llvm-project/clang-tools-extra/clangd/XRefs.cpp

763 lines
27 KiB
C++

//===--- XRefs.cpp -----------------------------------------------*- C++-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "XRefs.h"
#include "AST.h"
#include "Logger.h"
#include "SourceCode.h"
#include "URI.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Index/IndexDataConsumer.h"
#include "clang/Index/IndexingAction.h"
#include "clang/Index/USRGeneration.h"
#include "llvm/Support/Path.h"
namespace clang {
namespace clangd {
using namespace llvm;
namespace {
// Get the definition from a given declaration `D`.
// Return nullptr if no definition is found, or the declaration type of `D` is
// not supported.
const Decl *getDefinition(const Decl *D) {
assert(D);
if (const auto *TD = dyn_cast<TagDecl>(D))
return TD->getDefinition();
else if (const auto *VD = dyn_cast<VarDecl>(D))
return VD->getDefinition();
else if (const auto *FD = dyn_cast<FunctionDecl>(D))
return FD->getDefinition();
return nullptr;
}
// Convert a SymbolLocation to LSP's Location.
// HintPath is used to resolve the path of URI.
// FIXME: figure out a good home for it, and share the implementation with
// FindSymbols.
llvm::Optional<Location> toLSPLocation(const SymbolLocation &Loc,
llvm::StringRef HintPath) {
if (!Loc)
return llvm::None;
auto Uri = URI::parse(Loc.FileURI);
if (!Uri) {
log("Could not parse URI: {0}", Loc.FileURI);
return llvm::None;
}
auto Path = URI::resolve(*Uri, HintPath);
if (!Path) {
log("Could not resolve URI: {0}", Loc.FileURI);
return llvm::None;
}
Location LSPLoc;
LSPLoc.uri = URIForFile(*Path);
LSPLoc.range.start.line = Loc.Start.Line;
LSPLoc.range.start.character = Loc.Start.Column;
LSPLoc.range.end.line = Loc.End.Line;
LSPLoc.range.end.character = Loc.End.Column;
return LSPLoc;
}
struct MacroDecl {
StringRef Name;
const MacroInfo *Info;
};
struct DeclInfo {
const Decl *D;
// Indicates the declaration is referenced by an explicit AST node.
bool IsReferencedExplicitly = false;
};
/// Finds declarations locations that a given source location refers to.
class DeclarationAndMacrosFinder : public index::IndexDataConsumer {
std::vector<MacroDecl> MacroInfos;
// The value of the map indicates whether the declaration has been referenced
// explicitly in the code.
// True means the declaration is explicitly referenced at least once; false
// otherwise.
llvm::DenseMap<const Decl *, bool> Decls;
const SourceLocation &SearchedLocation;
const ASTContext &AST;
Preprocessor &PP;
public:
DeclarationAndMacrosFinder(const SourceLocation &SearchedLocation,
ASTContext &AST, Preprocessor &PP)
: SearchedLocation(SearchedLocation), AST(AST), PP(PP) {}
// Get all DeclInfo of the found declarations.
// The results are sorted by "IsReferencedExplicitly" and declaration
// location.
std::vector<DeclInfo> getFoundDecls() const {
std::vector<DeclInfo> Result;
for (auto It : Decls) {
Result.emplace_back();
Result.back().D = It.first;
Result.back().IsReferencedExplicitly = It.second;
}
// Sort results. Declarations being referenced explicitly come first.
std::sort(Result.begin(), Result.end(),
[](const DeclInfo &L, const DeclInfo &R) {
if (L.IsReferencedExplicitly != R.IsReferencedExplicitly)
return L.IsReferencedExplicitly > R.IsReferencedExplicitly;
return L.D->getBeginLoc() < R.D->getBeginLoc();
});
return Result;
}
std::vector<MacroDecl> takeMacroInfos() {
// Don't keep the same Macro info multiple times.
std::sort(MacroInfos.begin(), MacroInfos.end(),
[](const MacroDecl &Left, const MacroDecl &Right) {
return Left.Info < Right.Info;
});
auto Last = std::unique(MacroInfos.begin(), MacroInfos.end(),
[](const MacroDecl &Left, const MacroDecl &Right) {
return Left.Info == Right.Info;
});
MacroInfos.erase(Last, MacroInfos.end());
return std::move(MacroInfos);
}
bool
handleDeclOccurence(const Decl *D, index::SymbolRoleSet Roles,
ArrayRef<index::SymbolRelation> Relations,
SourceLocation Loc,
index::IndexDataConsumer::ASTNodeInfo ASTNode) override {
if (Loc == SearchedLocation) {
// Check whether the E has an implicit AST node (e.g. ImplicitCastExpr).
auto hasImplicitExpr = [](const Expr *E) {
if (!E || E->child_begin() == E->child_end())
return false;
// Use the first child is good enough for most cases -- normally the
// expression returned by handleDeclOccurence contains exactly one
// child expression.
const auto *FirstChild = *E->child_begin();
return llvm::isa<ExprWithCleanups>(FirstChild) ||
llvm::isa<MaterializeTemporaryExpr>(FirstChild) ||
llvm::isa<CXXBindTemporaryExpr>(FirstChild) ||
llvm::isa<ImplicitCastExpr>(FirstChild);
};
bool IsExplicit = !hasImplicitExpr(ASTNode.OrigE);
// Find and add definition declarations (for GoToDefinition).
// We don't use parameter `D`, as Parameter `D` is the canonical
// declaration, which is the first declaration of a redeclarable
// declaration, and it could be a forward declaration.
if (const auto *Def = getDefinition(D)) {
Decls[Def] |= IsExplicit;
} else {
// Couldn't find a definition, fall back to use `D`.
Decls[D] |= IsExplicit;
}
}
return true;
}
private:
void finish() override {
// Also handle possible macro at the searched location.
Token Result;
auto &Mgr = AST.getSourceManager();
if (!Lexer::getRawToken(Mgr.getSpellingLoc(SearchedLocation), Result, Mgr,
AST.getLangOpts(), false)) {
if (Result.is(tok::raw_identifier)) {
PP.LookUpIdentifierInfo(Result);
}
IdentifierInfo *IdentifierInfo = Result.getIdentifierInfo();
if (IdentifierInfo && IdentifierInfo->hadMacroDefinition()) {
std::pair<FileID, unsigned int> DecLoc =
Mgr.getDecomposedExpansionLoc(SearchedLocation);
// Get the definition just before the searched location so that a macro
// referenced in a '#undef MACRO' can still be found.
SourceLocation BeforeSearchedLocation = Mgr.getMacroArgExpandedLocation(
Mgr.getLocForStartOfFile(DecLoc.first)
.getLocWithOffset(DecLoc.second - 1));
MacroDefinition MacroDef =
PP.getMacroDefinitionAtLoc(IdentifierInfo, BeforeSearchedLocation);
MacroInfo *MacroInf = MacroDef.getMacroInfo();
if (MacroInf) {
MacroInfos.push_back(MacroDecl{IdentifierInfo->getName(), MacroInf});
assert(Decls.empty());
}
}
}
}
};
struct IdentifiedSymbol {
std::vector<DeclInfo> Decls;
std::vector<MacroDecl> Macros;
};
IdentifiedSymbol getSymbolAtPosition(ParsedAST &AST, SourceLocation Pos) {
auto DeclMacrosFinder = DeclarationAndMacrosFinder(Pos, AST.getASTContext(),
AST.getPreprocessor());
index::IndexingOptions IndexOpts;
IndexOpts.SystemSymbolFilter =
index::IndexingOptions::SystemSymbolFilterKind::All;
IndexOpts.IndexFunctionLocals = true;
indexTopLevelDecls(AST.getASTContext(), AST.getLocalTopLevelDecls(),
DeclMacrosFinder, IndexOpts);
return {DeclMacrosFinder.getFoundDecls(), DeclMacrosFinder.takeMacroInfos()};
}
Range getTokenRange(ParsedAST &AST, SourceLocation TokLoc) {
const SourceManager &SourceMgr = AST.getASTContext().getSourceManager();
SourceLocation LocEnd = Lexer::getLocForEndOfToken(
TokLoc, 0, SourceMgr, AST.getASTContext().getLangOpts());
return {sourceLocToPosition(SourceMgr, TokLoc),
sourceLocToPosition(SourceMgr, LocEnd)};
}
llvm::Optional<Location> makeLocation(ParsedAST &AST, SourceLocation TokLoc) {
const SourceManager &SourceMgr = AST.getASTContext().getSourceManager();
const FileEntry *F = SourceMgr.getFileEntryForID(SourceMgr.getFileID(TokLoc));
if (!F)
return llvm::None;
auto FilePath = getRealPath(F, SourceMgr);
if (!FilePath) {
log("failed to get path!");
return llvm::None;
}
Location L;
L.uri = URIForFile(*FilePath);
L.range = getTokenRange(AST, TokLoc);
return L;
}
} // namespace
std::vector<Location> findDefinitions(ParsedAST &AST, Position Pos,
const SymbolIndex *Index) {
const SourceManager &SourceMgr = AST.getASTContext().getSourceManager();
std::vector<Location> Result;
// Handle goto definition for #include.
for (auto &Inc : AST.getIncludeStructure().MainFileIncludes) {
if (!Inc.Resolved.empty() && Inc.R.start.line == Pos.line)
Result.push_back(Location{URIForFile{Inc.Resolved}, {}});
}
if (!Result.empty())
return Result;
// Identified symbols at a specific position.
SourceLocation SourceLocationBeg =
getBeginningOfIdentifier(AST, Pos, SourceMgr.getMainFileID());
auto Symbols = getSymbolAtPosition(AST, SourceLocationBeg);
for (auto Item : Symbols.Macros) {
auto Loc = Item.Info->getDefinitionLoc();
auto L = makeLocation(AST, Loc);
if (L)
Result.push_back(*L);
}
// Declaration and definition are different terms in C-family languages, and
// LSP only defines the "GoToDefinition" specification, so we try to perform
// the "most sensible" GoTo operation:
//
// - We use the location from AST and index (if available) to provide the
// final results. When there are duplicate results, we prefer AST over
// index because AST is more up-to-date.
//
// - For each symbol, we will return a location of the canonical declaration
// (e.g. function declaration in header), and a location of definition if
// they are available.
//
// So the work flow:
//
// 1. Identify the symbols being search for by traversing the AST.
// 2. Populate one of the locations with the AST location.
// 3. Use the AST information to query the index, and populate the index
// location (if available).
// 4. Return all populated locations for all symbols, definition first (
// which we think is the users wants most often).
struct CandidateLocation {
llvm::Optional<Location> Def;
llvm::Optional<Location> Decl;
};
// We respect the order in Symbols.Decls.
llvm::SmallVector<CandidateLocation, 8> ResultCandidates;
llvm::DenseMap<SymbolID, size_t> CandidatesIndex;
// Emit all symbol locations (declaration or definition) from AST.
for (const DeclInfo &DI : Symbols.Decls) {
const Decl *D = DI.D;
// Fake key for symbols don't have USR (no SymbolID).
// Ideally, there should be a USR for each identified symbols. Symbols
// without USR are rare and unimportant cases, we use the a fake holder to
// minimize the invasiveness of these cases.
SymbolID Key("");
if (auto ID = getSymbolID(D))
Key = *ID;
auto R = CandidatesIndex.try_emplace(Key, ResultCandidates.size());
if (R.second) // new entry
ResultCandidates.emplace_back();
auto &Candidate = ResultCandidates[R.first->second];
auto Loc = findNameLoc(D);
auto L = makeLocation(AST, Loc);
// The declaration in the identified symbols is a definition if possible
// otherwise it is declaration.
bool IsDef = getDefinition(D) == D;
// Populate one of the slots with location for the AST.
if (!IsDef)
Candidate.Decl = L;
else
Candidate.Def = L;
}
if (Index) {
LookupRequest QueryRequest;
// Build request for index query, using SymbolID.
for (auto It : CandidatesIndex)
QueryRequest.IDs.insert(It.first);
std::string HintPath;
const FileEntry *FE =
SourceMgr.getFileEntryForID(SourceMgr.getMainFileID());
if (auto Path = getRealPath(FE, SourceMgr))
HintPath = *Path;
// Query the index and populate the empty slot.
Index->lookup(QueryRequest, [&HintPath, &ResultCandidates,
&CandidatesIndex](const Symbol &Sym) {
auto It = CandidatesIndex.find(Sym.ID);
assert(It != CandidatesIndex.end());
auto &Value = ResultCandidates[It->second];
if (!Value.Def)
Value.Def = toLSPLocation(Sym.Definition, HintPath);
if (!Value.Decl)
Value.Decl = toLSPLocation(Sym.CanonicalDeclaration, HintPath);
});
}
// Populate the results, definition first.
for (const auto &Candidate : ResultCandidates) {
if (Candidate.Def)
Result.push_back(*Candidate.Def);
if (Candidate.Decl &&
Candidate.Decl != Candidate.Def) // Decl and Def might be the same
Result.push_back(*Candidate.Decl);
}
return Result;
}
namespace {
/// Collects references to symbols within the main file.
class ReferenceFinder : public index::IndexDataConsumer {
public:
struct Reference {
const Decl *Target;
SourceLocation Loc;
index::SymbolRoleSet Role;
};
ReferenceFinder(ASTContext &AST, Preprocessor &PP,
const std::vector<const Decl *> &TargetDecls)
: AST(AST) {
for (const Decl *D : TargetDecls)
Targets.insert(D);
}
std::vector<Reference> take() && {
std::sort(References.begin(), References.end(),
[](const Reference &L, const Reference &R) {
return std::tie(L.Loc, L.Target, L.Role) <
std::tie(R.Loc, R.Target, R.Role);
});
// We sometimes see duplicates when parts of the AST get traversed twice.
References.erase(std::unique(References.begin(), References.end(),
[](const Reference &L, const Reference &R) {
return std::tie(L.Target, L.Loc, L.Role) ==
std::tie(R.Target, R.Loc, R.Role);
}),
References.end());
return std::move(References);
}
bool
handleDeclOccurence(const Decl *D, index::SymbolRoleSet Roles,
ArrayRef<index::SymbolRelation> Relations,
SourceLocation Loc,
index::IndexDataConsumer::ASTNodeInfo ASTNode) override {
const SourceManager &SM = AST.getSourceManager();
Loc = SM.getFileLoc(Loc);
if (SM.isWrittenInMainFile(Loc) && Targets.count(D))
References.push_back({D, Loc, Roles});
return true;
}
private:
llvm::SmallSet<const Decl *, 4> Targets;
std::vector<Reference> References;
const ASTContext &AST;
};
std::vector<ReferenceFinder::Reference>
findRefs(const std::vector<const Decl *> &Decls, ParsedAST &AST) {
ReferenceFinder RefFinder(AST.getASTContext(), AST.getPreprocessor(), Decls);
index::IndexingOptions IndexOpts;
IndexOpts.SystemSymbolFilter =
index::IndexingOptions::SystemSymbolFilterKind::All;
IndexOpts.IndexFunctionLocals = true;
indexTopLevelDecls(AST.getASTContext(), AST.getLocalTopLevelDecls(),
RefFinder, IndexOpts);
return std::move(RefFinder).take();
}
} // namespace
std::vector<DocumentHighlight> findDocumentHighlights(ParsedAST &AST,
Position Pos) {
const SourceManager &SM = AST.getASTContext().getSourceManager();
auto Symbols = getSymbolAtPosition(
AST, getBeginningOfIdentifier(AST, Pos, SM.getMainFileID()));
std::vector<const Decl *> TargetDecls;
for (const DeclInfo &DI : Symbols.Decls) {
TargetDecls.push_back(DI.D);
}
auto References = findRefs(TargetDecls, AST);
std::vector<DocumentHighlight> Result;
for (const auto &Ref : References) {
DocumentHighlight DH;
DH.range = getTokenRange(AST, Ref.Loc);
if (Ref.Role & index::SymbolRoleSet(index::SymbolRole::Write))
DH.kind = DocumentHighlightKind::Write;
else if (Ref.Role & index::SymbolRoleSet(index::SymbolRole::Read))
DH.kind = DocumentHighlightKind::Read;
else
DH.kind = DocumentHighlightKind::Text;
Result.push_back(std::move(DH));
}
return Result;
}
static PrintingPolicy printingPolicyForDecls(PrintingPolicy Base) {
PrintingPolicy Policy(Base);
Policy.AnonymousTagLocations = false;
Policy.TerseOutput = true;
Policy.PolishForDeclaration = true;
Policy.ConstantsAsWritten = true;
Policy.SuppressTagKeyword = false;
return Policy;
}
/// Return a string representation (e.g. "class MyNamespace::MyClass") of
/// the type declaration \p TD.
static std::string typeDeclToString(const TypeDecl *TD) {
QualType Type = TD->getASTContext().getTypeDeclType(TD);
PrintingPolicy Policy =
printingPolicyForDecls(TD->getASTContext().getPrintingPolicy());
std::string Name;
llvm::raw_string_ostream Stream(Name);
Type.print(Stream, Policy);
return Stream.str();
}
/// Return a string representation (e.g. "namespace ns1::ns2") of
/// the named declaration \p ND.
static std::string namedDeclQualifiedName(const NamedDecl *ND,
StringRef Prefix) {
PrintingPolicy Policy =
printingPolicyForDecls(ND->getASTContext().getPrintingPolicy());
std::string Name;
llvm::raw_string_ostream Stream(Name);
Stream << Prefix << ' ';
ND->printQualifiedName(Stream, Policy);
return Stream.str();
}
/// Given a declaration \p D, return a human-readable string representing the
/// scope in which it is declared. If the declaration is in the global scope,
/// return the string "global namespace".
static llvm::Optional<std::string> getScopeName(const Decl *D) {
const DeclContext *DC = D->getDeclContext();
if (isa<TranslationUnitDecl>(DC))
return std::string("global namespace");
if (const TypeDecl *TD = dyn_cast<TypeDecl>(DC))
return typeDeclToString(TD);
else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC))
return namedDeclQualifiedName(ND, "namespace");
else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
return namedDeclQualifiedName(FD, "function");
return llvm::None;
}
/// Generate a \p Hover object given the declaration \p D.
static Hover getHoverContents(const Decl *D) {
Hover H;
llvm::Optional<std::string> NamedScope = getScopeName(D);
// Generate the "Declared in" section.
if (NamedScope) {
assert(!NamedScope->empty());
H.contents.value += "Declared in ";
H.contents.value += *NamedScope;
H.contents.value += "\n\n";
}
// We want to include the template in the Hover.
if (TemplateDecl *TD = D->getDescribedTemplate())
D = TD;
std::string DeclText;
llvm::raw_string_ostream OS(DeclText);
PrintingPolicy Policy =
printingPolicyForDecls(D->getASTContext().getPrintingPolicy());
D->print(OS, Policy);
OS.flush();
H.contents.value += DeclText;
return H;
}
/// Generate a \p Hover object given the type \p T.
static Hover getHoverContents(QualType T, ASTContext &ASTCtx) {
Hover H;
std::string TypeText;
llvm::raw_string_ostream OS(TypeText);
PrintingPolicy Policy = printingPolicyForDecls(ASTCtx.getPrintingPolicy());
T.print(OS, Policy);
OS.flush();
H.contents.value += TypeText;
return H;
}
/// Generate a \p Hover object given the macro \p MacroInf.
static Hover getHoverContents(StringRef MacroName) {
Hover H;
H.contents.value = "#define ";
H.contents.value += MacroName;
return H;
}
namespace {
/// Computes the deduced type at a given location by visiting the relevant
/// nodes. We use this to display the actual type when hovering over an "auto"
/// keyword or "decltype()" expression.
/// FIXME: This could have been a lot simpler by visiting AutoTypeLocs but it
/// seems that the AutoTypeLocs that can be visited along with their AutoType do
/// not have the deduced type set. Instead, we have to go to the appropriate
/// DeclaratorDecl/FunctionDecl and work our back to the AutoType that does have
/// a deduced type set. The AST should be improved to simplify this scenario.
class DeducedTypeVisitor : public RecursiveASTVisitor<DeducedTypeVisitor> {
SourceLocation SearchedLocation;
llvm::Optional<QualType> DeducedType;
public:
DeducedTypeVisitor(SourceLocation SearchedLocation)
: SearchedLocation(SearchedLocation) {}
llvm::Optional<QualType> getDeducedType() { return DeducedType; }
// Handle auto initializers:
//- auto i = 1;
//- decltype(auto) i = 1;
//- auto& i = 1;
bool VisitDeclaratorDecl(DeclaratorDecl *D) {
if (!D->getTypeSourceInfo() ||
D->getTypeSourceInfo()->getTypeLoc().getBeginLoc() != SearchedLocation)
return true;
auto DeclT = D->getType();
// "auto &" is represented as a ReferenceType containing an AutoType
if (const ReferenceType *RT = dyn_cast<ReferenceType>(DeclT.getTypePtr()))
DeclT = RT->getPointeeType();
const AutoType *AT = dyn_cast<AutoType>(DeclT.getTypePtr());
if (AT && !AT->getDeducedType().isNull()) {
// For auto, use the underlying type because the const& would be
// represented twice: written in the code and in the hover.
// Example: "const auto I = 1", we only want "int" when hovering on auto,
// not "const int".
//
// For decltype(auto), take the type as is because it cannot be written
// with qualifiers or references but its decuded type can be const-ref.
DeducedType = AT->isDecltypeAuto() ? DeclT : DeclT.getUnqualifiedType();
}
return true;
}
// Handle auto return types:
//- auto foo() {}
//- auto& foo() {}
//- auto foo() -> decltype(1+1) {}
//- operator auto() const { return 10; }
bool VisitFunctionDecl(FunctionDecl *D) {
if (!D->getTypeSourceInfo())
return true;
// Loc of auto in return type (c++14).
auto CurLoc = D->getReturnTypeSourceRange().getBegin();
// Loc of "auto" in operator auto()
if (CurLoc.isInvalid() && dyn_cast<CXXConversionDecl>(D))
CurLoc = D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
// Loc of "auto" in function with traling return type (c++11).
if (CurLoc.isInvalid())
CurLoc = D->getSourceRange().getBegin();
if (CurLoc != SearchedLocation)
return true;
auto T = D->getReturnType();
// "auto &" is represented as a ReferenceType containing an AutoType.
if (const ReferenceType *RT = dyn_cast<ReferenceType>(T.getTypePtr()))
T = RT->getPointeeType();
const AutoType *AT = dyn_cast<AutoType>(T.getTypePtr());
if (AT && !AT->getDeducedType().isNull()) {
DeducedType = T.getUnqualifiedType();
} else { // auto in a trailing return type just points to a DecltypeType.
const DecltypeType *DT = dyn_cast<DecltypeType>(T.getTypePtr());
if (!DT->getUnderlyingType().isNull())
DeducedType = DT->getUnderlyingType();
}
return true;
}
// Handle non-auto decltype, e.g.:
// - auto foo() -> decltype(expr) {}
// - decltype(expr);
bool VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
if (TL.getBeginLoc() != SearchedLocation)
return true;
// A DecltypeType's underlying type can be another DecltypeType! E.g.
// int I = 0;
// decltype(I) J = I;
// decltype(J) K = J;
const DecltypeType *DT = dyn_cast<DecltypeType>(TL.getTypePtr());
while (DT && !DT->getUnderlyingType().isNull()) {
DeducedType = DT->getUnderlyingType();
DT = dyn_cast<DecltypeType>(DeducedType->getTypePtr());
}
return true;
}
};
} // namespace
/// Retrieves the deduced type at a given location (auto, decltype).
llvm::Optional<QualType> getDeducedType(ParsedAST &AST,
SourceLocation SourceLocationBeg) {
Token Tok;
auto &ASTCtx = AST.getASTContext();
// Only try to find a deduced type if the token is auto or decltype.
if (!SourceLocationBeg.isValid() ||
Lexer::getRawToken(SourceLocationBeg, Tok, ASTCtx.getSourceManager(),
ASTCtx.getLangOpts(), false) ||
!Tok.is(tok::raw_identifier)) {
return {};
}
AST.getPreprocessor().LookUpIdentifierInfo(Tok);
if (!(Tok.is(tok::kw_auto) || Tok.is(tok::kw_decltype)))
return {};
DeducedTypeVisitor V(SourceLocationBeg);
for (Decl *D : AST.getLocalTopLevelDecls())
V.TraverseDecl(D);
return V.getDeducedType();
}
Optional<Hover> getHover(ParsedAST &AST, Position Pos) {
const SourceManager &SourceMgr = AST.getASTContext().getSourceManager();
SourceLocation SourceLocationBeg =
getBeginningOfIdentifier(AST, Pos, SourceMgr.getMainFileID());
// Identified symbols at a specific position.
auto Symbols = getSymbolAtPosition(AST, SourceLocationBeg);
if (!Symbols.Macros.empty())
return getHoverContents(Symbols.Macros[0].Name);
if (!Symbols.Decls.empty())
return getHoverContents(Symbols.Decls[0].D);
auto DeducedType = getDeducedType(AST, SourceLocationBeg);
if (DeducedType && !DeducedType->isNull())
return getHoverContents(*DeducedType, AST.getASTContext());
return None;
}
std::vector<Location> findReferences(ParsedAST &AST, Position Pos,
const SymbolIndex *Index) {
std::vector<Location> Results;
const SourceManager &SM = AST.getASTContext().getSourceManager();
auto MainFilePath = getRealPath(SM.getFileEntryForID(SM.getMainFileID()), SM);
if (!MainFilePath) {
elog("Failed to get a path for the main file, so no references");
return Results;
}
auto Loc = getBeginningOfIdentifier(AST, Pos, SM.getMainFileID());
auto Symbols = getSymbolAtPosition(AST, Loc);
std::vector<const Decl *> TargetDecls;
for (const DeclInfo &DI : Symbols.Decls) {
if (DI.IsReferencedExplicitly)
TargetDecls.push_back(DI.D);
}
// We traverse the AST to find references in the main file.
// TODO: should we handle macros, too?
auto MainFileRefs = findRefs(TargetDecls, AST);
for (const auto &Ref : MainFileRefs) {
Location Result;
Result.range = getTokenRange(AST, Ref.Loc);
Result.uri = URIForFile(*MainFilePath);
Results.push_back(std::move(Result));
}
// Now query the index for references from other files.
if (!Index)
return Results;
RefsRequest Req;
for (const Decl *D : TargetDecls) {
// Not all symbols can be referenced from outside (e.g. function-locals).
// TODO: we could skip TU-scoped symbols here (e.g. static functions) if
// we know this file isn't a header. The details might be tricky.
if (D->getParentFunctionOrMethod())
continue;
if (auto ID = getSymbolID(D))
Req.IDs.insert(*ID);
}
if (Req.IDs.empty())
return Results;
Index->refs(Req, [&](const Ref &R) {
auto LSPLoc = toLSPLocation(R.Location, /*HintPath=*/*MainFilePath);
// Avoid indexed results for the main file - the AST is authoritative.
if (LSPLoc && LSPLoc->uri.file() != *MainFilePath)
Results.push_back(std::move(*LSPLoc));
});
return Results;
}
} // namespace clangd
} // namespace clang