llvm-project/compiler-rt/lib/lsan/lsan_common.cc

404 lines
14 KiB
C++

//=-- lsan_common.cc ------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of LeakSanitizer.
// Implementation of common leak checking functionality.
//
//===----------------------------------------------------------------------===//
#include "lsan_common.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_stoptheworld.h"
#if CAN_SANITIZE_LEAKS
namespace __lsan {
Flags lsan_flags;
static void InitializeFlags() {
Flags *f = flags();
// Default values.
f->sources = kSourceAllAligned;
f->report_blocks = false;
f->resolution = 0;
f->max_leaks = 0;
f->exitcode = 23;
f->log_pointers = false;
f->log_threads = false;
const char *options = GetEnv("LSAN_OPTIONS");
if (options) {
bool aligned = true;
ParseFlag(options, &aligned, "aligned");
if (!aligned) f->sources |= kSourceUnaligned;
ParseFlag(options, &f->report_blocks, "report_blocks");
ParseFlag(options, &f->resolution, "resolution");
CHECK_GE(&f->resolution, 0);
ParseFlag(options, &f->max_leaks, "max_leaks");
CHECK_GE(&f->max_leaks, 0);
ParseFlag(options, &f->log_pointers, "log_pointers");
ParseFlag(options, &f->log_threads, "log_threads");
ParseFlag(options, &f->exitcode, "exitcode");
}
}
void InitCommonLsan() {
InitializeFlags();
InitializePlatformSpecificModules();
}
static inline bool CanBeAHeapPointer(uptr p) {
// Since our heap is located in mmap-ed memory, we can assume a sensible lower
// boundary on heap addresses.
const uptr kMinAddress = 4 * 4096;
if (p < kMinAddress) return false;
#ifdef __x86_64__
// Accept only canonical form user-space addresses.
return ((p >> 47) == 0);
#else
return true;
#endif
}
// Scan the memory range, looking for byte patterns that point into allocator
// chunks. Mark those chunks with tag and add them to the frontier.
// There are two usage modes for this function: finding non-leaked chunks
// (tag = kReachable) and finding indirectly leaked chunks
// (tag = kIndirectlyLeaked). In the second case, there's no flood fill,
// so frontier = 0.
void ScanRangeForPointers(uptr begin, uptr end, InternalVector<uptr> *frontier,
const char *region_type, ChunkTag tag) {
const uptr alignment = flags()->pointer_alignment();
if (flags()->log_pointers)
Report("Scanning %s range %p-%p.\n", region_type, begin, end);
uptr pp = begin;
if (pp % alignment)
pp = pp + alignment - pp % alignment;
for (; pp + sizeof(uptr) <= end; pp += alignment) {
void *p = *reinterpret_cast<void**>(pp);
if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
// FIXME: PointsIntoChunk is SLOW because GetBlockBegin() in
// LargeMmapAllocator involves a lock and a linear search.
void *chunk = PointsIntoChunk(p);
if (!chunk) continue;
LsanMetadata m(chunk);
if (m.tag() == kReachable) continue;
m.set_tag(tag);
if (flags()->log_pointers)
Report("%p: found %p pointing into chunk %p-%p of size %llu.\n", pp, p,
chunk, reinterpret_cast<uptr>(chunk) + m.requested_size(),
m.requested_size());
if (frontier)
frontier->push_back(reinterpret_cast<uptr>(chunk));
}
}
// Scan thread data (stacks and TLS) for heap pointers.
static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
InternalVector<uptr> *frontier) {
InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
uptr registers_begin = reinterpret_cast<uptr>(registers.data());
uptr registers_end = registers_begin + registers.size();
for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
if (flags()->log_threads) Report("Processing thread %d.\n", os_id);
uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
&tls_begin, &tls_end,
&cache_begin, &cache_end);
if (!thread_found) {
// If a thread can't be found in the thread registry, it's probably in the
// process of destruction. Log this event and move on.
if (flags()->log_threads)
Report("Thread %d not found in registry.\n", os_id);
continue;
}
uptr sp;
bool have_registers =
(suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
if (!have_registers) {
Report("Unable to get registers from thread %d.\n");
// If unable to get SP, consider the entire stack to be reachable.
sp = stack_begin;
}
if (flags()->use_registers() && have_registers)
ScanRangeForPointers(registers_begin, registers_end, frontier,
"REGISTERS", kReachable);
if (flags()->use_stacks()) {
if (flags()->log_threads)
Report("Stack at %p-%p, SP = %p.\n", stack_begin, stack_end, sp);
if (sp < stack_begin || sp >= stack_end) {
// SP is outside the recorded stack range (e.g. the thread is running a
// signal handler on alternate stack). Again, consider the entire stack
// range to be reachable.
if (flags()->log_threads)
Report("WARNING: stack_pointer not in stack_range.\n");
} else {
// Shrink the stack range to ignore out-of-scope values.
stack_begin = sp;
}
ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
kReachable);
}
if (flags()->use_tls()) {
if (flags()->log_threads) Report("TLS at %p-%p.\n", tls_begin, tls_end);
// Because LSan should not be loaded with dlopen(), we can assume
// that allocator cache will be part of static TLS image.
CHECK_LE(tls_begin, cache_begin);
CHECK_GE(tls_end, cache_end);
if (tls_begin < cache_begin)
ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
kReachable);
if (tls_end > cache_end)
ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
}
}
}
static void FloodFillReachable(InternalVector<uptr> *frontier) {
while (frontier->size()) {
uptr next_chunk = frontier->back();
frontier->pop_back();
LsanMetadata m(reinterpret_cast<void *>(next_chunk));
ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
"HEAP", kReachable);
}
}
// Mark leaked chunks which are reachable from other leaked chunks.
void MarkIndirectlyLeakedCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
if (m.allocated() && m.tag() != kReachable) {
ScanRangeForPointers(reinterpret_cast<uptr>(p),
reinterpret_cast<uptr>(p) + m.requested_size(),
/* frontier */ 0, "HEAP", kIndirectlyLeaked);
}
}
// Set the appropriate tag on each chunk.
static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
// Holds the flood fill frontier.
InternalVector<uptr> frontier(GetPageSizeCached());
if (flags()->use_globals())
ProcessGlobalRegions(&frontier);
ProcessThreads(suspended_threads, &frontier);
FloodFillReachable(&frontier);
ProcessPlatformSpecificAllocations(&frontier);
FloodFillReachable(&frontier);
// Now all reachable chunks are marked. Iterate over leaked chunks and mark
// those that are reachable from other leaked chunks.
if (flags()->log_pointers)
Report("Now scanning leaked blocks for pointers.\n");
ForEachChunk(MarkIndirectlyLeakedCb());
}
void ClearTagCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
m.set_tag(kDirectlyLeaked);
}
static void PrintStackTraceById(u32 stack_trace_id) {
CHECK(stack_trace_id);
uptr size = 0;
const uptr *trace = StackDepotGet(stack_trace_id, &size);
StackTrace::PrintStack(trace, size, common_flags()->symbolize,
common_flags()->strip_path_prefix, 0);
}
static void LockAndSuspendThreads(StopTheWorldCallback callback, void *arg) {
LockThreadRegistry();
LockAllocator();
StopTheWorld(callback, arg);
// Allocator must be unlocked by the callback.
UnlockThreadRegistry();
}
///// Normal leak checking. /////
void CollectLeaksCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
if (!m.allocated()) return;
if (m.tag() != kReachable) {
uptr resolution = flags()->resolution;
if (resolution > 0) {
uptr size = 0;
const uptr *trace = StackDepotGet(m.stack_trace_id(), &size);
size = Min(size, resolution);
leak_report_->Add(StackDepotPut(trace, size), m.requested_size(),
m.tag());
} else {
leak_report_->Add(m.stack_trace_id(), m.requested_size(), m.tag());
}
}
}
static void CollectLeaks(LeakReport *leak_report) {
ForEachChunk(CollectLeaksCb(leak_report));
}
void PrintLeakedCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
if (!m.allocated()) return;
if (m.tag() != kReachable) {
CHECK(m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked);
Printf("%s leaked %llu byte block at %p\n",
m.tag() == kDirectlyLeaked ? "Directly" : "Indirectly",
m.requested_size(), p);
}
}
static void PrintLeaked() {
Printf("\nReporting individual blocks:\n");
ForEachChunk(PrintLeakedCb());
}
enum LeakCheckResult {
kFatalError,
kLeaksFound,
kNoLeaks
};
static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
void *arg) {
LeakCheckResult *result = reinterpret_cast<LeakCheckResult *>(arg);
CHECK_EQ(*result, kFatalError);
// Allocator must not be locked when we call GetRegionBegin().
UnlockAllocator();
ClassifyAllChunks(suspended_threads);
LeakReport leak_report;
CollectLeaks(&leak_report);
if (leak_report.IsEmpty()) {
*result = kNoLeaks;
return;
}
leak_report.PrintLargest(flags()->max_leaks);
if (flags()->report_blocks)
PrintLeaked();
ForEachChunk(ClearTagCb());
*result = kLeaksFound;
}
void DoLeakCheck() {
LeakCheckResult result = kFatalError;
LockAndSuspendThreads(DoLeakCheckCallback, &result);
if (result == kFatalError) {
Report("LeakSanitizer has encountered a fatal error.\n");
Die();
} else if (result == kLeaksFound) {
if (flags()->exitcode)
internal__exit(flags()->exitcode);
}
}
///// Reporting of leaked blocks' addresses (for testing). /////
void ReportLeakedCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
if (m.allocated() && m.tag() != kReachable)
leaked_->push_back(p);
}
struct ReportLeakedParam {
InternalVector<void *> *leaked;
uptr sources;
bool success;
};
static void ReportLeakedCallback(const SuspendedThreadsList &suspended_threads,
void *arg) {
// Allocator must not be locked when we call GetRegionBegin().
UnlockAllocator();
ReportLeakedParam *param = reinterpret_cast<ReportLeakedParam *>(arg);
flags()->sources = param->sources;
ClassifyAllChunks(suspended_threads);
ForEachChunk(ReportLeakedCb(param->leaked));
ForEachChunk(ClearTagCb());
param->success = true;
}
void ReportLeaked(InternalVector<void *> *leaked, uptr sources) {
CHECK_EQ(0, leaked->size());
ReportLeakedParam param;
param.leaked = leaked;
param.success = false;
param.sources = sources;
LockAndSuspendThreads(ReportLeakedCallback, &param);
CHECK(param.success);
}
///// LeakReport implementation. /////
// A hard limit on the number of distinct leaks, to avoid quadratic complexity
// in LeakReport::Add(). We don't expect to ever see this many leaks in
// real-world applications.
// FIXME: Get rid of this limit by changing the implementation of LeakReport to
// use a hash table.
const uptr kMaxLeaksConsidered = 1000;
void LeakReport::Add(u32 stack_trace_id, uptr leaked_size, ChunkTag tag) {
CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
bool is_directly_leaked = (tag == kDirectlyLeaked);
for (uptr i = 0; i < leaks_.size(); i++)
if (leaks_[i].stack_trace_id == stack_trace_id &&
leaks_[i].is_directly_leaked == is_directly_leaked) {
leaks_[i].hit_count++;
leaks_[i].total_size += leaked_size;
return;
}
if (leaks_.size() == kMaxLeaksConsidered) return;
Leak leak = { /* hit_count */ 1, leaked_size, stack_trace_id,
is_directly_leaked };
leaks_.push_back(leak);
}
static bool IsLarger(const Leak &leak1, const Leak &leak2) {
return leak1.total_size > leak2.total_size;
}
void LeakReport::PrintLargest(uptr max_leaks) {
CHECK(leaks_.size() <= kMaxLeaksConsidered);
Printf("\n");
if (leaks_.size() == kMaxLeaksConsidered)
Printf("Too many leaks! Only the first %llu leaks encountered will be "
"reported.\n",
kMaxLeaksConsidered);
if (max_leaks > 0 && max_leaks < leaks_.size())
Printf("The %llu largest leak%s:\n", max_leaks, max_leaks > 1 ? "s" : "");
InternalSort(&leaks_, leaks_.size(), IsLarger);
max_leaks = max_leaks > 0 ? Min(max_leaks, leaks_.size()) : leaks_.size();
for (uptr i = 0; i < max_leaks; i++) {
Printf("\n%s leak of %llu bytes in %llu objects allocated from:\n",
leaks_[i].is_directly_leaked ? "Direct" : "Indirect",
leaks_[i].total_size, leaks_[i].hit_count);
PrintStackTraceById(leaks_[i].stack_trace_id);
}
if (max_leaks < leaks_.size()) {
uptr remaining = leaks_.size() - max_leaks;
Printf("\nOmitting %llu more leak%s.\n", remaining,
remaining > 1 ? "s" : "");
}
}
} // namespace __lsan
#endif // CAN_SANITIZE_LEAKS