.addImm(Imm)
|
|
.addImm(MImm)
|
|
.addReg(VMX);
|
|
break;
|
|
}
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
case VE::SVMyi: {
|
|
Register Dest = MI.getOperand(0).getReg();
|
|
Register VMZu = getVM512Upper(MI.getOperand(1).getReg());
|
|
Register VMZl = getVM512Lower(MI.getOperand(1).getReg());
|
|
bool KillSrc = MI.getOperand(1).isKill();
|
|
int64_t Imm = MI.getOperand(2).getImm();
|
|
Register VMZ = VMZl;
|
|
if (Imm >= 4) {
|
|
VMZ = VMZu;
|
|
Imm -= 4;
|
|
}
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MBB, MI, DL, get(VE::SVMmi), Dest).addReg(VMZ).addImm(Imm);
|
|
MachineInstr *Inst = MIB.getInstr();
|
|
MI.eraseFromParent();
|
|
if (KillSrc) {
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
Inst->addRegisterKilled(MI.getOperand(1).getReg(), TRI, true);
|
|
}
|
|
return true;
|
|
}
|
|
case VE::VFMKyal:
|
|
case VE::VFMKynal:
|
|
case VE::VFMKWyvl:
|
|
case VE::VFMKWyvyl:
|
|
case VE::VFMKSyvl:
|
|
case VE::VFMKSyvyl:
|
|
expandPseudoVFMK(*this, MI);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool VEInstrInfo::expandExtendStackPseudo(MachineInstr &MI) const {
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const VESubtarget &STI = MF.getSubtarget<VESubtarget>();
|
|
const VEInstrInfo &TII = *STI.getInstrInfo();
|
|
DebugLoc dl = MBB.findDebugLoc(MI);
|
|
|
|
// Create following instructions and multiple basic blocks.
|
|
//
|
|
// thisBB:
|
|
// brge.l.t %sp, %sl, sinkBB
|
|
// syscallBB:
|
|
// ld %s61, 0x18(, %tp) // load param area
|
|
// or %s62, 0, %s0 // spill the value of %s0
|
|
// lea %s63, 0x13b // syscall # of grow
|
|
// shm.l %s63, 0x0(%s61) // store syscall # at addr:0
|
|
// shm.l %sl, 0x8(%s61) // store old limit at addr:8
|
|
// shm.l %sp, 0x10(%s61) // store new limit at addr:16
|
|
// monc // call monitor
|
|
// or %s0, 0, %s62 // restore the value of %s0
|
|
// sinkBB:
|
|
|
|
// Create new MBB
|
|
MachineBasicBlock *BB = &MBB;
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineBasicBlock *syscallMBB = MF.CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = MF.CreateMachineBasicBlock(LLVM_BB);
|
|
MachineFunction::iterator It = ++(BB->getIterator());
|
|
MF.insert(It, syscallMBB);
|
|
MF.insert(It, sinkMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), BB,
|
|
std::next(std::next(MachineBasicBlock::iterator(MI))),
|
|
BB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Next, add the true and fallthrough blocks as its successors.
|
|
BB->addSuccessor(syscallMBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
BuildMI(BB, dl, TII.get(VE::BRCFLrr_t))
|
|
.addImm(VECC::CC_IGE)
|
|
.addReg(VE::SX11) // %sp
|
|
.addReg(VE::SX8) // %sl
|
|
.addMBB(sinkMBB);
|
|
|
|
BB = syscallMBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
BuildMI(BB, dl, TII.get(VE::LDrii), VE::SX61)
|
|
.addReg(VE::SX14)
|
|
.addImm(0)
|
|
.addImm(0x18);
|
|
BuildMI(BB, dl, TII.get(VE::ORri), VE::SX62)
|
|
.addReg(VE::SX0)
|
|
.addImm(0);
|
|
BuildMI(BB, dl, TII.get(VE::LEAzii), VE::SX63)
|
|
.addImm(0)
|
|
.addImm(0)
|
|
.addImm(0x13b);
|
|
BuildMI(BB, dl, TII.get(VE::SHMLri))
|
|
.addReg(VE::SX61)
|
|
.addImm(0)
|
|
.addReg(VE::SX63);
|
|
BuildMI(BB, dl, TII.get(VE::SHMLri))
|
|
.addReg(VE::SX61)
|
|
.addImm(8)
|
|
.addReg(VE::SX8);
|
|
BuildMI(BB, dl, TII.get(VE::SHMLri))
|
|
.addReg(VE::SX61)
|
|
.addImm(16)
|
|
.addReg(VE::SX11);
|
|
BuildMI(BB, dl, TII.get(VE::MONC));
|
|
|
|
BuildMI(BB, dl, TII.get(VE::ORri), VE::SX0)
|
|
.addReg(VE::SX62)
|
|
.addImm(0);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return true;
|
|
}
|
|
|
|
bool VEInstrInfo::expandGetStackTopPseudo(MachineInstr &MI) const {
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
MachineFunction &MF = *MBB->getParent();
|
|
const VESubtarget &STI = MF.getSubtarget<VESubtarget>();
|
|
const VEInstrInfo &TII = *STI.getInstrInfo();
|
|
DebugLoc DL = MBB->findDebugLoc(MI);
|
|
|
|
// Create following instruction
|
|
//
|
|
// dst = %sp + target specific frame + the size of parameter area
|
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const VEFrameLowering &TFL = *STI.getFrameLowering();
|
|
|
|
// The VE ABI requires a reserved area at the top of stack as described
|
|
// in VEFrameLowering.cpp. So, we adjust it here.
|
|
unsigned NumBytes = STI.getAdjustedFrameSize(0);
|
|
|
|
// Also adds the size of parameter area.
|
|
if (MFI.adjustsStack() && TFL.hasReservedCallFrame(MF))
|
|
NumBytes += MFI.getMaxCallFrameSize();
|
|
|
|
BuildMI(*MBB, MI, DL, TII.get(VE::LEArii))
|
|
.addDef(MI.getOperand(0).getReg())
|
|
.addReg(VE::SX11)
|
|
.addImm(0)
|
|
.addImm(NumBytes);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return true;
|
|
}
|