forked from OSchip/llvm-project
305 lines
11 KiB
C++
305 lines
11 KiB
C++
//===- ICF.cpp ------------------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Identical Code Folding is a feature to merge sections not by name (which
|
|
// is regular comdat handling) but by contents. If two non-writable sections
|
|
// have the same data, relocations, attributes, etc., then the two
|
|
// are considered identical and merged by the linker. This optimization
|
|
// makes outputs smaller.
|
|
//
|
|
// ICF is theoretically a problem of reducing graphs by merging as many
|
|
// identical subgraphs as possible if we consider sections as vertices and
|
|
// relocations as edges. It may sound simple, but it is a bit more
|
|
// complicated than you might think. The order of processing sections
|
|
// matters because merging two sections can make other sections, whose
|
|
// relocations now point to the same section, mergeable. Graphs may contain
|
|
// cycles. We need a sophisticated algorithm to do this properly and
|
|
// efficiently.
|
|
//
|
|
// What we do in this file is this. We split sections into groups. Sections
|
|
// in the same group are considered identical.
|
|
//
|
|
// We begin by optimistically putting all sections into a single equivalence
|
|
// class. Then we apply a series of checks that split this initial
|
|
// equivalence class into more and more refined equivalence classes based on
|
|
// the properties by which a section can be distinguished.
|
|
//
|
|
// We begin by checking that the section contents and flags are the
|
|
// same. This only needs to be done once since these properties don't depend
|
|
// on the current equivalence class assignment.
|
|
//
|
|
// Then we split the equivalence classes based on checking that their
|
|
// relocations are the same, where relocation targets are compared by their
|
|
// equivalence class, not the concrete section. This may need to be done
|
|
// multiple times because as the equivalence classes are refined, two
|
|
// sections that had a relocation target in the same equivalence class may
|
|
// now target different equivalence classes, and hence these two sections
|
|
// must be put in different equivalence classes (whereas in the previous
|
|
// iteration they were not since the relocation target was the same.)
|
|
//
|
|
// Our algorithm is smart enough to merge the following mutually-recursive
|
|
// functions.
|
|
//
|
|
// void foo() { bar(); }
|
|
// void bar() { foo(); }
|
|
//
|
|
// This algorithm is so-called "optimistic" algorithm described in
|
|
// http://research.google.com/pubs/pub36912.html. (Note that what GNU
|
|
// gold implemented is different from the optimistic algorithm.)
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ICF.h"
|
|
#include "Config.h"
|
|
#include "SymbolTable.h"
|
|
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/Support/ELF.h"
|
|
#include <algorithm>
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
using namespace llvm;
|
|
using namespace llvm::ELF;
|
|
using namespace llvm::object;
|
|
|
|
namespace {
|
|
struct Range {
|
|
size_t Begin;
|
|
size_t End;
|
|
};
|
|
|
|
template <class ELFT> class ICF {
|
|
public:
|
|
void run();
|
|
|
|
private:
|
|
void segregate(Range *R, bool Constant);
|
|
|
|
template <class RelTy>
|
|
bool constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB);
|
|
|
|
template <class RelTy>
|
|
bool variableEq(const InputSection<ELFT> *A, ArrayRef<RelTy> RelsA,
|
|
const InputSection<ELFT> *B, ArrayRef<RelTy> RelsB);
|
|
|
|
bool equalsConstant(const InputSection<ELFT> *A, const InputSection<ELFT> *B);
|
|
bool equalsVariable(const InputSection<ELFT> *A, const InputSection<ELFT> *B);
|
|
|
|
std::vector<InputSection<ELFT> *> Sections;
|
|
std::vector<Range> Ranges;
|
|
|
|
// The main loop is repeated until we get a convergence.
|
|
bool Repeat = false; // If Repeat is true, we need to repeat.
|
|
int Cnt = 0; // Counter for the main loop.
|
|
};
|
|
}
|
|
|
|
// Returns a hash value for S. Note that the information about
|
|
// relocation targets is not included in the hash value.
|
|
template <class ELFT> static uint64_t getHash(InputSection<ELFT> *S) {
|
|
return hash_combine(S->Flags, S->getSize(), S->NumRelocations);
|
|
}
|
|
|
|
// Returns true if section S is subject of ICF.
|
|
template <class ELFT> static bool isEligible(InputSection<ELFT> *S) {
|
|
// .init and .fini contains instructions that must be executed to
|
|
// initialize and finalize the process. They cannot and should not
|
|
// be merged.
|
|
return S->Live && (S->Flags & SHF_ALLOC) && !(S->Flags & SHF_WRITE) &&
|
|
S->Name != ".init" && S->Name != ".fini";
|
|
}
|
|
|
|
// Before calling this function, all sections in range R must have the
|
|
// same group ID.
|
|
template <class ELFT> void ICF<ELFT>::segregate(Range *R, bool Constant) {
|
|
// This loop rearranges sections in range R so that all sections
|
|
// that are equal in terms of equals{Constant,Variable} are contiguous
|
|
// in Sections vector.
|
|
//
|
|
// The algorithm is quadratic in the worst case, but that is not an
|
|
// issue in practice because the number of the distinct sections in
|
|
// [R.Begin, R.End] is usually very small.
|
|
while (R->End - R->Begin > 1) {
|
|
// Divide range R into two. Let Mid be the start index of the
|
|
// second group.
|
|
auto Bound = std::stable_partition(
|
|
Sections.begin() + R->Begin + 1, Sections.begin() + R->End,
|
|
[&](InputSection<ELFT> *S) {
|
|
if (Constant)
|
|
return equalsConstant(Sections[R->Begin], S);
|
|
return equalsVariable(Sections[R->Begin], S);
|
|
});
|
|
size_t Mid = Bound - Sections.begin();
|
|
|
|
if (Mid == R->End)
|
|
return;
|
|
|
|
// Now we split [R.Begin, R.End) into [R.Begin, Mid) and [Mid, R.End).
|
|
if (Mid - R->Begin > 1)
|
|
Ranges.push_back({R->Begin, Mid});
|
|
R->Begin = Mid;
|
|
|
|
// Update GroupIds for the new group members. We use the index of
|
|
// the group first member as a group ID because that is unique.
|
|
for (size_t I = Mid; I < R->End; ++I)
|
|
Sections[I]->GroupId = Mid;
|
|
|
|
// Since we have split a group, we need to repeat the main loop
|
|
// later to obtain a convergence. Remember that.
|
|
Repeat = true;
|
|
}
|
|
}
|
|
|
|
// Compare two lists of relocations.
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
bool ICF<ELFT>::constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB) {
|
|
auto Eq = [](const RelTy &A, const RelTy &B) {
|
|
return A.r_offset == B.r_offset &&
|
|
A.getType(Config->Mips64EL) == B.getType(Config->Mips64EL) &&
|
|
getAddend<ELFT>(A) == getAddend<ELFT>(B);
|
|
};
|
|
|
|
return RelsA.size() == RelsB.size() &&
|
|
std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
|
|
}
|
|
|
|
// Compare "non-moving" part of two InputSections, namely everything
|
|
// except relocation targets.
|
|
template <class ELFT>
|
|
bool ICF<ELFT>::equalsConstant(const InputSection<ELFT> *A,
|
|
const InputSection<ELFT> *B) {
|
|
if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
|
|
A->getSize() != B->getSize() || A->Data != B->Data)
|
|
return false;
|
|
|
|
if (A->AreRelocsRela)
|
|
return constantEq(A->relas(), B->relas());
|
|
return constantEq(A->rels(), B->rels());
|
|
}
|
|
|
|
// Compare two lists of relocations. Returns true if all pairs of
|
|
// relocations point to the same section in terms of ICF.
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
bool ICF<ELFT>::variableEq(const InputSection<ELFT> *A, ArrayRef<RelTy> RelsA,
|
|
const InputSection<ELFT> *B, ArrayRef<RelTy> RelsB) {
|
|
auto Eq = [&](const RelTy &RA, const RelTy &RB) {
|
|
SymbolBody &SA = A->getFile()->getRelocTargetSym(RA);
|
|
SymbolBody &SB = B->getFile()->getRelocTargetSym(RB);
|
|
if (&SA == &SB)
|
|
return true;
|
|
|
|
// Or, the symbols should be pointing to the same section
|
|
// in terms of the group ID.
|
|
auto *DA = dyn_cast<DefinedRegular<ELFT>>(&SA);
|
|
auto *DB = dyn_cast<DefinedRegular<ELFT>>(&SB);
|
|
if (!DA || !DB)
|
|
return false;
|
|
if (DA->Value != DB->Value)
|
|
return false;
|
|
|
|
auto *X = dyn_cast<InputSection<ELFT>>(DA->Section);
|
|
auto *Y = dyn_cast<InputSection<ELFT>>(DB->Section);
|
|
if (!X || !Y)
|
|
return false;
|
|
return X->GroupId != 0 && X->GroupId == Y->GroupId;
|
|
};
|
|
|
|
return std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
|
|
}
|
|
|
|
// Compare "moving" part of two InputSections, namely relocation targets.
|
|
template <class ELFT>
|
|
bool ICF<ELFT>::equalsVariable(const InputSection<ELFT> *A,
|
|
const InputSection<ELFT> *B) {
|
|
if (A->AreRelocsRela)
|
|
return variableEq(A, A->relas(), B, B->relas());
|
|
return variableEq(A, A->rels(), B, B->rels());
|
|
}
|
|
|
|
// The main function of ICF.
|
|
template <class ELFT> void ICF<ELFT>::run() {
|
|
// Collect sections to merge.
|
|
for (InputSectionBase<ELFT> *Sec : Symtab<ELFT>::X->Sections)
|
|
if (auto *S = dyn_cast<InputSection<ELFT>>(Sec))
|
|
if (isEligible(S))
|
|
Sections.push_back(S);
|
|
|
|
// Initially, we use hash values as section group IDs. Therefore,
|
|
// if two sections have the same ID, they are likely (but not
|
|
// guaranteed) to have the same static contents in terms of ICF.
|
|
for (InputSection<ELFT> *S : Sections)
|
|
// Set MSB to 1 to avoid collisions with non-hash IDs.
|
|
S->GroupId = getHash(S) | (uint64_t(1) << 63);
|
|
|
|
// From now on, sections in Sections are ordered so that sections in
|
|
// the same group are consecutive in the vector.
|
|
std::stable_sort(Sections.begin(), Sections.end(),
|
|
[](InputSection<ELFT> *A, InputSection<ELFT> *B) {
|
|
if (A->GroupId != B->GroupId)
|
|
return A->GroupId < B->GroupId;
|
|
// Within a group, put the highest alignment
|
|
// requirement first, so that's the one we'll keep.
|
|
return B->Alignment < A->Alignment;
|
|
});
|
|
|
|
// Split sections into groups by ID. And then we are going to
|
|
// split groups into more and more smaller groups.
|
|
// Note that we do not add single element groups because they
|
|
// are already the smallest.
|
|
Ranges.reserve(Sections.size());
|
|
for (size_t I = 0, E = Sections.size(); I < E - 1;) {
|
|
// Let J be the first index whose element has a different ID.
|
|
size_t J = I + 1;
|
|
while (J < E && Sections[I]->GroupId == Sections[J]->GroupId)
|
|
++J;
|
|
if (J - I > 1)
|
|
Ranges.push_back({I, J});
|
|
I = J;
|
|
}
|
|
|
|
// Compare static contents and assign unique IDs for each static content.
|
|
std::for_each(Ranges.begin(), Ranges.end(),
|
|
[&](Range &R) { segregate(&R, true); });
|
|
++Cnt;
|
|
|
|
// Split groups by comparing relocations until convergence is obtained.
|
|
do {
|
|
Repeat = false;
|
|
std::for_each(Ranges.begin(), Ranges.end(),
|
|
[&](Range &R) { segregate(&R, false); });
|
|
++Cnt;
|
|
} while (Repeat);
|
|
|
|
log("ICF needed " + Twine(Cnt) + " iterations");
|
|
|
|
// Merge sections in the same group.
|
|
for (Range R : Ranges) {
|
|
if (R.End - R.Begin == 1)
|
|
continue;
|
|
|
|
log("selected " + Sections[R.Begin]->Name);
|
|
for (size_t I = R.Begin + 1; I < R.End; ++I) {
|
|
log(" removed " + Sections[I]->Name);
|
|
Sections[R.Begin]->replace(Sections[I]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ICF entry point function.
|
|
template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
|
|
|
|
template void elf::doIcf<ELF32LE>();
|
|
template void elf::doIcf<ELF32BE>();
|
|
template void elf::doIcf<ELF64LE>();
|
|
template void elf::doIcf<ELF64BE>();
|