llvm-project/clang/Lex/MacroExpander.cpp

648 lines
24 KiB
C++

//===--- MacroExpander.cpp - Lex from a macro expansion -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MacroExpander interface.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/MacroExpander.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Diagnostic.h"
#include "llvm/ADT/SmallVector.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// MacroArgs Implementation
//===----------------------------------------------------------------------===//
/// MacroArgs ctor function - This destroys the vector passed in.
MacroArgs *MacroArgs::create(const MacroInfo *MI,
const Token *UnexpArgTokens,
unsigned NumToks, bool VarargsElided) {
assert(MI->isFunctionLike() &&
"Can't have args for an object-like macro!");
// Allocate memory for the MacroArgs object with the lexer tokens at the end.
MacroArgs *Result = (MacroArgs*)malloc(sizeof(MacroArgs) +
NumToks*sizeof(Token));
// Construct the macroargs object.
new (Result) MacroArgs(NumToks, VarargsElided);
// Copy the actual unexpanded tokens to immediately after the result ptr.
if (NumToks)
memcpy(const_cast<Token*>(Result->getUnexpArgument(0)),
UnexpArgTokens, NumToks*sizeof(Token));
return Result;
}
/// destroy - Destroy and deallocate the memory for this object.
///
void MacroArgs::destroy() {
// Run the dtor to deallocate the vectors.
this->~MacroArgs();
// Release the memory for the object.
free(this);
}
/// getArgLength - Given a pointer to an expanded or unexpanded argument,
/// return the number of tokens, not counting the EOF, that make up the
/// argument.
unsigned MacroArgs::getArgLength(const Token *ArgPtr) {
unsigned NumArgTokens = 0;
for (; ArgPtr->getKind() != tok::eof; ++ArgPtr)
++NumArgTokens;
return NumArgTokens;
}
/// getUnexpArgument - Return the unexpanded tokens for the specified formal.
///
const Token *MacroArgs::getUnexpArgument(unsigned Arg) const {
// The unexpanded argument tokens start immediately after the MacroArgs object
// in memory.
const Token *Start = (const Token *)(this+1);
const Token *Result = Start;
// Scan to find Arg.
for (; Arg; ++Result) {
assert(Result < Start+NumUnexpArgTokens && "Invalid arg #");
if (Result->getKind() == tok::eof)
--Arg;
}
return Result;
}
/// ArgNeedsPreexpansion - If we can prove that the argument won't be affected
/// by pre-expansion, return false. Otherwise, conservatively return true.
bool MacroArgs::ArgNeedsPreexpansion(const Token *ArgTok) const {
// If there are no identifiers in the argument list, or if the identifiers are
// known to not be macros, pre-expansion won't modify it.
for (; ArgTok->getKind() != tok::eof; ++ArgTok)
if (IdentifierInfo *II = ArgTok->getIdentifierInfo()) {
if (II->getMacroInfo() && II->getMacroInfo()->isEnabled())
// Return true even though the macro could be a function-like macro
// without a following '(' token.
return true;
}
return false;
}
/// getPreExpArgument - Return the pre-expanded form of the specified
/// argument.
const std::vector<Token> &
MacroArgs::getPreExpArgument(unsigned Arg, Preprocessor &PP) {
assert(Arg < NumUnexpArgTokens && "Invalid argument number!");
// If we have already computed this, return it.
if (PreExpArgTokens.empty())
PreExpArgTokens.resize(NumUnexpArgTokens);
std::vector<Token> &Result = PreExpArgTokens[Arg];
if (!Result.empty()) return Result;
const Token *AT = getUnexpArgument(Arg);
unsigned NumToks = getArgLength(AT)+1; // Include the EOF.
// Otherwise, we have to pre-expand this argument, populating Result. To do
// this, we set up a fake MacroExpander to lex from the unexpanded argument
// list. With this installed, we lex expanded tokens until we hit the EOF
// token at the end of the unexp list.
PP.EnterTokenStream(AT, NumToks);
// Lex all of the macro-expanded tokens into Result.
do {
Result.push_back(Token());
PP.Lex(Result.back());
} while (Result.back().getKind() != tok::eof);
// Pop the token stream off the top of the stack. We know that the internal
// pointer inside of it is to the "end" of the token stream, but the stack
// will not otherwise be popped until the next token is lexed. The problem is
// that the token may be lexed sometime after the vector of tokens itself is
// destroyed, which would be badness.
PP.RemoveTopOfLexerStack();
return Result;
}
/// StringifyArgument - Implement C99 6.10.3.2p2, converting a sequence of
/// tokens into the literal string token that should be produced by the C #
/// preprocessor operator.
///
static Token StringifyArgument(const Token *ArgToks,
Preprocessor &PP, bool Charify = false) {
Token Tok;
Tok.startToken();
Tok.setKind(tok::string_literal);
const Token *ArgTokStart = ArgToks;
// Stringify all the tokens.
std::string Result = "\"";
// FIXME: Optimize this loop to not use std::strings.
bool isFirst = true;
for (; ArgToks->getKind() != tok::eof; ++ArgToks) {
const Token &Tok = *ArgToks;
if (!isFirst && (Tok.hasLeadingSpace() || Tok.isAtStartOfLine()))
Result += ' ';
isFirst = false;
// If this is a string or character constant, escape the token as specified
// by 6.10.3.2p2.
if (Tok.getKind() == tok::string_literal || // "foo"
Tok.getKind() == tok::wide_string_literal || // L"foo"
Tok.getKind() == tok::char_constant) { // 'x' and L'x'.
Result += Lexer::Stringify(PP.getSpelling(Tok));
} else {
// Otherwise, just append the token.
Result += PP.getSpelling(Tok);
}
}
// If the last character of the string is a \, and if it isn't escaped, this
// is an invalid string literal, diagnose it as specified in C99.
if (Result[Result.size()-1] == '\\') {
// Count the number of consequtive \ characters. If even, then they are
// just escaped backslashes, otherwise it's an error.
unsigned FirstNonSlash = Result.size()-2;
// Guaranteed to find the starting " if nothing else.
while (Result[FirstNonSlash] == '\\')
--FirstNonSlash;
if ((Result.size()-1-FirstNonSlash) & 1) {
// Diagnose errors for things like: #define F(X) #X / F(\)
PP.Diag(ArgToks[-1], diag::pp_invalid_string_literal);
Result.erase(Result.end()-1); // remove one of the \'s.
}
}
Result += '"';
// If this is the charify operation and the result is not a legal character
// constant, diagnose it.
if (Charify) {
// First step, turn double quotes into single quotes:
Result[0] = '\'';
Result[Result.size()-1] = '\'';
// Check for bogus character.
bool isBad = false;
if (Result.size() == 3) {
isBad = Result[1] == '\''; // ''' is not legal. '\' already fixed above.
} else {
isBad = (Result.size() != 4 || Result[1] != '\\'); // Not '\x'
}
if (isBad) {
PP.Diag(ArgTokStart[0], diag::err_invalid_character_to_charify);
Result = "' '"; // Use something arbitrary, but legal.
}
}
Tok.setLength(Result.size());
Tok.setLocation(PP.CreateString(&Result[0], Result.size()));
return Tok;
}
/// getStringifiedArgument - Compute, cache, and return the specified argument
/// that has been 'stringified' as required by the # operator.
const Token &MacroArgs::getStringifiedArgument(unsigned ArgNo,
Preprocessor &PP) {
assert(ArgNo < NumUnexpArgTokens && "Invalid argument number!");
if (StringifiedArgs.empty()) {
StringifiedArgs.resize(getNumArguments());
memset(&StringifiedArgs[0], 0,
sizeof(StringifiedArgs[0])*getNumArguments());
}
if (StringifiedArgs[ArgNo].getKind() != tok::string_literal)
StringifiedArgs[ArgNo] = StringifyArgument(getUnexpArgument(ArgNo), PP);
return StringifiedArgs[ArgNo];
}
//===----------------------------------------------------------------------===//
// MacroExpander Implementation
//===----------------------------------------------------------------------===//
/// Create a macro expander for the specified macro with the specified actual
/// arguments. Note that this ctor takes ownership of the ActualArgs pointer.
void MacroExpander::Init(Token &Tok, MacroArgs *Actuals) {
// If the client is reusing a macro expander, make sure to free any memory
// associated with it.
destroy();
Macro = Tok.getIdentifierInfo()->getMacroInfo();
ActualArgs = Actuals;
CurToken = 0;
InstantiateLoc = Tok.getLocation();
AtStartOfLine = Tok.isAtStartOfLine();
HasLeadingSpace = Tok.hasLeadingSpace();
MacroTokens = &*Macro->tokens_begin();
OwnsMacroTokens = false;
NumMacroTokens = Macro->tokens_end()-Macro->tokens_begin();
// If this is a function-like macro, expand the arguments and change
// MacroTokens to point to the expanded tokens.
if (Macro->isFunctionLike() && Macro->getNumArgs())
ExpandFunctionArguments();
// Mark the macro as currently disabled, so that it is not recursively
// expanded. The macro must be disabled only after argument pre-expansion of
// function-like macro arguments occurs.
Macro->DisableMacro();
}
/// Create a macro expander for the specified token stream. This does not
/// take ownership of the specified token vector.
void MacroExpander::Init(const Token *TokArray, unsigned NumToks) {
// If the client is reusing a macro expander, make sure to free any memory
// associated with it.
destroy();
Macro = 0;
ActualArgs = 0;
MacroTokens = TokArray;
OwnsMacroTokens = false;
NumMacroTokens = NumToks;
CurToken = 0;
InstantiateLoc = SourceLocation();
AtStartOfLine = false;
HasLeadingSpace = false;
// Set HasLeadingSpace/AtStartOfLine so that the first token will be
// returned unmodified.
if (NumToks != 0) {
AtStartOfLine = TokArray[0].isAtStartOfLine();
HasLeadingSpace = TokArray[0].hasLeadingSpace();
}
}
void MacroExpander::destroy() {
// If this was a function-like macro that actually uses its arguments, delete
// the expanded tokens.
if (OwnsMacroTokens) {
delete [] MacroTokens;
MacroTokens = 0;
}
// MacroExpander owns its formal arguments.
if (ActualArgs) ActualArgs->destroy();
}
/// Expand the arguments of a function-like macro so that we can quickly
/// return preexpanded tokens from MacroTokens.
void MacroExpander::ExpandFunctionArguments() {
llvm::SmallVector<Token, 128> ResultToks;
// Loop through the MacroTokens tokens, expanding them into ResultToks. Keep
// track of whether we change anything. If not, no need to keep them. If so,
// we install the newly expanded sequence as MacroTokens.
bool MadeChange = false;
// NextTokGetsSpace - When this is true, the next token appended to the
// output list will get a leading space, regardless of whether it had one to
// begin with or not. This is used for placemarker support.
bool NextTokGetsSpace = false;
for (unsigned i = 0, e = NumMacroTokens; i != e; ++i) {
// If we found the stringify operator, get the argument stringified. The
// preprocessor already verified that the following token is a macro name
// when the #define was parsed.
const Token &CurTok = MacroTokens[i];
if (CurTok.getKind() == tok::hash || CurTok.getKind() == tok::hashat) {
int ArgNo = Macro->getArgumentNum(MacroTokens[i+1].getIdentifierInfo());
assert(ArgNo != -1 && "Token following # is not an argument?");
Token Res;
if (CurTok.getKind() == tok::hash) // Stringify
Res = ActualArgs->getStringifiedArgument(ArgNo, PP);
else {
// 'charify': don't bother caching these.
Res = StringifyArgument(ActualArgs->getUnexpArgument(ArgNo), PP, true);
}
// The stringified/charified string leading space flag gets set to match
// the #/#@ operator.
if (CurTok.hasLeadingSpace() || NextTokGetsSpace)
Res.setFlag(Token::LeadingSpace);
ResultToks.push_back(Res);
MadeChange = true;
++i; // Skip arg name.
NextTokGetsSpace = false;
continue;
}
// Otherwise, if this is not an argument token, just add the token to the
// output buffer.
IdentifierInfo *II = CurTok.getIdentifierInfo();
int ArgNo = II ? Macro->getArgumentNum(II) : -1;
if (ArgNo == -1) {
// This isn't an argument, just add it.
ResultToks.push_back(CurTok);
if (NextTokGetsSpace) {
ResultToks.back().setFlag(Token::LeadingSpace);
NextTokGetsSpace = false;
}
continue;
}
// An argument is expanded somehow, the result is different than the
// input.
MadeChange = true;
// Otherwise, this is a use of the argument. Find out if there is a paste
// (##) operator before or after the argument.
bool PasteBefore =
!ResultToks.empty() && ResultToks.back().getKind() == tok::hashhash;
bool PasteAfter = i+1 != e && MacroTokens[i+1].getKind() == tok::hashhash;
// If it is not the LHS/RHS of a ## operator, we must pre-expand the
// argument and substitute the expanded tokens into the result. This is
// C99 6.10.3.1p1.
if (!PasteBefore && !PasteAfter) {
const Token *ResultArgToks;
// Only preexpand the argument if it could possibly need it. This
// avoids some work in common cases.
const Token *ArgTok = ActualArgs->getUnexpArgument(ArgNo);
if (ActualArgs->ArgNeedsPreexpansion(ArgTok))
ResultArgToks = &ActualArgs->getPreExpArgument(ArgNo, PP)[0];
else
ResultArgToks = ArgTok; // Use non-preexpanded tokens.
// If the arg token expanded into anything, append it.
if (ResultArgToks->getKind() != tok::eof) {
unsigned FirstResult = ResultToks.size();
unsigned NumToks = MacroArgs::getArgLength(ResultArgToks);
ResultToks.append(ResultArgToks, ResultArgToks+NumToks);
// If any tokens were substituted from the argument, the whitespace
// before the first token should match the whitespace of the arg
// identifier.
ResultToks[FirstResult].setFlagValue(Token::LeadingSpace,
CurTok.hasLeadingSpace() ||
NextTokGetsSpace);
NextTokGetsSpace = false;
} else {
// If this is an empty argument, and if there was whitespace before the
// formal token, make sure the next token gets whitespace before it.
NextTokGetsSpace = CurTok.hasLeadingSpace();
}
continue;
}
// Okay, we have a token that is either the LHS or RHS of a paste (##)
// argument. It gets substituted as its non-pre-expanded tokens.
const Token *ArgToks = ActualArgs->getUnexpArgument(ArgNo);
unsigned NumToks = MacroArgs::getArgLength(ArgToks);
if (NumToks) { // Not an empty argument?
ResultToks.append(ArgToks, ArgToks+NumToks);
// If the next token was supposed to get leading whitespace, ensure it has
// it now.
if (NextTokGetsSpace) {
ResultToks[ResultToks.size()-NumToks].setFlag(Token::LeadingSpace);
NextTokGetsSpace = false;
}
continue;
}
// If an empty argument is on the LHS or RHS of a paste, the standard (C99
// 6.10.3.3p2,3) calls for a bunch of placemarker stuff to occur. We
// implement this by eating ## operators when a LHS or RHS expands to
// empty.
NextTokGetsSpace |= CurTok.hasLeadingSpace();
if (PasteAfter) {
// Discard the argument token and skip (don't copy to the expansion
// buffer) the paste operator after it.
NextTokGetsSpace |= MacroTokens[i+1].hasLeadingSpace();
++i;
continue;
}
// If this is on the RHS of a paste operator, we've already copied the
// paste operator to the ResultToks list. Remove it.
assert(PasteBefore && ResultToks.back().getKind() == tok::hashhash);
NextTokGetsSpace |= ResultToks.back().hasLeadingSpace();
ResultToks.pop_back();
// If this is the __VA_ARGS__ token, and if the argument wasn't provided,
// and if the macro had at least one real argument, and if the token before
// the ## was a comma, remove the comma.
if ((unsigned)ArgNo == Macro->getNumArgs()-1 && // is __VA_ARGS__
ActualArgs->isVarargsElidedUse() && // Argument elided.
!ResultToks.empty() && ResultToks.back().getKind() == tok::comma) {
// Never add a space, even if the comma, ##, or arg had a space.
NextTokGetsSpace = false;
ResultToks.pop_back();
}
continue;
}
// If anything changed, install this as the new MacroTokens list.
if (MadeChange) {
// This is deleted in the dtor.
NumMacroTokens = ResultToks.size();
Token *Res = new Token[ResultToks.size()];
if (NumMacroTokens)
memcpy(Res, &ResultToks[0], NumMacroTokens*sizeof(Token));
MacroTokens = Res;
OwnsMacroTokens = true;
}
}
/// Lex - Lex and return a token from this macro stream.
///
void MacroExpander::Lex(Token &Tok) {
// Lexing off the end of the macro, pop this macro off the expansion stack.
if (isAtEnd()) {
// If this is a macro (not a token stream), mark the macro enabled now
// that it is no longer being expanded.
if (Macro) Macro->EnableMacro();
// Pop this context off the preprocessors lexer stack and get the next
// token. This will delete "this" so remember the PP instance var.
Preprocessor &PPCache = PP;
if (PP.HandleEndOfMacro(Tok))
return;
// HandleEndOfMacro may not return a token. If it doesn't, lex whatever is
// next.
return PPCache.Lex(Tok);
}
// If this is the first token of the expanded result, we inherit spacing
// properties later.
bool isFirstToken = CurToken == 0;
// Get the next token to return.
Tok = MacroTokens[CurToken++];
// If this token is followed by a token paste (##) operator, paste the tokens!
if (!isAtEnd() && MacroTokens[CurToken].getKind() == tok::hashhash)
PasteTokens(Tok);
// The token's current location indicate where the token was lexed from. We
// need this information to compute the spelling of the token, but any
// diagnostics for the expanded token should appear as if they came from
// InstantiationLoc. Pull this information together into a new SourceLocation
// that captures all of this.
if (InstantiateLoc.isValid()) { // Don't do this for token streams.
SourceManager &SrcMgr = PP.getSourceManager();
Tok.setLocation(SrcMgr.getInstantiationLoc(Tok.getLocation(),
InstantiateLoc));
}
// If this is the first token, set the lexical properties of the token to
// match the lexical properties of the macro identifier.
if (isFirstToken) {
Tok.setFlagValue(Token::StartOfLine , AtStartOfLine);
Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
}
// Handle recursive expansion!
if (Tok.getIdentifierInfo())
return PP.HandleIdentifier(Tok);
// Otherwise, return a normal token.
}
/// PasteTokens - Tok is the LHS of a ## operator, and CurToken is the ##
/// operator. Read the ## and RHS, and paste the LHS/RHS together. If there
/// are is another ## after it, chomp it iteratively. Return the result as Tok.
void MacroExpander::PasteTokens(Token &Tok) {
llvm::SmallVector<char, 128> Buffer;
do {
// Consume the ## operator.
SourceLocation PasteOpLoc = MacroTokens[CurToken].getLocation();
++CurToken;
assert(!isAtEnd() && "No token on the RHS of a paste operator!");
// Get the RHS token.
const Token &RHS = MacroTokens[CurToken];
bool isInvalid = false;
// Allocate space for the result token. This is guaranteed to be enough for
// the two tokens and a null terminator.
Buffer.resize(Tok.getLength() + RHS.getLength() + 1);
// Get the spelling of the LHS token in Buffer.
const char *BufPtr = &Buffer[0];
unsigned LHSLen = PP.getSpelling(Tok, BufPtr);
if (BufPtr != &Buffer[0]) // Really, we want the chars in Buffer!
memcpy(&Buffer[0], BufPtr, LHSLen);
BufPtr = &Buffer[LHSLen];
unsigned RHSLen = PP.getSpelling(RHS, BufPtr);
if (BufPtr != &Buffer[LHSLen]) // Really, we want the chars in Buffer!
memcpy(&Buffer[LHSLen], BufPtr, RHSLen);
// Add null terminator.
Buffer[LHSLen+RHSLen] = '\0';
// Trim excess space.
Buffer.resize(LHSLen+RHSLen+1);
// Plop the pasted result (including the trailing newline and null) into a
// scratch buffer where we can lex it.
SourceLocation ResultTokLoc = PP.CreateString(&Buffer[0], Buffer.size());
// Lex the resultant pasted token into Result.
Token Result;
// Avoid testing /*, as the lexer would think it is the start of a comment
// and emit an error that it is unterminated.
if (Tok.getKind() == tok::slash && RHS.getKind() == tok::star) {
isInvalid = true;
} else if (Tok.getKind() == tok::identifier &&
RHS.getKind() == tok::identifier) {
// Common paste case: identifier+identifier = identifier. Avoid creating
// a lexer and other overhead.
PP.IncrementPasteCounter(true);
Result.startToken();
Result.setKind(tok::identifier);
Result.setLocation(ResultTokLoc);
Result.setLength(LHSLen+RHSLen);
} else {
PP.IncrementPasteCounter(false);
// Make a lexer to lex this string from.
SourceManager &SourceMgr = PP.getSourceManager();
const char *ResultStrData = SourceMgr.getCharacterData(ResultTokLoc);
// Make a lexer object so that we lex and expand the paste result.
Lexer *TL = new Lexer(ResultTokLoc, PP, ResultStrData,
ResultStrData+LHSLen+RHSLen /*don't include null*/);
// Lex a token in raw mode. This way it won't look up identifiers
// automatically, lexing off the end will return an eof token, and
// warnings are disabled. This returns true if the result token is the
// entire buffer.
bool IsComplete = TL->LexRawToken(Result);
// If we got an EOF token, we didn't form even ONE token. For example, we
// did "/ ## /" to get "//".
IsComplete &= Result.getKind() != tok::eof;
isInvalid = !IsComplete;
// We're now done with the temporary lexer.
delete TL;
}
// If pasting the two tokens didn't form a full new token, this is an error.
// This occurs with "x ## +" and other stuff. Return with Tok unmodified
// and with RHS as the next token to lex.
if (isInvalid) {
// If not in assembler language mode.
PP.Diag(PasteOpLoc, diag::err_pp_bad_paste,
std::string(Buffer.begin(), Buffer.end()-1));
return;
}
// Turn ## into 'other' to avoid # ## # from looking like a paste operator.
if (Result.getKind() == tok::hashhash)
Result.setKind(tok::unknown);
// FIXME: Turn __VARRGS__ into "not a token"?
// Transfer properties of the LHS over the the Result.
Result.setFlagValue(Token::StartOfLine , Tok.isAtStartOfLine());
Result.setFlagValue(Token::LeadingSpace, Tok.hasLeadingSpace());
// Finally, replace LHS with the result, consume the RHS, and iterate.
++CurToken;
Tok = Result;
} while (!isAtEnd() && MacroTokens[CurToken].getKind() == tok::hashhash);
// Now that we got the result token, it will be subject to expansion. Since
// token pasting re-lexes the result token in raw mode, identifier information
// isn't looked up. As such, if the result is an identifier, look up id info.
if (Tok.getKind() == tok::identifier) {
// Look up the identifier info for the token. We disabled identifier lookup
// by saying we're skipping contents, so we need to do this manually.
Tok.setIdentifierInfo(PP.LookUpIdentifierInfo(Tok));
}
}
/// isNextTokenLParen - If the next token lexed will pop this macro off the
/// expansion stack, return 2. If the next unexpanded token is a '(', return
/// 1, otherwise return 0.
unsigned MacroExpander::isNextTokenLParen() const {
// Out of tokens?
if (isAtEnd())
return 2;
return MacroTokens[CurToken].getKind() == tok::l_paren;
}