llvm-project/llvm/lib/Transforms/Scalar/NewGVN.cpp

2246 lines
87 KiB
C++

//===---- NewGVN.cpp - Global Value Numbering Pass --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the new LLVM's Global Value Numbering pass.
/// GVN partitions values computed by a function into congruence classes.
/// Values ending up in the same congruence class are guaranteed to be the same
/// for every execution of the program. In that respect, congruency is a
/// compile-time approximation of equivalence of values at runtime.
/// The algorithm implemented here uses a sparse formulation and it's based
/// on the ideas described in the paper:
/// "A Sparse Algorithm for Predicated Global Value Numbering" from
/// Karthik Gargi.
///
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/NewGVN.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CFGPrinter.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/PredIteratorCache.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVNExpression.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/MemorySSA.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <unordered_map>
#include <utility>
#include <vector>
using namespace llvm;
using namespace PatternMatch;
using namespace llvm::GVNExpression;
#define DEBUG_TYPE "newgvn"
STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
STATISTIC(NumGVNMaxIterations,
"Maximum Number of iterations it took to converge GVN");
STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
STATISTIC(NumGVNAvoidedSortedLeaderChanges,
"Number of avoided sorted leader changes");
//===----------------------------------------------------------------------===//
// GVN Pass
//===----------------------------------------------------------------------===//
// Anchor methods.
namespace llvm {
namespace GVNExpression {
Expression::~Expression() = default;
BasicExpression::~BasicExpression() = default;
CallExpression::~CallExpression() = default;
LoadExpression::~LoadExpression() = default;
StoreExpression::~StoreExpression() = default;
AggregateValueExpression::~AggregateValueExpression() = default;
PHIExpression::~PHIExpression() = default;
}
}
// Congruence classes represent the set of expressions/instructions
// that are all the same *during some scope in the function*.
// That is, because of the way we perform equality propagation, and
// because of memory value numbering, it is not correct to assume
// you can willy-nilly replace any member with any other at any
// point in the function.
//
// For any Value in the Member set, it is valid to replace any dominated member
// with that Value.
//
// Every congruence class has a leader, and the leader is used to
// symbolize instructions in a canonical way (IE every operand of an
// instruction that is a member of the same congruence class will
// always be replaced with leader during symbolization).
// To simplify symbolization, we keep the leader as a constant if class can be
// proved to be a constant value.
// Otherwise, the leader is a randomly chosen member of the value set, it does
// not matter which one is chosen.
// Each congruence class also has a defining expression,
// though the expression may be null. If it exists, it can be used for forward
// propagation and reassociation of values.
//
struct CongruenceClass {
using MemberSet = SmallPtrSet<Value *, 4>;
unsigned ID;
// Representative leader.
Value *RepLeader = nullptr;
// Defining Expression.
const Expression *DefiningExpr = nullptr;
// Actual members of this class.
MemberSet Members;
// True if this class has no members left. This is mainly used for assertion
// purposes, and for skipping empty classes.
bool Dead = false;
// Number of stores in this congruence class.
// This is used so we can detect store equivalence changes properly.
int StoreCount = 0;
// The most dominating leader after our current leader, because the member set
// is not sorted and is expensive to keep sorted all the time.
std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
explicit CongruenceClass(unsigned ID) : ID(ID) {}
CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
: ID(ID), RepLeader(Leader), DefiningExpr(E) {}
};
namespace llvm {
template <> struct DenseMapInfo<const Expression *> {
static const Expression *getEmptyKey() {
auto Val = static_cast<uintptr_t>(-1);
Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
return reinterpret_cast<const Expression *>(Val);
}
static const Expression *getTombstoneKey() {
auto Val = static_cast<uintptr_t>(~1U);
Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
return reinterpret_cast<const Expression *>(Val);
}
static unsigned getHashValue(const Expression *V) {
return static_cast<unsigned>(V->getHashValue());
}
static bool isEqual(const Expression *LHS, const Expression *RHS) {
if (LHS == RHS)
return true;
if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
LHS == getEmptyKey() || RHS == getEmptyKey())
return false;
return *LHS == *RHS;
}
};
} // end namespace llvm
class NewGVN : public FunctionPass {
DominatorTree *DT;
const DataLayout *DL;
const TargetLibraryInfo *TLI;
AssumptionCache *AC;
AliasAnalysis *AA;
MemorySSA *MSSA;
MemorySSAWalker *MSSAWalker;
BumpPtrAllocator ExpressionAllocator;
ArrayRecycler<Value *> ArgRecycler;
// Congruence class info.
CongruenceClass *InitialClass;
std::vector<CongruenceClass *> CongruenceClasses;
unsigned NextCongruenceNum;
// Value Mappings.
DenseMap<Value *, CongruenceClass *> ValueToClass;
DenseMap<Value *, const Expression *> ValueToExpression;
// A table storing which memorydefs/phis represent a memory state provably
// equivalent to another memory state.
// We could use the congruence class machinery, but the MemoryAccess's are
// abstract memory states, so they can only ever be equivalent to each other,
// and not to constants, etc.
DenseMap<const MemoryAccess *, MemoryAccess *> MemoryAccessEquiv;
// Expression to class mapping.
using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
ExpressionClassMap ExpressionToClass;
// Which values have changed as a result of leader changes.
SmallPtrSet<Value *, 8> LeaderChanges;
// Reachability info.
using BlockEdge = BasicBlockEdge;
DenseSet<BlockEdge> ReachableEdges;
SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
// This is a bitvector because, on larger functions, we may have
// thousands of touched instructions at once (entire blocks,
// instructions with hundreds of uses, etc). Even with optimization
// for when we mark whole blocks as touched, when this was a
// SmallPtrSet or DenseSet, for some functions, we spent >20% of all
// the time in GVN just managing this list. The bitvector, on the
// other hand, efficiently supports test/set/clear of both
// individual and ranges, as well as "find next element" This
// enables us to use it as a worklist with essentially 0 cost.
BitVector TouchedInstructions;
DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
DenseMap<const DomTreeNode *, std::pair<unsigned, unsigned>>
DominatedInstRange;
#ifndef NDEBUG
// Debugging for how many times each block and instruction got processed.
DenseMap<const Value *, unsigned> ProcessedCount;
#endif
// DFS info.
DenseMap<const Value *, unsigned> InstrDFS;
SmallVector<Value *, 32> DFSToInstr;
// Deletion info.
SmallPtrSet<Instruction *, 8> InstructionsToErase;
public:
static char ID; // Pass identification, replacement for typeid.
NewGVN() : FunctionPass(ID) {
initializeNewGVNPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
bool runGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA);
private:
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<MemorySSAWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
}
// Expression handling.
const Expression *createExpression(Instruction *, const BasicBlock *);
const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
const BasicBlock *);
PHIExpression *createPHIExpression(Instruction *);
const VariableExpression *createVariableExpression(Value *);
const ConstantExpression *createConstantExpression(Constant *);
const Expression *createVariableOrConstant(Value *V, const BasicBlock *B);
const UnknownExpression *createUnknownExpression(Instruction *);
const StoreExpression *createStoreExpression(StoreInst *, MemoryAccess *,
const BasicBlock *);
LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
MemoryAccess *, const BasicBlock *);
const CallExpression *createCallExpression(CallInst *, MemoryAccess *,
const BasicBlock *);
const AggregateValueExpression *
createAggregateValueExpression(Instruction *, const BasicBlock *);
bool setBasicExpressionInfo(Instruction *, BasicExpression *,
const BasicBlock *);
// Congruence class handling.
CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
CongruenceClasses.emplace_back(result);
return result;
}
CongruenceClass *createSingletonCongruenceClass(Value *Member) {
CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
CClass->Members.insert(Member);
ValueToClass[Member] = CClass;
return CClass;
}
void initializeCongruenceClasses(Function &F);
// Value number an Instruction or MemoryPhi.
void valueNumberMemoryPhi(MemoryPhi *);
void valueNumberInstruction(Instruction *);
// Symbolic evaluation.
const Expression *checkSimplificationResults(Expression *, Instruction *,
Value *);
const Expression *performSymbolicEvaluation(Value *, const BasicBlock *);
const Expression *performSymbolicLoadEvaluation(Instruction *,
const BasicBlock *);
const Expression *performSymbolicStoreEvaluation(Instruction *,
const BasicBlock *);
const Expression *performSymbolicCallEvaluation(Instruction *,
const BasicBlock *);
const Expression *performSymbolicPHIEvaluation(Instruction *,
const BasicBlock *);
bool setMemoryAccessEquivTo(MemoryAccess *From, MemoryAccess *To);
const Expression *performSymbolicAggrValueEvaluation(Instruction *,
const BasicBlock *);
// Congruence finding.
// Templated to allow them to work both on BB's and BB-edges.
template <class T>
Value *lookupOperandLeader(Value *, const User *, const T &) const;
void performCongruenceFinding(Instruction *, const Expression *);
void moveValueToNewCongruenceClass(Instruction *, CongruenceClass *,
CongruenceClass *);
// Reachability handling.
void updateReachableEdge(BasicBlock *, BasicBlock *);
void processOutgoingEdges(TerminatorInst *, BasicBlock *);
bool isOnlyReachableViaThisEdge(const BasicBlockEdge &) const;
Value *findConditionEquivalence(Value *, BasicBlock *) const;
MemoryAccess *lookupMemoryAccessEquiv(MemoryAccess *) const;
// Elimination.
struct ValueDFS;
void convertDenseToDFSOrdered(CongruenceClass::MemberSet &,
SmallVectorImpl<ValueDFS> &);
bool eliminateInstructions(Function &);
void replaceInstruction(Instruction *, Value *);
void markInstructionForDeletion(Instruction *);
void deleteInstructionsInBlock(BasicBlock *);
// New instruction creation.
void handleNewInstruction(Instruction *){};
// Various instruction touch utilities
void markUsersTouched(Value *);
void markMemoryUsersTouched(MemoryAccess *);
void markLeaderChangeTouched(CongruenceClass *CC);
// Utilities.
void cleanupTables();
std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
void updateProcessedCount(Value *V);
void verifyMemoryCongruency() const;
bool singleReachablePHIPath(const MemoryAccess *, const MemoryAccess *) const;
};
char NewGVN::ID = 0;
// createGVNPass - The public interface to this file.
FunctionPass *llvm::createNewGVNPass() { return new NewGVN(); }
template <typename T>
static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
if ((!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS)) ||
!LHS.BasicExpression::equals(RHS)) {
return false;
} else if (const auto *L = dyn_cast<LoadExpression>(&RHS)) {
if (LHS.getDefiningAccess() != L->getDefiningAccess())
return false;
} else if (const auto *S = dyn_cast<StoreExpression>(&RHS)) {
if (LHS.getDefiningAccess() != S->getDefiningAccess())
return false;
}
return true;
}
bool LoadExpression::equals(const Expression &Other) const {
return equalsLoadStoreHelper(*this, Other);
}
bool StoreExpression::equals(const Expression &Other) const {
return equalsLoadStoreHelper(*this, Other);
}
#ifndef NDEBUG
static std::string getBlockName(const BasicBlock *B) {
return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
}
#endif
INITIALIZE_PASS_BEGIN(NewGVN, "newgvn", "Global Value Numbering", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_END(NewGVN, "newgvn", "Global Value Numbering", false, false)
PHIExpression *NewGVN::createPHIExpression(Instruction *I) {
BasicBlock *PHIBlock = I->getParent();
auto *PN = cast<PHINode>(I);
auto *E =
new (ExpressionAllocator) PHIExpression(PN->getNumOperands(), PHIBlock);
E->allocateOperands(ArgRecycler, ExpressionAllocator);
E->setType(I->getType());
E->setOpcode(I->getOpcode());
auto ReachablePhiArg = [&](const Use &U) {
return ReachableBlocks.count(PN->getIncomingBlock(U));
};
// Filter out unreachable operands
auto Filtered = make_filter_range(PN->operands(), ReachablePhiArg);
std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
[&](const Use &U) -> Value * {
// Don't try to transform self-defined phis.
if (U == PN)
return PN;
const BasicBlockEdge BBE(PN->getIncomingBlock(U), PHIBlock);
return lookupOperandLeader(U, I, BBE);
});
return E;
}
// Set basic expression info (Arguments, type, opcode) for Expression
// E from Instruction I in block B.
bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E,
const BasicBlock *B) {
bool AllConstant = true;
if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
E->setType(GEP->getSourceElementType());
else
E->setType(I->getType());
E->setOpcode(I->getOpcode());
E->allocateOperands(ArgRecycler, ExpressionAllocator);
// Transform the operand array into an operand leader array, and keep track of
// whether all members are constant.
std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
auto Operand = lookupOperandLeader(O, I, B);
AllConstant &= isa<Constant>(Operand);
return Operand;
});
return AllConstant;
}
const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
Value *Arg1, Value *Arg2,
const BasicBlock *B) {
auto *E = new (ExpressionAllocator) BasicExpression(2);
E->setType(T);
E->setOpcode(Opcode);
E->allocateOperands(ArgRecycler, ExpressionAllocator);
if (Instruction::isCommutative(Opcode)) {
// Ensure that commutative instructions that only differ by a permutation
// of their operands get the same value number by sorting the operand value
// numbers. Since all commutative instructions have two operands it is more
// efficient to sort by hand rather than using, say, std::sort.
if (Arg1 > Arg2)
std::swap(Arg1, Arg2);
}
E->op_push_back(lookupOperandLeader(Arg1, nullptr, B));
E->op_push_back(lookupOperandLeader(Arg2, nullptr, B));
Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), *DL, TLI,
DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, nullptr, V))
return SimplifiedE;
return E;
}
// Take a Value returned by simplification of Expression E/Instruction
// I, and see if it resulted in a simpler expression. If so, return
// that expression.
// TODO: Once finished, this should not take an Instruction, we only
// use it for printing.
const Expression *NewGVN::checkSimplificationResults(Expression *E,
Instruction *I, Value *V) {
if (!V)
return nullptr;
if (auto *C = dyn_cast<Constant>(V)) {
if (I)
DEBUG(dbgs() << "Simplified " << *I << " to "
<< " constant " << *C << "\n");
NumGVNOpsSimplified++;
assert(isa<BasicExpression>(E) &&
"We should always have had a basic expression here");
cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
return createConstantExpression(C);
} else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
if (I)
DEBUG(dbgs() << "Simplified " << *I << " to "
<< " variable " << *V << "\n");
cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
return createVariableExpression(V);
}
CongruenceClass *CC = ValueToClass.lookup(V);
if (CC && CC->DefiningExpr) {
if (I)
DEBUG(dbgs() << "Simplified " << *I << " to "
<< " expression " << *V << "\n");
NumGVNOpsSimplified++;
assert(isa<BasicExpression>(E) &&
"We should always have had a basic expression here");
cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
return CC->DefiningExpr;
}
return nullptr;
}
const Expression *NewGVN::createExpression(Instruction *I,
const BasicBlock *B) {
auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
bool AllConstant = setBasicExpressionInfo(I, E, B);
if (I->isCommutative()) {
// Ensure that commutative instructions that only differ by a permutation
// of their operands get the same value number by sorting the operand value
// numbers. Since all commutative instructions have two operands it is more
// efficient to sort by hand rather than using, say, std::sort.
assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
if (E->getOperand(0) > E->getOperand(1))
E->swapOperands(0, 1);
}
// Perform simplificaiton
// TODO: Right now we only check to see if we get a constant result.
// We may get a less than constant, but still better, result for
// some operations.
// IE
// add 0, x -> x
// and x, x -> x
// We should handle this by simply rewriting the expression.
if (auto *CI = dyn_cast<CmpInst>(I)) {
// Sort the operand value numbers so x<y and y>x get the same value
// number.
CmpInst::Predicate Predicate = CI->getPredicate();
if (E->getOperand(0) > E->getOperand(1)) {
E->swapOperands(0, 1);
Predicate = CmpInst::getSwappedPredicate(Predicate);
}
E->setOpcode((CI->getOpcode() << 8) | Predicate);
// TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
// TODO: Since we noop bitcasts, we may need to check types before
// simplifying, so that we don't end up simplifying based on a wrong
// type assumption. We should clean this up so we can use constants of the
// wrong type
assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
"Wrong types on cmp instruction");
if ((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
E->getOperand(1)->getType() == I->getOperand(1)->getType())) {
Value *V = SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1),
*DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
}
} else if (isa<SelectInst>(I)) {
if (isa<Constant>(E->getOperand(0)) ||
(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
E->getOperand(2)->getType() == I->getOperand(2)->getType())) {
Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
E->getOperand(2), *DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
}
} else if (I->isBinaryOp()) {
Value *V = SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1),
*DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
} else if (auto *BI = dyn_cast<BitCastInst>(I)) {
Value *V = SimplifyInstruction(BI, *DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
} else if (isa<GetElementPtrInst>(I)) {
Value *V = SimplifyGEPInst(E->getType(),
ArrayRef<Value *>(E->op_begin(), E->op_end()),
*DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
} else if (AllConstant) {
// We don't bother trying to simplify unless all of the operands
// were constant.
// TODO: There are a lot of Simplify*'s we could call here, if we
// wanted to. The original motivating case for this code was a
// zext i1 false to i8, which we don't have an interface to
// simplify (IE there is no SimplifyZExt).
SmallVector<Constant *, 8> C;
for (Value *Arg : E->operands())
C.emplace_back(cast<Constant>(Arg));
if (Value *V = ConstantFoldInstOperands(I, C, *DL, TLI))
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
}
return E;
}
const AggregateValueExpression *
NewGVN::createAggregateValueExpression(Instruction *I, const BasicBlock *B) {
if (auto *II = dyn_cast<InsertValueInst>(I)) {
auto *E = new (ExpressionAllocator)
AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
setBasicExpressionInfo(I, E, B);
E->allocateIntOperands(ExpressionAllocator);
std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
return E;
} else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
auto *E = new (ExpressionAllocator)
AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
setBasicExpressionInfo(EI, E, B);
E->allocateIntOperands(ExpressionAllocator);
std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
return E;
}
llvm_unreachable("Unhandled type of aggregate value operation");
}
const VariableExpression *NewGVN::createVariableExpression(Value *V) {
auto *E = new (ExpressionAllocator) VariableExpression(V);
E->setOpcode(V->getValueID());
return E;
}
const Expression *NewGVN::createVariableOrConstant(Value *V,
const BasicBlock *B) {
auto Leader = lookupOperandLeader(V, nullptr, B);
if (auto *C = dyn_cast<Constant>(Leader))
return createConstantExpression(C);
return createVariableExpression(Leader);
}
const ConstantExpression *NewGVN::createConstantExpression(Constant *C) {
auto *E = new (ExpressionAllocator) ConstantExpression(C);
E->setOpcode(C->getValueID());
return E;
}
const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) {
auto *E = new (ExpressionAllocator) UnknownExpression(I);
E->setOpcode(I->getOpcode());
return E;
}
const CallExpression *NewGVN::createCallExpression(CallInst *CI,
MemoryAccess *HV,
const BasicBlock *B) {
// FIXME: Add operand bundles for calls.
auto *E =
new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, HV);
setBasicExpressionInfo(CI, E, B);
return E;
}
// See if we have a congruence class and leader for this operand, and if so,
// return it. Otherwise, return the operand itself.
template <class T>
Value *NewGVN::lookupOperandLeader(Value *V, const User *U, const T &B) const {
CongruenceClass *CC = ValueToClass.lookup(V);
if (CC && (CC != InitialClass))
return CC->RepLeader;
return V;
}
MemoryAccess *NewGVN::lookupMemoryAccessEquiv(MemoryAccess *MA) const {
MemoryAccess *Result = MemoryAccessEquiv.lookup(MA);
return Result ? Result : MA;
}
LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
LoadInst *LI, MemoryAccess *DA,
const BasicBlock *B) {
auto *E = new (ExpressionAllocator) LoadExpression(1, LI, DA);
E->allocateOperands(ArgRecycler, ExpressionAllocator);
E->setType(LoadType);
// Give store and loads same opcode so they value number together.
E->setOpcode(0);
E->op_push_back(lookupOperandLeader(PointerOp, LI, B));
if (LI)
E->setAlignment(LI->getAlignment());
// TODO: Value number heap versions. We may be able to discover
// things alias analysis can't on it's own (IE that a store and a
// load have the same value, and thus, it isn't clobbering the load).
return E;
}
const StoreExpression *NewGVN::createStoreExpression(StoreInst *SI,
MemoryAccess *DA,
const BasicBlock *B) {
auto *E =
new (ExpressionAllocator) StoreExpression(SI->getNumOperands(), SI, DA);
E->allocateOperands(ArgRecycler, ExpressionAllocator);
E->setType(SI->getValueOperand()->getType());
// Give store and loads same opcode so they value number together.
E->setOpcode(0);
E->op_push_back(lookupOperandLeader(SI->getPointerOperand(), SI, B));
// TODO: Value number heap versions. We may be able to discover
// things alias analysis can't on it's own (IE that a store and a
// load have the same value, and thus, it isn't clobbering the load).
return E;
}
// Utility function to check whether the congruence class has a member other
// than the given instruction.
bool hasMemberOtherThanUs(const CongruenceClass *CC, Instruction *I) {
// Either it has more than one store, in which case it must contain something
// other than us (because it's indexed by value), or if it only has one store
// right now, that member should not be us.
return CC->StoreCount > 1 || CC->Members.count(I) == 0;
}
const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I,
const BasicBlock *B) {
// Unlike loads, we never try to eliminate stores, so we do not check if they
// are simple and avoid value numbering them.
auto *SI = cast<StoreInst>(I);
MemoryAccess *StoreAccess = MSSA->getMemoryAccess(SI);
// See if we are defined by a previous store expression, it already has a
// value, and it's the same value as our current store. FIXME: Right now, we
// only do this for simple stores, we should expand to cover memcpys, etc.
if (SI->isSimple()) {
// Get the expression, if any, for the RHS of the MemoryDef.
MemoryAccess *StoreRHS = lookupMemoryAccessEquiv(
cast<MemoryDef>(StoreAccess)->getDefiningAccess());
const Expression *OldStore = createStoreExpression(SI, StoreRHS, B);
CongruenceClass *CC = ExpressionToClass.lookup(OldStore);
// Basically, check if the congruence class the store is in is defined by a
// store that isn't us, and has the same value. MemorySSA takes care of
// ensuring the store has the same memory state as us already.
if (CC && CC->DefiningExpr && isa<StoreExpression>(CC->DefiningExpr) &&
CC->RepLeader == lookupOperandLeader(SI->getValueOperand(), SI, B) &&
hasMemberOtherThanUs(CC, I))
return createStoreExpression(SI, StoreRHS, B);
}
return createStoreExpression(SI, StoreAccess, B);
}
const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I,
const BasicBlock *B) {
auto *LI = cast<LoadInst>(I);
// We can eliminate in favor of non-simple loads, but we won't be able to
// eliminate the loads themselves.
if (!LI->isSimple())
return nullptr;
Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand(), I, B);
// Load of undef is undef.
if (isa<UndefValue>(LoadAddressLeader))
return createConstantExpression(UndefValue::get(LI->getType()));
MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(I);
if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
Instruction *DefiningInst = MD->getMemoryInst();
// If the defining instruction is not reachable, replace with undef.
if (!ReachableBlocks.count(DefiningInst->getParent()))
return createConstantExpression(UndefValue::get(LI->getType()));
}
}
const Expression *E =
createLoadExpression(LI->getType(), LI->getPointerOperand(), LI,
lookupMemoryAccessEquiv(DefiningAccess), B);
return E;
}
// Evaluate read only and pure calls, and create an expression result.
const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I,
const BasicBlock *B) {
auto *CI = cast<CallInst>(I);
if (AA->doesNotAccessMemory(CI))
return createCallExpression(CI, nullptr, B);
if (AA->onlyReadsMemory(CI)) {
MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
return createCallExpression(CI, lookupMemoryAccessEquiv(DefiningAccess), B);
}
return nullptr;
}
// Update the memory access equivalence table to say that From is equal to To,
// and return true if this is different from what already existed in the table.
bool NewGVN::setMemoryAccessEquivTo(MemoryAccess *From, MemoryAccess *To) {
DEBUG(dbgs() << "Setting " << *From << " equivalent to ");
if (!To)
DEBUG(dbgs() << "itself");
else
DEBUG(dbgs() << *To);
DEBUG(dbgs() << "\n");
auto LookupResult = MemoryAccessEquiv.find(From);
bool Changed = false;
// If it's already in the table, see if the value changed.
if (LookupResult != MemoryAccessEquiv.end()) {
if (To && LookupResult->second != To) {
// It wasn't equivalent before, and now it is.
LookupResult->second = To;
Changed = true;
} else if (!To) {
// It used to be equivalent to something, and now it's not.
MemoryAccessEquiv.erase(LookupResult);
Changed = true;
}
} else {
assert(!To &&
"Memory equivalence should never change from nothing to something");
}
return Changed;
}
// Evaluate PHI nodes symbolically, and create an expression result.
const Expression *NewGVN::performSymbolicPHIEvaluation(Instruction *I,
const BasicBlock *B) {
auto *E = cast<PHIExpression>(createPHIExpression(I));
// We match the semantics of SimplifyPhiNode from InstructionSimplify here.
// See if all arguaments are the same.
// We track if any were undef because they need special handling.
bool HasUndef = false;
auto Filtered = make_filter_range(E->operands(), [&](const Value *Arg) {
if (Arg == I)
return false;
if (isa<UndefValue>(Arg)) {
HasUndef = true;
return false;
}
return true;
});
// If we are left with no operands, it's undef
if (Filtered.begin() == Filtered.end()) {
DEBUG(dbgs() << "Simplified PHI node " << *I << " to undef"
<< "\n");
E->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
return createConstantExpression(UndefValue::get(I->getType()));
}
Value *AllSameValue = *(Filtered.begin());
++Filtered.begin();
// Can't use std::equal here, sadly, because filter.begin moves.
if (llvm::all_of(Filtered, [AllSameValue](const Value *V) {
return V == AllSameValue;
})) {
// In LLVM's non-standard representation of phi nodes, it's possible to have
// phi nodes with cycles (IE dependent on other phis that are .... dependent
// on the original phi node), especially in weird CFG's where some arguments
// are unreachable, or uninitialized along certain paths. This can cause
// infinite loops during evaluation. We work around this by not trying to
// really evaluate them independently, but instead using a variable
// expression to say if one is equivalent to the other.
// We also special case undef, so that if we have an undef, we can't use the
// common value unless it dominates the phi block.
if (HasUndef) {
// Only have to check for instructions
if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
if (!DT->dominates(AllSameInst, I))
return E;
}
NumGVNPhisAllSame++;
DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
<< "\n");
E->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
if (auto *C = dyn_cast<Constant>(AllSameValue))
return createConstantExpression(C);
return createVariableExpression(AllSameValue);
}
return E;
}
const Expression *
NewGVN::performSymbolicAggrValueEvaluation(Instruction *I,
const BasicBlock *B) {
if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
unsigned Opcode = 0;
// EI might be an extract from one of our recognised intrinsics. If it
// is we'll synthesize a semantically equivalent expression instead on
// an extract value expression.
switch (II->getIntrinsicID()) {
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
Opcode = Instruction::Add;
break;
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
Opcode = Instruction::Sub;
break;
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
Opcode = Instruction::Mul;
break;
default:
break;
}
if (Opcode != 0) {
// Intrinsic recognized. Grab its args to finish building the
// expression.
assert(II->getNumArgOperands() == 2 &&
"Expect two args for recognised intrinsics.");
return createBinaryExpression(Opcode, EI->getType(),
II->getArgOperand(0),
II->getArgOperand(1), B);
}
}
}
return createAggregateValueExpression(I, B);
}
// Substitute and symbolize the value before value numbering.
const Expression *NewGVN::performSymbolicEvaluation(Value *V,
const BasicBlock *B) {
const Expression *E = nullptr;
if (auto *C = dyn_cast<Constant>(V))
E = createConstantExpression(C);
else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
E = createVariableExpression(V);
} else {
// TODO: memory intrinsics.
// TODO: Some day, we should do the forward propagation and reassociation
// parts of the algorithm.
auto *I = cast<Instruction>(V);
switch (I->getOpcode()) {
case Instruction::ExtractValue:
case Instruction::InsertValue:
E = performSymbolicAggrValueEvaluation(I, B);
break;
case Instruction::PHI:
E = performSymbolicPHIEvaluation(I, B);
break;
case Instruction::Call:
E = performSymbolicCallEvaluation(I, B);
break;
case Instruction::Store:
E = performSymbolicStoreEvaluation(I, B);
break;
case Instruction::Load:
E = performSymbolicLoadEvaluation(I, B);
break;
case Instruction::BitCast: {
E = createExpression(I, B);
} break;
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::Select:
case Instruction::ExtractElement:
case Instruction::InsertElement:
case Instruction::ShuffleVector:
case Instruction::GetElementPtr:
E = createExpression(I, B);
break;
default:
return nullptr;
}
}
return E;
}
// There is an edge from 'Src' to 'Dst'. Return true if every path from
// the entry block to 'Dst' passes via this edge. In particular 'Dst'
// must not be reachable via another edge from 'Src'.
bool NewGVN::isOnlyReachableViaThisEdge(const BasicBlockEdge &E) const {
// While in theory it is interesting to consider the case in which Dst has
// more than one predecessor, because Dst might be part of a loop which is
// only reachable from Src, in practice it is pointless since at the time
// GVN runs all such loops have preheaders, which means that Dst will have
// been changed to have only one predecessor, namely Src.
const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
const BasicBlock *Src = E.getStart();
assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
(void)Src;
return Pred != nullptr;
}
void NewGVN::markUsersTouched(Value *V) {
// Now mark the users as touched.
for (auto *User : V->users()) {
assert(isa<Instruction>(User) && "Use of value not within an instruction?");
TouchedInstructions.set(InstrDFS.lookup(User));
}
}
void NewGVN::markMemoryUsersTouched(MemoryAccess *MA) {
for (auto U : MA->users()) {
if (auto *MUD = dyn_cast<MemoryUseOrDef>(U))
TouchedInstructions.set(InstrDFS.lookup(MUD->getMemoryInst()));
else
TouchedInstructions.set(InstrDFS.lookup(U));
}
}
// Touch the instructions that need to be updated after a congruence class has a
// leader change, and mark changed values.
void NewGVN::markLeaderChangeTouched(CongruenceClass *CC) {
for (auto M : CC->Members) {
if (auto *I = dyn_cast<Instruction>(M))
TouchedInstructions.set(InstrDFS.lookup(I));
LeaderChanges.insert(M);
}
}
// Move a value, currently in OldClass, to be part of NewClass
// Update OldClass for the move (including changing leaders, etc)
void NewGVN::moveValueToNewCongruenceClass(Instruction *I,
CongruenceClass *OldClass,
CongruenceClass *NewClass) {
DEBUG(dbgs() << "New congruence class for " << I << " is " << NewClass->ID
<< "\n");
if (I == OldClass->NextLeader.first)
OldClass->NextLeader = {nullptr, ~0U};
// The new instruction and new class leader may either be siblings in the
// dominator tree, or the new class leader should dominate the new member
// instruction. We simply check that the member instruction does not properly
// dominate the new class leader.
assert((!isa<Instruction>(NewClass->RepLeader) || !NewClass->RepLeader ||
I == NewClass->RepLeader ||
!DT->properlyDominates(
I->getParent(),
cast<Instruction>(NewClass->RepLeader)->getParent())) &&
"New class for instruction should not be dominated by instruction");
if (NewClass->RepLeader != I) {
auto DFSNum = InstrDFS.lookup(I);
if (DFSNum < NewClass->NextLeader.second)
NewClass->NextLeader = {I, DFSNum};
}
OldClass->Members.erase(I);
NewClass->Members.insert(I);
if (isa<StoreInst>(I)) {
--OldClass->StoreCount;
assert(OldClass->StoreCount >= 0);
++NewClass->StoreCount;
assert(NewClass->StoreCount > 0);
}
ValueToClass[I] = NewClass;
// See if we destroyed the class or need to swap leaders.
if (OldClass->Members.empty() && OldClass != InitialClass) {
if (OldClass->DefiningExpr) {
OldClass->Dead = true;
DEBUG(dbgs() << "Erasing expression " << OldClass->DefiningExpr
<< " from table\n");
ExpressionToClass.erase(OldClass->DefiningExpr);
}
} else if (OldClass->RepLeader == I) {
// When the leader changes, the value numbering of
// everything may change due to symbolization changes, so we need to
// reprocess.
DEBUG(dbgs() << "Leader change!\n");
++NumGVNLeaderChanges;
// We don't need to sort members if there is only 1, and we don't care about
// sorting the initial class because everything either gets out of it or is
// unreachable.
if (OldClass->Members.size() == 1 || OldClass == InitialClass) {
OldClass->RepLeader = *(OldClass->Members.begin());
} else if (OldClass->NextLeader.first) {
++NumGVNAvoidedSortedLeaderChanges;
OldClass->RepLeader = OldClass->NextLeader.first;
OldClass->NextLeader = {nullptr, ~0U};
} else {
++NumGVNSortedLeaderChanges;
// TODO: If this ends up to slow, we can maintain a dual structure for
// member testing/insertion, or keep things mostly sorted, and sort only
// here, or ....
std::pair<Value *, unsigned> MinDFS = {nullptr, ~0U};
for (const auto X : OldClass->Members) {
auto DFSNum = InstrDFS.lookup(X);
if (DFSNum < MinDFS.second)
MinDFS = {X, DFSNum};
}
OldClass->RepLeader = MinDFS.first;
}
markLeaderChangeTouched(OldClass);
}
}
// Perform congruence finding on a given value numbering expression.
void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
ValueToExpression[I] = E;
// This is guaranteed to return something, since it will at least find
// INITIAL.
CongruenceClass *IClass = ValueToClass[I];
assert(IClass && "Should have found a IClass");
// Dead classes should have been eliminated from the mapping.
assert(!IClass->Dead && "Found a dead class");
CongruenceClass *EClass;
if (const auto *VE = dyn_cast<VariableExpression>(E)) {
EClass = ValueToClass[VE->getVariableValue()];
} else {
auto lookupResult = ExpressionToClass.insert({E, nullptr});
// If it's not in the value table, create a new congruence class.
if (lookupResult.second) {
CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
auto place = lookupResult.first;
place->second = NewClass;
// Constants and variables should always be made the leader.
if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
NewClass->RepLeader = CE->getConstantValue();
} else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
StoreInst *SI = SE->getStoreInst();
NewClass->RepLeader =
lookupOperandLeader(SI->getValueOperand(), SI, SI->getParent());
} else {
NewClass->RepLeader = I;
}
assert(!isa<VariableExpression>(E) &&
"VariableExpression should have been handled already");
EClass = NewClass;
DEBUG(dbgs() << "Created new congruence class for " << *I
<< " using expression " << *E << " at " << NewClass->ID
<< " and leader " << *(NewClass->RepLeader) << "\n");
DEBUG(dbgs() << "Hash value was " << E->getHashValue() << "\n");
} else {
EClass = lookupResult.first->second;
if (isa<ConstantExpression>(E))
assert(isa<Constant>(EClass->RepLeader) &&
"Any class with a constant expression should have a "
"constant leader");
assert(EClass && "Somehow don't have an eclass");
assert(!EClass->Dead && "We accidentally looked up a dead class");
}
}
bool ClassChanged = IClass != EClass;
bool LeaderChanged = LeaderChanges.erase(I);
if (ClassChanged || LeaderChanged) {
DEBUG(dbgs() << "Found class " << EClass->ID << " for expression " << E
<< "\n");
if (ClassChanged)
moveValueToNewCongruenceClass(I, IClass, EClass);
markUsersTouched(I);
if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) {
// If this is a MemoryDef, we need to update the equivalence table. If
// we determined the expression is congruent to a different memory
// state, use that different memory state. If we determined it didn't,
// we update that as well. Right now, we only support store
// expressions.
if (!isa<MemoryUse>(MA) && isa<StoreExpression>(E) &&
EClass->Members.size() != 1) {
auto *DefAccess = cast<StoreExpression>(E)->getDefiningAccess();
setMemoryAccessEquivTo(MA, DefAccess != MA ? DefAccess : nullptr);
} else {
setMemoryAccessEquivTo(MA, nullptr);
}
markMemoryUsersTouched(MA);
}
} else if (auto *SI = dyn_cast<StoreInst>(I)) {
// There is, sadly, one complicating thing for stores. Stores do not
// produce values, only consume them. However, in order to make loads and
// stores value number the same, we ignore the value operand of the store.
// But the value operand will still be the leader of our class, and thus, it
// may change. Because the store is a use, the store will get reprocessed,
// but nothing will change about it, and so nothing above will catch it
// (since the class will not change). In order to make sure everything ends
// up okay, we need to recheck the leader of the class. Since stores of
// different values value number differently due to different memorydefs, we
// are guaranteed the leader is always the same between stores in the same
// class.
DEBUG(dbgs() << "Checking store leader\n");
auto ProperLeader =
lookupOperandLeader(SI->getValueOperand(), SI, SI->getParent());
if (EClass->RepLeader != ProperLeader) {
DEBUG(dbgs() << "Store leader changed, fixing\n");
EClass->RepLeader = ProperLeader;
markLeaderChangeTouched(EClass);
markMemoryUsersTouched(MSSA->getMemoryAccess(SI));
}
}
}
// Process the fact that Edge (from, to) is reachable, including marking
// any newly reachable blocks and instructions for processing.
void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
// Check if the Edge was reachable before.
if (ReachableEdges.insert({From, To}).second) {
// If this block wasn't reachable before, all instructions are touched.
if (ReachableBlocks.insert(To).second) {
DEBUG(dbgs() << "Block " << getBlockName(To) << " marked reachable\n");
const auto &InstRange = BlockInstRange.lookup(To);
TouchedInstructions.set(InstRange.first, InstRange.second);
} else {
DEBUG(dbgs() << "Block " << getBlockName(To)
<< " was reachable, but new edge {" << getBlockName(From)
<< "," << getBlockName(To) << "} to it found\n");
// We've made an edge reachable to an existing block, which may
// impact predicates. Otherwise, only mark the phi nodes as touched, as
// they are the only thing that depend on new edges. Anything using their
// values will get propagated to if necessary.
if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(To))
TouchedInstructions.set(InstrDFS.lookup(MemPhi));
auto BI = To->begin();
while (isa<PHINode>(BI)) {
TouchedInstructions.set(InstrDFS.lookup(&*BI));
++BI;
}
}
}
}
// Given a predicate condition (from a switch, cmp, or whatever) and a block,
// see if we know some constant value for it already.
Value *NewGVN::findConditionEquivalence(Value *Cond, BasicBlock *B) const {
auto Result = lookupOperandLeader(Cond, nullptr, B);
if (isa<Constant>(Result))
return Result;
return nullptr;
}
// Process the outgoing edges of a block for reachability.
void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) {
// Evaluate reachability of terminator instruction.
BranchInst *BR;
if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
Value *Cond = BR->getCondition();
Value *CondEvaluated = findConditionEquivalence(Cond, B);
if (!CondEvaluated) {
if (auto *I = dyn_cast<Instruction>(Cond)) {
const Expression *E = createExpression(I, B);
if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
CondEvaluated = CE->getConstantValue();
}
} else if (isa<ConstantInt>(Cond)) {
CondEvaluated = Cond;
}
}
ConstantInt *CI;
BasicBlock *TrueSucc = BR->getSuccessor(0);
BasicBlock *FalseSucc = BR->getSuccessor(1);
if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
if (CI->isOne()) {
DEBUG(dbgs() << "Condition for Terminator " << *TI
<< " evaluated to true\n");
updateReachableEdge(B, TrueSucc);
} else if (CI->isZero()) {
DEBUG(dbgs() << "Condition for Terminator " << *TI
<< " evaluated to false\n");
updateReachableEdge(B, FalseSucc);
}
} else {
updateReachableEdge(B, TrueSucc);
updateReachableEdge(B, FalseSucc);
}
} else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
// For switches, propagate the case values into the case
// destinations.
// Remember how many outgoing edges there are to every successor.
SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
Value *SwitchCond = SI->getCondition();
Value *CondEvaluated = findConditionEquivalence(SwitchCond, B);
// See if we were able to turn this switch statement into a constant.
if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
auto *CondVal = cast<ConstantInt>(CondEvaluated);
// We should be able to get case value for this.
auto CaseVal = SI->findCaseValue(CondVal);
if (CaseVal.getCaseSuccessor() == SI->getDefaultDest()) {
// We proved the value is outside of the range of the case.
// We can't do anything other than mark the default dest as reachable,
// and go home.
updateReachableEdge(B, SI->getDefaultDest());
return;
}
// Now get where it goes and mark it reachable.
BasicBlock *TargetBlock = CaseVal.getCaseSuccessor();
updateReachableEdge(B, TargetBlock);
} else {
for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
BasicBlock *TargetBlock = SI->getSuccessor(i);
++SwitchEdges[TargetBlock];
updateReachableEdge(B, TargetBlock);
}
}
} else {
// Otherwise this is either unconditional, or a type we have no
// idea about. Just mark successors as reachable.
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
BasicBlock *TargetBlock = TI->getSuccessor(i);
updateReachableEdge(B, TargetBlock);
}
// This also may be a memory defining terminator, in which case, set it
// equivalent to nothing.
if (MemoryAccess *MA = MSSA->getMemoryAccess(TI))
setMemoryAccessEquivTo(MA, nullptr);
}
}
// The algorithm initially places the values of the routine in the INITIAL
// congruence
// class. The leader of INITIAL is the undetermined value `TOP`.
// When the algorithm has finished, values still in INITIAL are unreachable.
void NewGVN::initializeCongruenceClasses(Function &F) {
// FIXME now i can't remember why this is 2
NextCongruenceNum = 2;
// Initialize all other instructions to be in INITIAL class.
CongruenceClass::MemberSet InitialValues;
InitialClass = createCongruenceClass(nullptr, nullptr);
for (auto &B : F) {
if (auto *MP = MSSA->getMemoryAccess(&B))
MemoryAccessEquiv.insert({MP, MSSA->getLiveOnEntryDef()});
for (auto &I : B) {
InitialValues.insert(&I);
ValueToClass[&I] = InitialClass;
// All memory accesses are equivalent to live on entry to start. They must
// be initialized to something so that initial changes are noticed. For
// the maximal answer, we initialize them all to be the same as
// liveOnEntry. Note that to save time, we only initialize the
// MemoryDef's for stores and all MemoryPhis to be equal. Right now, no
// other expression can generate a memory equivalence. If we start
// handling memcpy/etc, we can expand this.
if (isa<StoreInst>(&I)) {
MemoryAccessEquiv.insert(
{MSSA->getMemoryAccess(&I), MSSA->getLiveOnEntryDef()});
++InitialClass->StoreCount;
assert(InitialClass->StoreCount > 0);
}
}
}
InitialClass->Members.swap(InitialValues);
// Initialize arguments to be in their own unique congruence classes
for (auto &FA : F.args())
createSingletonCongruenceClass(&FA);
}
void NewGVN::cleanupTables() {
for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->ID << " has "
<< CongruenceClasses[i]->Members.size() << " members\n");
// Make sure we delete the congruence class (probably worth switching to
// a unique_ptr at some point.
delete CongruenceClasses[i];
CongruenceClasses[i] = nullptr;
}
ValueToClass.clear();
ArgRecycler.clear(ExpressionAllocator);
ExpressionAllocator.Reset();
CongruenceClasses.clear();
ExpressionToClass.clear();
ValueToExpression.clear();
ReachableBlocks.clear();
ReachableEdges.clear();
#ifndef NDEBUG
ProcessedCount.clear();
#endif
InstrDFS.clear();
InstructionsToErase.clear();
DFSToInstr.clear();
BlockInstRange.clear();
TouchedInstructions.clear();
DominatedInstRange.clear();
MemoryAccessEquiv.clear();
}
std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
unsigned Start) {
unsigned End = Start;
if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(B)) {
InstrDFS[MemPhi] = End++;
DFSToInstr.emplace_back(MemPhi);
}
for (auto &I : *B) {
InstrDFS[&I] = End++;
DFSToInstr.emplace_back(&I);
}
// All of the range functions taken half-open ranges (open on the end side).
// So we do not subtract one from count, because at this point it is one
// greater than the last instruction.
return std::make_pair(Start, End);
}
void NewGVN::updateProcessedCount(Value *V) {
#ifndef NDEBUG
if (ProcessedCount.count(V) == 0) {
ProcessedCount.insert({V, 1});
} else {
++ProcessedCount[V];
assert(ProcessedCount[V] < 100 &&
"Seem to have processed the same Value a lot");
}
#endif
}
// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
// If all the arguments are the same, the MemoryPhi has the same value as the
// argument.
// Filter out unreachable blocks from our operands.
auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
return ReachableBlocks.count(MP->getIncomingBlock(U));
});
assert(Filtered.begin() != Filtered.end() &&
"We should not be processing a MemoryPhi in a completely "
"unreachable block");
// Transform the remaining operands into operand leaders.
// FIXME: mapped_iterator should have a range version.
auto LookupFunc = [&](const Use &U) {
return lookupMemoryAccessEquiv(cast<MemoryAccess>(U));
};
auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
// and now check if all the elements are equal.
// Sadly, we can't use std::equals since these are random access iterators.
MemoryAccess *AllSameValue = *MappedBegin;
++MappedBegin;
bool AllEqual = std::all_of(
MappedBegin, MappedEnd,
[&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
if (AllEqual)
DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue << "\n");
else
DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
if (setMemoryAccessEquivTo(MP, AllEqual ? AllSameValue : nullptr))
markMemoryUsersTouched(MP);
}
// Value number a single instruction, symbolically evaluating, performing
// congruence finding, and updating mappings.
void NewGVN::valueNumberInstruction(Instruction *I) {
DEBUG(dbgs() << "Processing instruction " << *I << "\n");
if (isInstructionTriviallyDead(I, TLI)) {
DEBUG(dbgs() << "Skipping unused instruction\n");
markInstructionForDeletion(I);
return;
}
if (!I->isTerminator()) {
const auto *Symbolized = performSymbolicEvaluation(I, I->getParent());
// If we couldn't come up with a symbolic expression, use the unknown
// expression
if (Symbolized == nullptr)
Symbolized = createUnknownExpression(I);
performCongruenceFinding(I, Symbolized);
} else {
// Handle terminators that return values. All of them produce values we
// don't currently understand.
if (!I->getType()->isVoidTy()) {
auto *Symbolized = createUnknownExpression(I);
performCongruenceFinding(I, Symbolized);
}
processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent());
}
}
// Check if there is a path, using single or equal argument phi nodes, from
// First to Second.
bool NewGVN::singleReachablePHIPath(const MemoryAccess *First,
const MemoryAccess *Second) const {
if (First == Second)
return true;
if (auto *FirstDef = dyn_cast<MemoryUseOrDef>(First)) {
auto *DefAccess = FirstDef->getDefiningAccess();
return singleReachablePHIPath(DefAccess, Second);
} else {
auto *MP = cast<MemoryPhi>(First);
auto ReachableOperandPred = [&](const Use &U) {
return ReachableBlocks.count(MP->getIncomingBlock(U));
};
auto FilteredPhiArgs =
make_filter_range(MP->operands(), ReachableOperandPred);
SmallVector<const Value *, 32> OperandList;
std::copy(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
std::back_inserter(OperandList));
bool Okay = OperandList.size() == 1;
if (!Okay)
Okay = std::equal(OperandList.begin(), OperandList.end(),
OperandList.begin());
if (Okay)
return singleReachablePHIPath(cast<MemoryAccess>(OperandList[0]), Second);
return false;
}
}
// Verify the that the memory equivalence table makes sense relative to the
// congruence classes. Note that this checking is not perfect, and is currently
// subject to very rare false negatives. It is only useful for
// testing/debugging.
void NewGVN::verifyMemoryCongruency() const {
// Anything equivalent in the memory access table should be in the same
// congruence class.
// Filter out the unreachable and trivially dead entries, because they may
// never have been updated if the instructions were not processed.
auto ReachableAccessPred =
[&](const std::pair<const MemoryAccess *, MemoryAccess *> Pair) {
bool Result = ReachableBlocks.count(Pair.first->getBlock());
if (!Result)
return false;
if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
return !isInstructionTriviallyDead(MemDef->getMemoryInst());
return true;
};
auto Filtered = make_filter_range(MemoryAccessEquiv, ReachableAccessPred);
for (auto KV : Filtered) {
assert(KV.first != KV.second &&
"We added a useless equivalence to the memory equivalence table");
// Unreachable instructions may not have changed because we never process
// them.
if (!ReachableBlocks.count(KV.first->getBlock()))
continue;
if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second);
if (FirstMUD && SecondMUD)
assert((singleReachablePHIPath(FirstMUD, SecondMUD) ||
ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
"The instructions for these memory operations should have "
"been in the same congruence class or reachable through"
"a single argument phi");
} else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
// We can only sanely verify that MemoryDefs in the operand list all have
// the same class.
auto ReachableOperandPred = [&](const Use &U) {
return ReachableBlocks.count(FirstMP->getIncomingBlock(U)) &&
isa<MemoryDef>(U);
};
// All arguments should in the same class, ignoring unreachable arguments
auto FilteredPhiArgs =
make_filter_range(FirstMP->operands(), ReachableOperandPred);
SmallVector<const CongruenceClass *, 16> PhiOpClasses;
std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
std::back_inserter(PhiOpClasses), [&](const Use &U) {
const MemoryDef *MD = cast<MemoryDef>(U);
return ValueToClass.lookup(MD->getMemoryInst());
});
assert(std::equal(PhiOpClasses.begin(), PhiOpClasses.end(),
PhiOpClasses.begin()) &&
"All MemoryPhi arguments should be in the same class");
}
}
}
// This is the main transformation entry point.
bool NewGVN::runGVN(Function &F, DominatorTree *_DT, AssumptionCache *_AC,
TargetLibraryInfo *_TLI, AliasAnalysis *_AA,
MemorySSA *_MSSA) {
bool Changed = false;
DT = _DT;
AC = _AC;
TLI = _TLI;
AA = _AA;
MSSA = _MSSA;
DL = &F.getParent()->getDataLayout();
MSSAWalker = MSSA->getWalker();
// Count number of instructions for sizing of hash tables, and come
// up with a global dfs numbering for instructions.
unsigned ICount = 1;
// Add an empty instruction to account for the fact that we start at 1
DFSToInstr.emplace_back(nullptr);
// Note: We want RPO traversal of the blocks, which is not quite the same as
// dominator tree order, particularly with regard whether backedges get
// visited first or second, given a block with multiple successors.
// If we visit in the wrong order, we will end up performing N times as many
// iterations.
// The dominator tree does guarantee that, for a given dom tree node, it's
// parent must occur before it in the RPO ordering. Thus, we only need to sort
// the siblings.
DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
ReversePostOrderTraversal<Function *> RPOT(&F);
unsigned Counter = 0;
for (auto &B : RPOT) {
auto *Node = DT->getNode(B);
assert(Node && "RPO and Dominator tree should have same reachability");
RPOOrdering[Node] = ++Counter;
}
// Sort dominator tree children arrays into RPO.
for (auto &B : RPOT) {
auto *Node = DT->getNode(B);
if (Node->getChildren().size() > 1)
std::sort(Node->begin(), Node->end(),
[&RPOOrdering](const DomTreeNode *A, const DomTreeNode *B) {
return RPOOrdering[A] < RPOOrdering[B];
});
}
// Now a standard depth first ordering of the domtree is equivalent to RPO.
auto DFI = df_begin(DT->getRootNode());
for (auto DFE = df_end(DT->getRootNode()); DFI != DFE; ++DFI) {
BasicBlock *B = DFI->getBlock();
const auto &BlockRange = assignDFSNumbers(B, ICount);
BlockInstRange.insert({B, BlockRange});
ICount += BlockRange.second - BlockRange.first;
}
// Handle forward unreachable blocks and figure out which blocks
// have single preds.
for (auto &B : F) {
// Assign numbers to unreachable blocks.
if (!DFI.nodeVisited(DT->getNode(&B))) {
const auto &BlockRange = assignDFSNumbers(&B, ICount);
BlockInstRange.insert({&B, BlockRange});
ICount += BlockRange.second - BlockRange.first;
}
}
TouchedInstructions.resize(ICount);
DominatedInstRange.reserve(F.size());
// Ensure we don't end up resizing the expressionToClass map, as
// that can be quite expensive. At most, we have one expression per
// instruction.
ExpressionToClass.reserve(ICount);
// Initialize the touched instructions to include the entry block.
const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
TouchedInstructions.set(InstRange.first, InstRange.second);
ReachableBlocks.insert(&F.getEntryBlock());
initializeCongruenceClasses(F);
unsigned int Iterations = 0;
// We start out in the entry block.
BasicBlock *LastBlock = &F.getEntryBlock();
while (TouchedInstructions.any()) {
++Iterations;
// Walk through all the instructions in all the blocks in RPO.
for (int InstrNum = TouchedInstructions.find_first(); InstrNum != -1;
InstrNum = TouchedInstructions.find_next(InstrNum)) {
assert(InstrNum != 0 && "Bit 0 should never be set, something touched an "
"instruction not in the lookup table");
Value *V = DFSToInstr[InstrNum];
BasicBlock *CurrBlock = nullptr;
if (auto *I = dyn_cast<Instruction>(V))
CurrBlock = I->getParent();
else if (auto *MP = dyn_cast<MemoryPhi>(V))
CurrBlock = MP->getBlock();
else
llvm_unreachable("DFSToInstr gave us an unknown type of instruction");
// If we hit a new block, do reachability processing.
if (CurrBlock != LastBlock) {
LastBlock = CurrBlock;
bool BlockReachable = ReachableBlocks.count(CurrBlock);
const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
// If it's not reachable, erase any touched instructions and move on.
if (!BlockReachable) {
TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
DEBUG(dbgs() << "Skipping instructions in block "
<< getBlockName(CurrBlock)
<< " because it is unreachable\n");
continue;
}
updateProcessedCount(CurrBlock);
}
if (auto *MP = dyn_cast<MemoryPhi>(V)) {
DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
valueNumberMemoryPhi(MP);
} else if (auto *I = dyn_cast<Instruction>(V)) {
valueNumberInstruction(I);
} else {
llvm_unreachable("Should have been a MemoryPhi or Instruction");
}
updateProcessedCount(V);
// Reset after processing (because we may mark ourselves as touched when
// we propagate equalities).
TouchedInstructions.reset(InstrNum);
}
}
NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
#ifndef NDEBUG
verifyMemoryCongruency();
#endif
Changed |= eliminateInstructions(F);
// Delete all instructions marked for deletion.
for (Instruction *ToErase : InstructionsToErase) {
if (!ToErase->use_empty())
ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
ToErase->eraseFromParent();
}
// Delete all unreachable blocks.
auto UnreachableBlockPred = [&](const BasicBlock &BB) {
return !ReachableBlocks.count(&BB);
};
for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
<< " is unreachable\n");
deleteInstructionsInBlock(&BB);
Changed = true;
}
cleanupTables();
return Changed;
}
bool NewGVN::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
return runGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
&getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
&getAnalysis<AAResultsWrapperPass>().getAAResults(),
&getAnalysis<MemorySSAWrapperPass>().getMSSA());
}
PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
NewGVN Impl;
// Apparently the order in which we get these results matter for
// the old GVN (see Chandler's comment in GVN.cpp). I'll keep
// the same order here, just in case.
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &AA = AM.getResult<AAManager>(F);
auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
bool Changed = Impl.runGVN(F, &DT, &AC, &TLI, &AA, &MSSA);
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<GlobalsAA>();
return PA;
}
// Return true if V is a value that will always be available (IE can
// be placed anywhere) in the function. We don't do globals here
// because they are often worse to put in place.
// TODO: Separate cost from availability
static bool alwaysAvailable(Value *V) {
return isa<Constant>(V) || isa<Argument>(V);
}
// Get the basic block from an instruction/value.
static BasicBlock *getBlockForValue(Value *V) {
if (auto *I = dyn_cast<Instruction>(V))
return I->getParent();
return nullptr;
}
struct NewGVN::ValueDFS {
int DFSIn = 0;
int DFSOut = 0;
int LocalNum = 0;
// Only one of these will be set.
Value *Val = nullptr;
Use *U = nullptr;
bool operator<(const ValueDFS &Other) const {
// It's not enough that any given field be less than - we have sets
// of fields that need to be evaluated together to give a proper ordering.
// For example, if you have;
// DFS (1, 3)
// Val 0
// DFS (1, 2)
// Val 50
// We want the second to be less than the first, but if we just go field
// by field, we will get to Val 0 < Val 50 and say the first is less than
// the second. We only want it to be less than if the DFS orders are equal.
//
// Each LLVM instruction only produces one value, and thus the lowest-level
// differentiator that really matters for the stack (and what we use as as a
// replacement) is the local dfs number.
// Everything else in the structure is instruction level, and only affects
// the order in which we will replace operands of a given instruction.
//
// For a given instruction (IE things with equal dfsin, dfsout, localnum),
// the order of replacement of uses does not matter.
// IE given,
// a = 5
// b = a + a
// When you hit b, you will have two valuedfs with the same dfsin, out, and
// localnum.
// The .val will be the same as well.
// The .u's will be different.
// You will replace both, and it does not matter what order you replace them
// in (IE whether you replace operand 2, then operand 1, or operand 1, then
// operand 2).
// Similarly for the case of same dfsin, dfsout, localnum, but different
// .val's
// a = 5
// b = 6
// c = a + b
// in c, we will a valuedfs for a, and one for b,with everything the same
// but .val and .u.
// It does not matter what order we replace these operands in.
// You will always end up with the same IR, and this is guaranteed.
return std::tie(DFSIn, DFSOut, LocalNum, Val, U) <
std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Val,
Other.U);
}
};
void NewGVN::convertDenseToDFSOrdered(
CongruenceClass::MemberSet &Dense,
SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
for (auto D : Dense) {
// First add the value.
BasicBlock *BB = getBlockForValue(D);
// Constants are handled prior to ever calling this function, so
// we should only be left with instructions as members.
assert(BB && "Should have figured out a basic block for value");
ValueDFS VD;
DomTreeNode *DomNode = DT->getNode(BB);
VD.DFSIn = DomNode->getDFSNumIn();
VD.DFSOut = DomNode->getDFSNumOut();
VD.Val = D;
// If it's an instruction, use the real local dfs number.
if (auto *I = dyn_cast<Instruction>(D))
VD.LocalNum = InstrDFS.lookup(I);
else
llvm_unreachable("Should have been an instruction");
DFSOrderedSet.emplace_back(VD);
// Now add the uses.
for (auto &U : D->uses()) {
if (auto *I = dyn_cast<Instruction>(U.getUser())) {
ValueDFS VD;
// Put the phi node uses in the incoming block.
BasicBlock *IBlock;
if (auto *P = dyn_cast<PHINode>(I)) {
IBlock = P->getIncomingBlock(U);
// Make phi node users appear last in the incoming block
// they are from.
VD.LocalNum = InstrDFS.size() + 1;
} else {
IBlock = I->getParent();
VD.LocalNum = InstrDFS.lookup(I);
}
DomTreeNode *DomNode = DT->getNode(IBlock);
VD.DFSIn = DomNode->getDFSNumIn();
VD.DFSOut = DomNode->getDFSNumOut();
VD.U = &U;
DFSOrderedSet.emplace_back(VD);
}
}
}
}
static void patchReplacementInstruction(Instruction *I, Value *Repl) {
// Patch the replacement so that it is not more restrictive than the value
// being replaced.
auto *Op = dyn_cast<BinaryOperator>(I);
auto *ReplOp = dyn_cast<BinaryOperator>(Repl);
if (Op && ReplOp)
ReplOp->andIRFlags(Op);
if (auto *ReplInst = dyn_cast<Instruction>(Repl)) {
// FIXME: If both the original and replacement value are part of the
// same control-flow region (meaning that the execution of one
// guarentees the executation of the other), then we can combine the
// noalias scopes here and do better than the general conservative
// answer used in combineMetadata().
// In general, GVN unifies expressions over different control-flow
// regions, and so we need a conservative combination of the noalias
// scopes.
unsigned KnownIDs[] = {
LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
LLVMContext::MD_noalias, LLVMContext::MD_range,
LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
LLVMContext::MD_invariant_group};
combineMetadata(ReplInst, I, KnownIDs);
}
}
static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
patchReplacementInstruction(I, Repl);
I->replaceAllUsesWith(Repl);
}
void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
++NumGVNBlocksDeleted;
// Check to see if there are non-terminating instructions to delete.
if (isa<TerminatorInst>(BB->begin()))
return;
// Delete the instructions backwards, as it has a reduced likelihood of having
// to update as many def-use and use-def chains. Start after the terminator.
auto StartPoint = BB->rbegin();
++StartPoint;
// Note that we explicitly recalculate BB->rend() on each iteration,
// as it may change when we remove the first instruction.
for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
Instruction &Inst = *I++;
if (!Inst.use_empty())
Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
if (isa<LandingPadInst>(Inst))
continue;
Inst.eraseFromParent();
++NumGVNInstrDeleted;
}
}
void NewGVN::markInstructionForDeletion(Instruction *I) {
DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
InstructionsToErase.insert(I);
}
void NewGVN::replaceInstruction(Instruction *I, Value *V) {
DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
patchAndReplaceAllUsesWith(I, V);
// We save the actual erasing to avoid invalidating memory
// dependencies until we are done with everything.
markInstructionForDeletion(I);
}
namespace {
// This is a stack that contains both the value and dfs info of where
// that value is valid.
class ValueDFSStack {
public:
Value *back() const { return ValueStack.back(); }
std::pair<int, int> dfs_back() const { return DFSStack.back(); }
void push_back(Value *V, int DFSIn, int DFSOut) {
ValueStack.emplace_back(V);
DFSStack.emplace_back(DFSIn, DFSOut);
}
bool empty() const { return DFSStack.empty(); }
bool isInScope(int DFSIn, int DFSOut) const {
if (empty())
return false;
return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
}
void popUntilDFSScope(int DFSIn, int DFSOut) {
// These two should always be in sync at this point.
assert(ValueStack.size() == DFSStack.size() &&
"Mismatch between ValueStack and DFSStack");
while (
!DFSStack.empty() &&
!(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
DFSStack.pop_back();
ValueStack.pop_back();
}
}
private:
SmallVector<Value *, 8> ValueStack;
SmallVector<std::pair<int, int>, 8> DFSStack;
};
}
bool NewGVN::eliminateInstructions(Function &F) {
// This is a non-standard eliminator. The normal way to eliminate is
// to walk the dominator tree in order, keeping track of available
// values, and eliminating them. However, this is mildly
// pointless. It requires doing lookups on every instruction,
// regardless of whether we will ever eliminate it. For
// instructions part of most singleton congruence classes, we know we
// will never eliminate them.
// Instead, this eliminator looks at the congruence classes directly, sorts
// them into a DFS ordering of the dominator tree, and then we just
// perform elimination straight on the sets by walking the congruence
// class member uses in order, and eliminate the ones dominated by the
// last member. This is worst case O(E log E) where E = number of
// instructions in a single congruence class. In theory, this is all
// instructions. In practice, it is much faster, as most instructions are
// either in singleton congruence classes or can't possibly be eliminated
// anyway (if there are no overlapping DFS ranges in class).
// When we find something not dominated, it becomes the new leader
// for elimination purposes.
// TODO: If we wanted to be faster, We could remove any members with no
// overlapping ranges while sorting, as we will never eliminate anything
// with those members, as they don't dominate anything else in our set.
bool AnythingReplaced = false;
// Since we are going to walk the domtree anyway, and we can't guarantee the
// DFS numbers are updated, we compute some ourselves.
DT->updateDFSNumbers();
for (auto &B : F) {
if (!ReachableBlocks.count(&B)) {
for (const auto S : successors(&B)) {
for (auto II = S->begin(); isa<PHINode>(II); ++II) {
auto &Phi = cast<PHINode>(*II);
DEBUG(dbgs() << "Replacing incoming value of " << *II << " for block "
<< getBlockName(&B)
<< " with undef due to it being unreachable\n");
for (auto &Operand : Phi.incoming_values())
if (Phi.getIncomingBlock(Operand) == &B)
Operand.set(UndefValue::get(Phi.getType()));
}
}
}
}
for (CongruenceClass *CC : CongruenceClasses) {
// FIXME: We should eventually be able to replace everything still
// in the initial class with undef, as they should be unreachable.
// Right now, initial still contains some things we skip value
// numbering of (UNREACHABLE's, for example).
if (CC == InitialClass || CC->Dead)
continue;
assert(CC->RepLeader && "We should have had a leader");
// If this is a leader that is always available, and it's a
// constant or has no equivalences, just replace everything with
// it. We then update the congruence class with whatever members
// are left.
if (alwaysAvailable(CC->RepLeader)) {
SmallPtrSet<Value *, 4> MembersLeft;
for (auto M : CC->Members) {
Value *Member = M;
// Void things have no uses we can replace.
if (Member == CC->RepLeader || Member->getType()->isVoidTy()) {
MembersLeft.insert(Member);
continue;
}
DEBUG(dbgs() << "Found replacement " << *(CC->RepLeader) << " for "
<< *Member << "\n");
// Due to equality propagation, these may not always be
// instructions, they may be real values. We don't really
// care about trying to replace the non-instructions.
if (auto *I = dyn_cast<Instruction>(Member)) {
assert(CC->RepLeader != I &&
"About to accidentally remove our leader");
replaceInstruction(I, CC->RepLeader);
AnythingReplaced = true;
continue;
} else {
MembersLeft.insert(I);
}
}
CC->Members.swap(MembersLeft);
} else {
DEBUG(dbgs() << "Eliminating in congruence class " << CC->ID << "\n");
// If this is a singleton, we can skip it.
if (CC->Members.size() != 1) {
// This is a stack because equality replacement/etc may place
// constants in the middle of the member list, and we want to use
// those constant values in preference to the current leader, over
// the scope of those constants.
ValueDFSStack EliminationStack;
// Convert the members to DFS ordered sets and then merge them.
SmallVector<ValueDFS, 8> DFSOrderedSet;
convertDenseToDFSOrdered(CC->Members, DFSOrderedSet);
// Sort the whole thing.
std::sort(DFSOrderedSet.begin(), DFSOrderedSet.end());
for (auto &VD : DFSOrderedSet) {
int MemberDFSIn = VD.DFSIn;
int MemberDFSOut = VD.DFSOut;
Value *Member = VD.Val;
Use *MemberUse = VD.U;
if (Member) {
// We ignore void things because we can't get a value from them.
// FIXME: We could actually use this to kill dead stores that are
// dominated by equivalent earlier stores.
if (Member->getType()->isVoidTy())
continue;
}
if (EliminationStack.empty()) {
DEBUG(dbgs() << "Elimination Stack is empty\n");
} else {
DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
<< EliminationStack.dfs_back().first << ","
<< EliminationStack.dfs_back().second << ")\n");
}
DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
<< MemberDFSOut << ")\n");
// First, we see if we are out of scope or empty. If so,
// and there equivalences, we try to replace the top of
// stack with equivalences (if it's on the stack, it must
// not have been eliminated yet).
// Then we synchronize to our current scope, by
// popping until we are back within a DFS scope that
// dominates the current member.
// Then, what happens depends on a few factors
// If the stack is now empty, we need to push
// If we have a constant or a local equivalence we want to
// start using, we also push.
// Otherwise, we walk along, processing members who are
// dominated by this scope, and eliminate them.
bool ShouldPush =
Member && (EliminationStack.empty() || isa<Constant>(Member));
bool OutOfScope =
!EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
if (OutOfScope || ShouldPush) {
// Sync to our current scope.
EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
ShouldPush |= Member && EliminationStack.empty();
if (ShouldPush) {
EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
}
}
// If we get to this point, and the stack is empty we must have a use
// with nothing we can use to eliminate it, just skip it.
if (EliminationStack.empty())
continue;
// Skip the Value's, we only want to eliminate on their uses.
if (Member)
continue;
Value *Result = EliminationStack.back();
// Don't replace our existing users with ourselves.
if (MemberUse->get() == Result)
continue;
DEBUG(dbgs() << "Found replacement " << *Result << " for "
<< *MemberUse->get() << " in " << *(MemberUse->getUser())
<< "\n");
// If we replaced something in an instruction, handle the patching of
// metadata.
if (auto *ReplacedInst = dyn_cast<Instruction>(MemberUse->get()))
patchReplacementInstruction(ReplacedInst, Result);
assert(isa<Instruction>(MemberUse->getUser()));
MemberUse->set(Result);
AnythingReplaced = true;
}
}
}
// Cleanup the congruence class.
SmallPtrSet<Value *, 4> MembersLeft;
for (Value *Member : CC->Members) {
if (Member->getType()->isVoidTy()) {
MembersLeft.insert(Member);
continue;
}
if (auto *MemberInst = dyn_cast<Instruction>(Member)) {
if (isInstructionTriviallyDead(MemberInst)) {
// TODO: Don't mark loads of undefs.
markInstructionForDeletion(MemberInst);
continue;
}
}
MembersLeft.insert(Member);
}
CC->Members.swap(MembersLeft);
}
return AnythingReplaced;
}