forked from OSchip/llvm-project
2246 lines
87 KiB
C++
2246 lines
87 KiB
C++
//===---- NewGVN.cpp - Global Value Numbering Pass --------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements the new LLVM's Global Value Numbering pass.
|
|
/// GVN partitions values computed by a function into congruence classes.
|
|
/// Values ending up in the same congruence class are guaranteed to be the same
|
|
/// for every execution of the program. In that respect, congruency is a
|
|
/// compile-time approximation of equivalence of values at runtime.
|
|
/// The algorithm implemented here uses a sparse formulation and it's based
|
|
/// on the ideas described in the paper:
|
|
/// "A Sparse Algorithm for Predicated Global Value Numbering" from
|
|
/// Karthik Gargi.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/NewGVN.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SparseBitVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/CFGPrinter.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/PHITransAddr.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/PredIteratorCache.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/GVNExpression.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/MemorySSA.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
using namespace llvm::GVNExpression;
|
|
|
|
#define DEBUG_TYPE "newgvn"
|
|
|
|
STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
|
|
STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
|
|
STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
|
|
STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
|
|
STATISTIC(NumGVNMaxIterations,
|
|
"Maximum Number of iterations it took to converge GVN");
|
|
STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
|
|
STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
|
|
STATISTIC(NumGVNAvoidedSortedLeaderChanges,
|
|
"Number of avoided sorted leader changes");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GVN Pass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Anchor methods.
|
|
namespace llvm {
|
|
namespace GVNExpression {
|
|
Expression::~Expression() = default;
|
|
BasicExpression::~BasicExpression() = default;
|
|
CallExpression::~CallExpression() = default;
|
|
LoadExpression::~LoadExpression() = default;
|
|
StoreExpression::~StoreExpression() = default;
|
|
AggregateValueExpression::~AggregateValueExpression() = default;
|
|
PHIExpression::~PHIExpression() = default;
|
|
}
|
|
}
|
|
|
|
// Congruence classes represent the set of expressions/instructions
|
|
// that are all the same *during some scope in the function*.
|
|
// That is, because of the way we perform equality propagation, and
|
|
// because of memory value numbering, it is not correct to assume
|
|
// you can willy-nilly replace any member with any other at any
|
|
// point in the function.
|
|
//
|
|
// For any Value in the Member set, it is valid to replace any dominated member
|
|
// with that Value.
|
|
//
|
|
// Every congruence class has a leader, and the leader is used to
|
|
// symbolize instructions in a canonical way (IE every operand of an
|
|
// instruction that is a member of the same congruence class will
|
|
// always be replaced with leader during symbolization).
|
|
// To simplify symbolization, we keep the leader as a constant if class can be
|
|
// proved to be a constant value.
|
|
// Otherwise, the leader is a randomly chosen member of the value set, it does
|
|
// not matter which one is chosen.
|
|
// Each congruence class also has a defining expression,
|
|
// though the expression may be null. If it exists, it can be used for forward
|
|
// propagation and reassociation of values.
|
|
//
|
|
struct CongruenceClass {
|
|
using MemberSet = SmallPtrSet<Value *, 4>;
|
|
unsigned ID;
|
|
// Representative leader.
|
|
Value *RepLeader = nullptr;
|
|
// Defining Expression.
|
|
const Expression *DefiningExpr = nullptr;
|
|
// Actual members of this class.
|
|
MemberSet Members;
|
|
|
|
// True if this class has no members left. This is mainly used for assertion
|
|
// purposes, and for skipping empty classes.
|
|
bool Dead = false;
|
|
|
|
// Number of stores in this congruence class.
|
|
// This is used so we can detect store equivalence changes properly.
|
|
int StoreCount = 0;
|
|
|
|
// The most dominating leader after our current leader, because the member set
|
|
// is not sorted and is expensive to keep sorted all the time.
|
|
std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
|
|
|
|
explicit CongruenceClass(unsigned ID) : ID(ID) {}
|
|
CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
|
|
: ID(ID), RepLeader(Leader), DefiningExpr(E) {}
|
|
};
|
|
|
|
namespace llvm {
|
|
template <> struct DenseMapInfo<const Expression *> {
|
|
static const Expression *getEmptyKey() {
|
|
auto Val = static_cast<uintptr_t>(-1);
|
|
Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
|
|
return reinterpret_cast<const Expression *>(Val);
|
|
}
|
|
static const Expression *getTombstoneKey() {
|
|
auto Val = static_cast<uintptr_t>(~1U);
|
|
Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
|
|
return reinterpret_cast<const Expression *>(Val);
|
|
}
|
|
static unsigned getHashValue(const Expression *V) {
|
|
return static_cast<unsigned>(V->getHashValue());
|
|
}
|
|
static bool isEqual(const Expression *LHS, const Expression *RHS) {
|
|
if (LHS == RHS)
|
|
return true;
|
|
if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
|
|
LHS == getEmptyKey() || RHS == getEmptyKey())
|
|
return false;
|
|
return *LHS == *RHS;
|
|
}
|
|
};
|
|
} // end namespace llvm
|
|
|
|
class NewGVN : public FunctionPass {
|
|
DominatorTree *DT;
|
|
const DataLayout *DL;
|
|
const TargetLibraryInfo *TLI;
|
|
AssumptionCache *AC;
|
|
AliasAnalysis *AA;
|
|
MemorySSA *MSSA;
|
|
MemorySSAWalker *MSSAWalker;
|
|
BumpPtrAllocator ExpressionAllocator;
|
|
ArrayRecycler<Value *> ArgRecycler;
|
|
|
|
// Congruence class info.
|
|
CongruenceClass *InitialClass;
|
|
std::vector<CongruenceClass *> CongruenceClasses;
|
|
unsigned NextCongruenceNum;
|
|
|
|
// Value Mappings.
|
|
DenseMap<Value *, CongruenceClass *> ValueToClass;
|
|
DenseMap<Value *, const Expression *> ValueToExpression;
|
|
|
|
// A table storing which memorydefs/phis represent a memory state provably
|
|
// equivalent to another memory state.
|
|
// We could use the congruence class machinery, but the MemoryAccess's are
|
|
// abstract memory states, so they can only ever be equivalent to each other,
|
|
// and not to constants, etc.
|
|
DenseMap<const MemoryAccess *, MemoryAccess *> MemoryAccessEquiv;
|
|
|
|
// Expression to class mapping.
|
|
using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
|
|
ExpressionClassMap ExpressionToClass;
|
|
|
|
// Which values have changed as a result of leader changes.
|
|
SmallPtrSet<Value *, 8> LeaderChanges;
|
|
|
|
// Reachability info.
|
|
using BlockEdge = BasicBlockEdge;
|
|
DenseSet<BlockEdge> ReachableEdges;
|
|
SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
|
|
|
|
// This is a bitvector because, on larger functions, we may have
|
|
// thousands of touched instructions at once (entire blocks,
|
|
// instructions with hundreds of uses, etc). Even with optimization
|
|
// for when we mark whole blocks as touched, when this was a
|
|
// SmallPtrSet or DenseSet, for some functions, we spent >20% of all
|
|
// the time in GVN just managing this list. The bitvector, on the
|
|
// other hand, efficiently supports test/set/clear of both
|
|
// individual and ranges, as well as "find next element" This
|
|
// enables us to use it as a worklist with essentially 0 cost.
|
|
BitVector TouchedInstructions;
|
|
|
|
DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
|
|
DenseMap<const DomTreeNode *, std::pair<unsigned, unsigned>>
|
|
DominatedInstRange;
|
|
|
|
#ifndef NDEBUG
|
|
// Debugging for how many times each block and instruction got processed.
|
|
DenseMap<const Value *, unsigned> ProcessedCount;
|
|
#endif
|
|
|
|
// DFS info.
|
|
DenseMap<const Value *, unsigned> InstrDFS;
|
|
SmallVector<Value *, 32> DFSToInstr;
|
|
|
|
// Deletion info.
|
|
SmallPtrSet<Instruction *, 8> InstructionsToErase;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid.
|
|
NewGVN() : FunctionPass(ID) {
|
|
initializeNewGVNPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
bool runGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
|
|
TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA);
|
|
|
|
private:
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<MemorySSAWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
}
|
|
|
|
// Expression handling.
|
|
const Expression *createExpression(Instruction *, const BasicBlock *);
|
|
const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
|
|
const BasicBlock *);
|
|
PHIExpression *createPHIExpression(Instruction *);
|
|
const VariableExpression *createVariableExpression(Value *);
|
|
const ConstantExpression *createConstantExpression(Constant *);
|
|
const Expression *createVariableOrConstant(Value *V, const BasicBlock *B);
|
|
const UnknownExpression *createUnknownExpression(Instruction *);
|
|
const StoreExpression *createStoreExpression(StoreInst *, MemoryAccess *,
|
|
const BasicBlock *);
|
|
LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
|
|
MemoryAccess *, const BasicBlock *);
|
|
|
|
const CallExpression *createCallExpression(CallInst *, MemoryAccess *,
|
|
const BasicBlock *);
|
|
const AggregateValueExpression *
|
|
createAggregateValueExpression(Instruction *, const BasicBlock *);
|
|
bool setBasicExpressionInfo(Instruction *, BasicExpression *,
|
|
const BasicBlock *);
|
|
|
|
// Congruence class handling.
|
|
CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
|
|
auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
|
|
CongruenceClasses.emplace_back(result);
|
|
return result;
|
|
}
|
|
|
|
CongruenceClass *createSingletonCongruenceClass(Value *Member) {
|
|
CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
|
|
CClass->Members.insert(Member);
|
|
ValueToClass[Member] = CClass;
|
|
return CClass;
|
|
}
|
|
void initializeCongruenceClasses(Function &F);
|
|
|
|
// Value number an Instruction or MemoryPhi.
|
|
void valueNumberMemoryPhi(MemoryPhi *);
|
|
void valueNumberInstruction(Instruction *);
|
|
|
|
// Symbolic evaluation.
|
|
const Expression *checkSimplificationResults(Expression *, Instruction *,
|
|
Value *);
|
|
const Expression *performSymbolicEvaluation(Value *, const BasicBlock *);
|
|
const Expression *performSymbolicLoadEvaluation(Instruction *,
|
|
const BasicBlock *);
|
|
const Expression *performSymbolicStoreEvaluation(Instruction *,
|
|
const BasicBlock *);
|
|
const Expression *performSymbolicCallEvaluation(Instruction *,
|
|
const BasicBlock *);
|
|
const Expression *performSymbolicPHIEvaluation(Instruction *,
|
|
const BasicBlock *);
|
|
bool setMemoryAccessEquivTo(MemoryAccess *From, MemoryAccess *To);
|
|
const Expression *performSymbolicAggrValueEvaluation(Instruction *,
|
|
const BasicBlock *);
|
|
|
|
// Congruence finding.
|
|
// Templated to allow them to work both on BB's and BB-edges.
|
|
template <class T>
|
|
Value *lookupOperandLeader(Value *, const User *, const T &) const;
|
|
void performCongruenceFinding(Instruction *, const Expression *);
|
|
void moveValueToNewCongruenceClass(Instruction *, CongruenceClass *,
|
|
CongruenceClass *);
|
|
// Reachability handling.
|
|
void updateReachableEdge(BasicBlock *, BasicBlock *);
|
|
void processOutgoingEdges(TerminatorInst *, BasicBlock *);
|
|
bool isOnlyReachableViaThisEdge(const BasicBlockEdge &) const;
|
|
Value *findConditionEquivalence(Value *, BasicBlock *) const;
|
|
MemoryAccess *lookupMemoryAccessEquiv(MemoryAccess *) const;
|
|
|
|
// Elimination.
|
|
struct ValueDFS;
|
|
void convertDenseToDFSOrdered(CongruenceClass::MemberSet &,
|
|
SmallVectorImpl<ValueDFS> &);
|
|
|
|
bool eliminateInstructions(Function &);
|
|
void replaceInstruction(Instruction *, Value *);
|
|
void markInstructionForDeletion(Instruction *);
|
|
void deleteInstructionsInBlock(BasicBlock *);
|
|
|
|
// New instruction creation.
|
|
void handleNewInstruction(Instruction *){};
|
|
|
|
// Various instruction touch utilities
|
|
void markUsersTouched(Value *);
|
|
void markMemoryUsersTouched(MemoryAccess *);
|
|
void markLeaderChangeTouched(CongruenceClass *CC);
|
|
|
|
// Utilities.
|
|
void cleanupTables();
|
|
std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
|
|
void updateProcessedCount(Value *V);
|
|
void verifyMemoryCongruency() const;
|
|
bool singleReachablePHIPath(const MemoryAccess *, const MemoryAccess *) const;
|
|
};
|
|
|
|
char NewGVN::ID = 0;
|
|
|
|
// createGVNPass - The public interface to this file.
|
|
FunctionPass *llvm::createNewGVNPass() { return new NewGVN(); }
|
|
|
|
template <typename T>
|
|
static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
|
|
if ((!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS)) ||
|
|
!LHS.BasicExpression::equals(RHS)) {
|
|
return false;
|
|
} else if (const auto *L = dyn_cast<LoadExpression>(&RHS)) {
|
|
if (LHS.getDefiningAccess() != L->getDefiningAccess())
|
|
return false;
|
|
} else if (const auto *S = dyn_cast<StoreExpression>(&RHS)) {
|
|
if (LHS.getDefiningAccess() != S->getDefiningAccess())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool LoadExpression::equals(const Expression &Other) const {
|
|
return equalsLoadStoreHelper(*this, Other);
|
|
}
|
|
|
|
bool StoreExpression::equals(const Expression &Other) const {
|
|
return equalsLoadStoreHelper(*this, Other);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static std::string getBlockName(const BasicBlock *B) {
|
|
return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
|
|
}
|
|
#endif
|
|
|
|
INITIALIZE_PASS_BEGIN(NewGVN, "newgvn", "Global Value Numbering", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_END(NewGVN, "newgvn", "Global Value Numbering", false, false)
|
|
|
|
PHIExpression *NewGVN::createPHIExpression(Instruction *I) {
|
|
BasicBlock *PHIBlock = I->getParent();
|
|
auto *PN = cast<PHINode>(I);
|
|
auto *E =
|
|
new (ExpressionAllocator) PHIExpression(PN->getNumOperands(), PHIBlock);
|
|
|
|
E->allocateOperands(ArgRecycler, ExpressionAllocator);
|
|
E->setType(I->getType());
|
|
E->setOpcode(I->getOpcode());
|
|
|
|
auto ReachablePhiArg = [&](const Use &U) {
|
|
return ReachableBlocks.count(PN->getIncomingBlock(U));
|
|
};
|
|
|
|
// Filter out unreachable operands
|
|
auto Filtered = make_filter_range(PN->operands(), ReachablePhiArg);
|
|
|
|
std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
|
|
[&](const Use &U) -> Value * {
|
|
// Don't try to transform self-defined phis.
|
|
if (U == PN)
|
|
return PN;
|
|
const BasicBlockEdge BBE(PN->getIncomingBlock(U), PHIBlock);
|
|
return lookupOperandLeader(U, I, BBE);
|
|
});
|
|
return E;
|
|
}
|
|
|
|
// Set basic expression info (Arguments, type, opcode) for Expression
|
|
// E from Instruction I in block B.
|
|
bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E,
|
|
const BasicBlock *B) {
|
|
bool AllConstant = true;
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
|
|
E->setType(GEP->getSourceElementType());
|
|
else
|
|
E->setType(I->getType());
|
|
E->setOpcode(I->getOpcode());
|
|
E->allocateOperands(ArgRecycler, ExpressionAllocator);
|
|
|
|
// Transform the operand array into an operand leader array, and keep track of
|
|
// whether all members are constant.
|
|
std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
|
|
auto Operand = lookupOperandLeader(O, I, B);
|
|
AllConstant &= isa<Constant>(Operand);
|
|
return Operand;
|
|
});
|
|
|
|
return AllConstant;
|
|
}
|
|
|
|
const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
|
|
Value *Arg1, Value *Arg2,
|
|
const BasicBlock *B) {
|
|
auto *E = new (ExpressionAllocator) BasicExpression(2);
|
|
|
|
E->setType(T);
|
|
E->setOpcode(Opcode);
|
|
E->allocateOperands(ArgRecycler, ExpressionAllocator);
|
|
if (Instruction::isCommutative(Opcode)) {
|
|
// Ensure that commutative instructions that only differ by a permutation
|
|
// of their operands get the same value number by sorting the operand value
|
|
// numbers. Since all commutative instructions have two operands it is more
|
|
// efficient to sort by hand rather than using, say, std::sort.
|
|
if (Arg1 > Arg2)
|
|
std::swap(Arg1, Arg2);
|
|
}
|
|
E->op_push_back(lookupOperandLeader(Arg1, nullptr, B));
|
|
E->op_push_back(lookupOperandLeader(Arg2, nullptr, B));
|
|
|
|
Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), *DL, TLI,
|
|
DT, AC);
|
|
if (const Expression *SimplifiedE = checkSimplificationResults(E, nullptr, V))
|
|
return SimplifiedE;
|
|
return E;
|
|
}
|
|
|
|
// Take a Value returned by simplification of Expression E/Instruction
|
|
// I, and see if it resulted in a simpler expression. If so, return
|
|
// that expression.
|
|
// TODO: Once finished, this should not take an Instruction, we only
|
|
// use it for printing.
|
|
const Expression *NewGVN::checkSimplificationResults(Expression *E,
|
|
Instruction *I, Value *V) {
|
|
if (!V)
|
|
return nullptr;
|
|
if (auto *C = dyn_cast<Constant>(V)) {
|
|
if (I)
|
|
DEBUG(dbgs() << "Simplified " << *I << " to "
|
|
<< " constant " << *C << "\n");
|
|
NumGVNOpsSimplified++;
|
|
assert(isa<BasicExpression>(E) &&
|
|
"We should always have had a basic expression here");
|
|
|
|
cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
|
|
ExpressionAllocator.Deallocate(E);
|
|
return createConstantExpression(C);
|
|
} else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
|
|
if (I)
|
|
DEBUG(dbgs() << "Simplified " << *I << " to "
|
|
<< " variable " << *V << "\n");
|
|
cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
|
|
ExpressionAllocator.Deallocate(E);
|
|
return createVariableExpression(V);
|
|
}
|
|
|
|
CongruenceClass *CC = ValueToClass.lookup(V);
|
|
if (CC && CC->DefiningExpr) {
|
|
if (I)
|
|
DEBUG(dbgs() << "Simplified " << *I << " to "
|
|
<< " expression " << *V << "\n");
|
|
NumGVNOpsSimplified++;
|
|
assert(isa<BasicExpression>(E) &&
|
|
"We should always have had a basic expression here");
|
|
cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
|
|
ExpressionAllocator.Deallocate(E);
|
|
return CC->DefiningExpr;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
const Expression *NewGVN::createExpression(Instruction *I,
|
|
const BasicBlock *B) {
|
|
|
|
auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
|
|
|
|
bool AllConstant = setBasicExpressionInfo(I, E, B);
|
|
|
|
if (I->isCommutative()) {
|
|
// Ensure that commutative instructions that only differ by a permutation
|
|
// of their operands get the same value number by sorting the operand value
|
|
// numbers. Since all commutative instructions have two operands it is more
|
|
// efficient to sort by hand rather than using, say, std::sort.
|
|
assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
|
|
if (E->getOperand(0) > E->getOperand(1))
|
|
E->swapOperands(0, 1);
|
|
}
|
|
|
|
// Perform simplificaiton
|
|
// TODO: Right now we only check to see if we get a constant result.
|
|
// We may get a less than constant, but still better, result for
|
|
// some operations.
|
|
// IE
|
|
// add 0, x -> x
|
|
// and x, x -> x
|
|
// We should handle this by simply rewriting the expression.
|
|
if (auto *CI = dyn_cast<CmpInst>(I)) {
|
|
// Sort the operand value numbers so x<y and y>x get the same value
|
|
// number.
|
|
CmpInst::Predicate Predicate = CI->getPredicate();
|
|
if (E->getOperand(0) > E->getOperand(1)) {
|
|
E->swapOperands(0, 1);
|
|
Predicate = CmpInst::getSwappedPredicate(Predicate);
|
|
}
|
|
E->setOpcode((CI->getOpcode() << 8) | Predicate);
|
|
// TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
|
|
// TODO: Since we noop bitcasts, we may need to check types before
|
|
// simplifying, so that we don't end up simplifying based on a wrong
|
|
// type assumption. We should clean this up so we can use constants of the
|
|
// wrong type
|
|
|
|
assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
|
|
"Wrong types on cmp instruction");
|
|
if ((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
|
|
E->getOperand(1)->getType() == I->getOperand(1)->getType())) {
|
|
Value *V = SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1),
|
|
*DL, TLI, DT, AC);
|
|
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
|
|
return SimplifiedE;
|
|
}
|
|
} else if (isa<SelectInst>(I)) {
|
|
if (isa<Constant>(E->getOperand(0)) ||
|
|
(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
|
|
E->getOperand(2)->getType() == I->getOperand(2)->getType())) {
|
|
Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
|
|
E->getOperand(2), *DL, TLI, DT, AC);
|
|
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
|
|
return SimplifiedE;
|
|
}
|
|
} else if (I->isBinaryOp()) {
|
|
Value *V = SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1),
|
|
*DL, TLI, DT, AC);
|
|
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
|
|
return SimplifiedE;
|
|
} else if (auto *BI = dyn_cast<BitCastInst>(I)) {
|
|
Value *V = SimplifyInstruction(BI, *DL, TLI, DT, AC);
|
|
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
|
|
return SimplifiedE;
|
|
} else if (isa<GetElementPtrInst>(I)) {
|
|
Value *V = SimplifyGEPInst(E->getType(),
|
|
ArrayRef<Value *>(E->op_begin(), E->op_end()),
|
|
*DL, TLI, DT, AC);
|
|
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
|
|
return SimplifiedE;
|
|
} else if (AllConstant) {
|
|
// We don't bother trying to simplify unless all of the operands
|
|
// were constant.
|
|
// TODO: There are a lot of Simplify*'s we could call here, if we
|
|
// wanted to. The original motivating case for this code was a
|
|
// zext i1 false to i8, which we don't have an interface to
|
|
// simplify (IE there is no SimplifyZExt).
|
|
|
|
SmallVector<Constant *, 8> C;
|
|
for (Value *Arg : E->operands())
|
|
C.emplace_back(cast<Constant>(Arg));
|
|
|
|
if (Value *V = ConstantFoldInstOperands(I, C, *DL, TLI))
|
|
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
|
|
return SimplifiedE;
|
|
}
|
|
return E;
|
|
}
|
|
|
|
const AggregateValueExpression *
|
|
NewGVN::createAggregateValueExpression(Instruction *I, const BasicBlock *B) {
|
|
if (auto *II = dyn_cast<InsertValueInst>(I)) {
|
|
auto *E = new (ExpressionAllocator)
|
|
AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
|
|
setBasicExpressionInfo(I, E, B);
|
|
E->allocateIntOperands(ExpressionAllocator);
|
|
std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
|
|
return E;
|
|
} else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
|
|
auto *E = new (ExpressionAllocator)
|
|
AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
|
|
setBasicExpressionInfo(EI, E, B);
|
|
E->allocateIntOperands(ExpressionAllocator);
|
|
std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
|
|
return E;
|
|
}
|
|
llvm_unreachable("Unhandled type of aggregate value operation");
|
|
}
|
|
|
|
const VariableExpression *NewGVN::createVariableExpression(Value *V) {
|
|
auto *E = new (ExpressionAllocator) VariableExpression(V);
|
|
E->setOpcode(V->getValueID());
|
|
return E;
|
|
}
|
|
|
|
const Expression *NewGVN::createVariableOrConstant(Value *V,
|
|
const BasicBlock *B) {
|
|
auto Leader = lookupOperandLeader(V, nullptr, B);
|
|
if (auto *C = dyn_cast<Constant>(Leader))
|
|
return createConstantExpression(C);
|
|
return createVariableExpression(Leader);
|
|
}
|
|
|
|
const ConstantExpression *NewGVN::createConstantExpression(Constant *C) {
|
|
auto *E = new (ExpressionAllocator) ConstantExpression(C);
|
|
E->setOpcode(C->getValueID());
|
|
return E;
|
|
}
|
|
|
|
const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) {
|
|
auto *E = new (ExpressionAllocator) UnknownExpression(I);
|
|
E->setOpcode(I->getOpcode());
|
|
return E;
|
|
}
|
|
|
|
const CallExpression *NewGVN::createCallExpression(CallInst *CI,
|
|
MemoryAccess *HV,
|
|
const BasicBlock *B) {
|
|
// FIXME: Add operand bundles for calls.
|
|
auto *E =
|
|
new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, HV);
|
|
setBasicExpressionInfo(CI, E, B);
|
|
return E;
|
|
}
|
|
|
|
// See if we have a congruence class and leader for this operand, and if so,
|
|
// return it. Otherwise, return the operand itself.
|
|
template <class T>
|
|
Value *NewGVN::lookupOperandLeader(Value *V, const User *U, const T &B) const {
|
|
CongruenceClass *CC = ValueToClass.lookup(V);
|
|
if (CC && (CC != InitialClass))
|
|
return CC->RepLeader;
|
|
return V;
|
|
}
|
|
|
|
MemoryAccess *NewGVN::lookupMemoryAccessEquiv(MemoryAccess *MA) const {
|
|
MemoryAccess *Result = MemoryAccessEquiv.lookup(MA);
|
|
return Result ? Result : MA;
|
|
}
|
|
|
|
LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
|
|
LoadInst *LI, MemoryAccess *DA,
|
|
const BasicBlock *B) {
|
|
auto *E = new (ExpressionAllocator) LoadExpression(1, LI, DA);
|
|
E->allocateOperands(ArgRecycler, ExpressionAllocator);
|
|
E->setType(LoadType);
|
|
|
|
// Give store and loads same opcode so they value number together.
|
|
E->setOpcode(0);
|
|
E->op_push_back(lookupOperandLeader(PointerOp, LI, B));
|
|
if (LI)
|
|
E->setAlignment(LI->getAlignment());
|
|
|
|
// TODO: Value number heap versions. We may be able to discover
|
|
// things alias analysis can't on it's own (IE that a store and a
|
|
// load have the same value, and thus, it isn't clobbering the load).
|
|
return E;
|
|
}
|
|
|
|
const StoreExpression *NewGVN::createStoreExpression(StoreInst *SI,
|
|
MemoryAccess *DA,
|
|
const BasicBlock *B) {
|
|
auto *E =
|
|
new (ExpressionAllocator) StoreExpression(SI->getNumOperands(), SI, DA);
|
|
E->allocateOperands(ArgRecycler, ExpressionAllocator);
|
|
E->setType(SI->getValueOperand()->getType());
|
|
|
|
// Give store and loads same opcode so they value number together.
|
|
E->setOpcode(0);
|
|
E->op_push_back(lookupOperandLeader(SI->getPointerOperand(), SI, B));
|
|
|
|
// TODO: Value number heap versions. We may be able to discover
|
|
// things alias analysis can't on it's own (IE that a store and a
|
|
// load have the same value, and thus, it isn't clobbering the load).
|
|
return E;
|
|
}
|
|
|
|
// Utility function to check whether the congruence class has a member other
|
|
// than the given instruction.
|
|
bool hasMemberOtherThanUs(const CongruenceClass *CC, Instruction *I) {
|
|
// Either it has more than one store, in which case it must contain something
|
|
// other than us (because it's indexed by value), or if it only has one store
|
|
// right now, that member should not be us.
|
|
return CC->StoreCount > 1 || CC->Members.count(I) == 0;
|
|
}
|
|
|
|
const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I,
|
|
const BasicBlock *B) {
|
|
// Unlike loads, we never try to eliminate stores, so we do not check if they
|
|
// are simple and avoid value numbering them.
|
|
auto *SI = cast<StoreInst>(I);
|
|
MemoryAccess *StoreAccess = MSSA->getMemoryAccess(SI);
|
|
// See if we are defined by a previous store expression, it already has a
|
|
// value, and it's the same value as our current store. FIXME: Right now, we
|
|
// only do this for simple stores, we should expand to cover memcpys, etc.
|
|
if (SI->isSimple()) {
|
|
// Get the expression, if any, for the RHS of the MemoryDef.
|
|
MemoryAccess *StoreRHS = lookupMemoryAccessEquiv(
|
|
cast<MemoryDef>(StoreAccess)->getDefiningAccess());
|
|
const Expression *OldStore = createStoreExpression(SI, StoreRHS, B);
|
|
CongruenceClass *CC = ExpressionToClass.lookup(OldStore);
|
|
// Basically, check if the congruence class the store is in is defined by a
|
|
// store that isn't us, and has the same value. MemorySSA takes care of
|
|
// ensuring the store has the same memory state as us already.
|
|
if (CC && CC->DefiningExpr && isa<StoreExpression>(CC->DefiningExpr) &&
|
|
CC->RepLeader == lookupOperandLeader(SI->getValueOperand(), SI, B) &&
|
|
hasMemberOtherThanUs(CC, I))
|
|
return createStoreExpression(SI, StoreRHS, B);
|
|
}
|
|
|
|
return createStoreExpression(SI, StoreAccess, B);
|
|
}
|
|
|
|
const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I,
|
|
const BasicBlock *B) {
|
|
auto *LI = cast<LoadInst>(I);
|
|
|
|
// We can eliminate in favor of non-simple loads, but we won't be able to
|
|
// eliminate the loads themselves.
|
|
if (!LI->isSimple())
|
|
return nullptr;
|
|
|
|
Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand(), I, B);
|
|
// Load of undef is undef.
|
|
if (isa<UndefValue>(LoadAddressLeader))
|
|
return createConstantExpression(UndefValue::get(LI->getType()));
|
|
|
|
MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(I);
|
|
|
|
if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
|
|
if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
|
|
Instruction *DefiningInst = MD->getMemoryInst();
|
|
// If the defining instruction is not reachable, replace with undef.
|
|
if (!ReachableBlocks.count(DefiningInst->getParent()))
|
|
return createConstantExpression(UndefValue::get(LI->getType()));
|
|
}
|
|
}
|
|
|
|
const Expression *E =
|
|
createLoadExpression(LI->getType(), LI->getPointerOperand(), LI,
|
|
lookupMemoryAccessEquiv(DefiningAccess), B);
|
|
return E;
|
|
}
|
|
|
|
// Evaluate read only and pure calls, and create an expression result.
|
|
const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I,
|
|
const BasicBlock *B) {
|
|
auto *CI = cast<CallInst>(I);
|
|
if (AA->doesNotAccessMemory(CI))
|
|
return createCallExpression(CI, nullptr, B);
|
|
if (AA->onlyReadsMemory(CI)) {
|
|
MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
|
|
return createCallExpression(CI, lookupMemoryAccessEquiv(DefiningAccess), B);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Update the memory access equivalence table to say that From is equal to To,
|
|
// and return true if this is different from what already existed in the table.
|
|
bool NewGVN::setMemoryAccessEquivTo(MemoryAccess *From, MemoryAccess *To) {
|
|
DEBUG(dbgs() << "Setting " << *From << " equivalent to ");
|
|
if (!To)
|
|
DEBUG(dbgs() << "itself");
|
|
else
|
|
DEBUG(dbgs() << *To);
|
|
DEBUG(dbgs() << "\n");
|
|
auto LookupResult = MemoryAccessEquiv.find(From);
|
|
bool Changed = false;
|
|
// If it's already in the table, see if the value changed.
|
|
if (LookupResult != MemoryAccessEquiv.end()) {
|
|
if (To && LookupResult->second != To) {
|
|
// It wasn't equivalent before, and now it is.
|
|
LookupResult->second = To;
|
|
Changed = true;
|
|
} else if (!To) {
|
|
// It used to be equivalent to something, and now it's not.
|
|
MemoryAccessEquiv.erase(LookupResult);
|
|
Changed = true;
|
|
}
|
|
} else {
|
|
assert(!To &&
|
|
"Memory equivalence should never change from nothing to something");
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
// Evaluate PHI nodes symbolically, and create an expression result.
|
|
const Expression *NewGVN::performSymbolicPHIEvaluation(Instruction *I,
|
|
const BasicBlock *B) {
|
|
auto *E = cast<PHIExpression>(createPHIExpression(I));
|
|
// We match the semantics of SimplifyPhiNode from InstructionSimplify here.
|
|
|
|
// See if all arguaments are the same.
|
|
// We track if any were undef because they need special handling.
|
|
bool HasUndef = false;
|
|
auto Filtered = make_filter_range(E->operands(), [&](const Value *Arg) {
|
|
if (Arg == I)
|
|
return false;
|
|
if (isa<UndefValue>(Arg)) {
|
|
HasUndef = true;
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
// If we are left with no operands, it's undef
|
|
if (Filtered.begin() == Filtered.end()) {
|
|
DEBUG(dbgs() << "Simplified PHI node " << *I << " to undef"
|
|
<< "\n");
|
|
E->deallocateOperands(ArgRecycler);
|
|
ExpressionAllocator.Deallocate(E);
|
|
return createConstantExpression(UndefValue::get(I->getType()));
|
|
}
|
|
Value *AllSameValue = *(Filtered.begin());
|
|
++Filtered.begin();
|
|
// Can't use std::equal here, sadly, because filter.begin moves.
|
|
if (llvm::all_of(Filtered, [AllSameValue](const Value *V) {
|
|
return V == AllSameValue;
|
|
})) {
|
|
// In LLVM's non-standard representation of phi nodes, it's possible to have
|
|
// phi nodes with cycles (IE dependent on other phis that are .... dependent
|
|
// on the original phi node), especially in weird CFG's where some arguments
|
|
// are unreachable, or uninitialized along certain paths. This can cause
|
|
// infinite loops during evaluation. We work around this by not trying to
|
|
// really evaluate them independently, but instead using a variable
|
|
// expression to say if one is equivalent to the other.
|
|
// We also special case undef, so that if we have an undef, we can't use the
|
|
// common value unless it dominates the phi block.
|
|
if (HasUndef) {
|
|
// Only have to check for instructions
|
|
if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
|
|
if (!DT->dominates(AllSameInst, I))
|
|
return E;
|
|
}
|
|
|
|
NumGVNPhisAllSame++;
|
|
DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
|
|
<< "\n");
|
|
E->deallocateOperands(ArgRecycler);
|
|
ExpressionAllocator.Deallocate(E);
|
|
if (auto *C = dyn_cast<Constant>(AllSameValue))
|
|
return createConstantExpression(C);
|
|
return createVariableExpression(AllSameValue);
|
|
}
|
|
return E;
|
|
}
|
|
|
|
const Expression *
|
|
NewGVN::performSymbolicAggrValueEvaluation(Instruction *I,
|
|
const BasicBlock *B) {
|
|
if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
|
|
auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
|
|
if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
|
|
unsigned Opcode = 0;
|
|
// EI might be an extract from one of our recognised intrinsics. If it
|
|
// is we'll synthesize a semantically equivalent expression instead on
|
|
// an extract value expression.
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::uadd_with_overflow:
|
|
Opcode = Instruction::Add;
|
|
break;
|
|
case Intrinsic::ssub_with_overflow:
|
|
case Intrinsic::usub_with_overflow:
|
|
Opcode = Instruction::Sub;
|
|
break;
|
|
case Intrinsic::smul_with_overflow:
|
|
case Intrinsic::umul_with_overflow:
|
|
Opcode = Instruction::Mul;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (Opcode != 0) {
|
|
// Intrinsic recognized. Grab its args to finish building the
|
|
// expression.
|
|
assert(II->getNumArgOperands() == 2 &&
|
|
"Expect two args for recognised intrinsics.");
|
|
return createBinaryExpression(Opcode, EI->getType(),
|
|
II->getArgOperand(0),
|
|
II->getArgOperand(1), B);
|
|
}
|
|
}
|
|
}
|
|
|
|
return createAggregateValueExpression(I, B);
|
|
}
|
|
|
|
// Substitute and symbolize the value before value numbering.
|
|
const Expression *NewGVN::performSymbolicEvaluation(Value *V,
|
|
const BasicBlock *B) {
|
|
const Expression *E = nullptr;
|
|
if (auto *C = dyn_cast<Constant>(V))
|
|
E = createConstantExpression(C);
|
|
else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
|
|
E = createVariableExpression(V);
|
|
} else {
|
|
// TODO: memory intrinsics.
|
|
// TODO: Some day, we should do the forward propagation and reassociation
|
|
// parts of the algorithm.
|
|
auto *I = cast<Instruction>(V);
|
|
switch (I->getOpcode()) {
|
|
case Instruction::ExtractValue:
|
|
case Instruction::InsertValue:
|
|
E = performSymbolicAggrValueEvaluation(I, B);
|
|
break;
|
|
case Instruction::PHI:
|
|
E = performSymbolicPHIEvaluation(I, B);
|
|
break;
|
|
case Instruction::Call:
|
|
E = performSymbolicCallEvaluation(I, B);
|
|
break;
|
|
case Instruction::Store:
|
|
E = performSymbolicStoreEvaluation(I, B);
|
|
break;
|
|
case Instruction::Load:
|
|
E = performSymbolicLoadEvaluation(I, B);
|
|
break;
|
|
case Instruction::BitCast: {
|
|
E = createExpression(I, B);
|
|
} break;
|
|
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::Select:
|
|
case Instruction::ExtractElement:
|
|
case Instruction::InsertElement:
|
|
case Instruction::ShuffleVector:
|
|
case Instruction::GetElementPtr:
|
|
E = createExpression(I, B);
|
|
break;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
return E;
|
|
}
|
|
|
|
// There is an edge from 'Src' to 'Dst'. Return true if every path from
|
|
// the entry block to 'Dst' passes via this edge. In particular 'Dst'
|
|
// must not be reachable via another edge from 'Src'.
|
|
bool NewGVN::isOnlyReachableViaThisEdge(const BasicBlockEdge &E) const {
|
|
|
|
// While in theory it is interesting to consider the case in which Dst has
|
|
// more than one predecessor, because Dst might be part of a loop which is
|
|
// only reachable from Src, in practice it is pointless since at the time
|
|
// GVN runs all such loops have preheaders, which means that Dst will have
|
|
// been changed to have only one predecessor, namely Src.
|
|
const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
|
|
const BasicBlock *Src = E.getStart();
|
|
assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
|
|
(void)Src;
|
|
return Pred != nullptr;
|
|
}
|
|
|
|
void NewGVN::markUsersTouched(Value *V) {
|
|
// Now mark the users as touched.
|
|
for (auto *User : V->users()) {
|
|
assert(isa<Instruction>(User) && "Use of value not within an instruction?");
|
|
TouchedInstructions.set(InstrDFS.lookup(User));
|
|
}
|
|
}
|
|
|
|
void NewGVN::markMemoryUsersTouched(MemoryAccess *MA) {
|
|
for (auto U : MA->users()) {
|
|
if (auto *MUD = dyn_cast<MemoryUseOrDef>(U))
|
|
TouchedInstructions.set(InstrDFS.lookup(MUD->getMemoryInst()));
|
|
else
|
|
TouchedInstructions.set(InstrDFS.lookup(U));
|
|
}
|
|
}
|
|
|
|
// Touch the instructions that need to be updated after a congruence class has a
|
|
// leader change, and mark changed values.
|
|
void NewGVN::markLeaderChangeTouched(CongruenceClass *CC) {
|
|
for (auto M : CC->Members) {
|
|
if (auto *I = dyn_cast<Instruction>(M))
|
|
TouchedInstructions.set(InstrDFS.lookup(I));
|
|
LeaderChanges.insert(M);
|
|
}
|
|
}
|
|
|
|
// Move a value, currently in OldClass, to be part of NewClass
|
|
// Update OldClass for the move (including changing leaders, etc)
|
|
void NewGVN::moveValueToNewCongruenceClass(Instruction *I,
|
|
CongruenceClass *OldClass,
|
|
CongruenceClass *NewClass) {
|
|
DEBUG(dbgs() << "New congruence class for " << I << " is " << NewClass->ID
|
|
<< "\n");
|
|
|
|
if (I == OldClass->NextLeader.first)
|
|
OldClass->NextLeader = {nullptr, ~0U};
|
|
|
|
// The new instruction and new class leader may either be siblings in the
|
|
// dominator tree, or the new class leader should dominate the new member
|
|
// instruction. We simply check that the member instruction does not properly
|
|
// dominate the new class leader.
|
|
assert((!isa<Instruction>(NewClass->RepLeader) || !NewClass->RepLeader ||
|
|
I == NewClass->RepLeader ||
|
|
!DT->properlyDominates(
|
|
I->getParent(),
|
|
cast<Instruction>(NewClass->RepLeader)->getParent())) &&
|
|
"New class for instruction should not be dominated by instruction");
|
|
|
|
if (NewClass->RepLeader != I) {
|
|
auto DFSNum = InstrDFS.lookup(I);
|
|
if (DFSNum < NewClass->NextLeader.second)
|
|
NewClass->NextLeader = {I, DFSNum};
|
|
}
|
|
|
|
OldClass->Members.erase(I);
|
|
NewClass->Members.insert(I);
|
|
if (isa<StoreInst>(I)) {
|
|
--OldClass->StoreCount;
|
|
assert(OldClass->StoreCount >= 0);
|
|
++NewClass->StoreCount;
|
|
assert(NewClass->StoreCount > 0);
|
|
}
|
|
|
|
ValueToClass[I] = NewClass;
|
|
// See if we destroyed the class or need to swap leaders.
|
|
if (OldClass->Members.empty() && OldClass != InitialClass) {
|
|
if (OldClass->DefiningExpr) {
|
|
OldClass->Dead = true;
|
|
DEBUG(dbgs() << "Erasing expression " << OldClass->DefiningExpr
|
|
<< " from table\n");
|
|
ExpressionToClass.erase(OldClass->DefiningExpr);
|
|
}
|
|
} else if (OldClass->RepLeader == I) {
|
|
// When the leader changes, the value numbering of
|
|
// everything may change due to symbolization changes, so we need to
|
|
// reprocess.
|
|
DEBUG(dbgs() << "Leader change!\n");
|
|
++NumGVNLeaderChanges;
|
|
// We don't need to sort members if there is only 1, and we don't care about
|
|
// sorting the initial class because everything either gets out of it or is
|
|
// unreachable.
|
|
if (OldClass->Members.size() == 1 || OldClass == InitialClass) {
|
|
OldClass->RepLeader = *(OldClass->Members.begin());
|
|
} else if (OldClass->NextLeader.first) {
|
|
++NumGVNAvoidedSortedLeaderChanges;
|
|
OldClass->RepLeader = OldClass->NextLeader.first;
|
|
OldClass->NextLeader = {nullptr, ~0U};
|
|
} else {
|
|
++NumGVNSortedLeaderChanges;
|
|
// TODO: If this ends up to slow, we can maintain a dual structure for
|
|
// member testing/insertion, or keep things mostly sorted, and sort only
|
|
// here, or ....
|
|
std::pair<Value *, unsigned> MinDFS = {nullptr, ~0U};
|
|
for (const auto X : OldClass->Members) {
|
|
auto DFSNum = InstrDFS.lookup(X);
|
|
if (DFSNum < MinDFS.second)
|
|
MinDFS = {X, DFSNum};
|
|
}
|
|
OldClass->RepLeader = MinDFS.first;
|
|
}
|
|
markLeaderChangeTouched(OldClass);
|
|
}
|
|
}
|
|
|
|
// Perform congruence finding on a given value numbering expression.
|
|
void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
|
|
ValueToExpression[I] = E;
|
|
// This is guaranteed to return something, since it will at least find
|
|
// INITIAL.
|
|
|
|
CongruenceClass *IClass = ValueToClass[I];
|
|
assert(IClass && "Should have found a IClass");
|
|
// Dead classes should have been eliminated from the mapping.
|
|
assert(!IClass->Dead && "Found a dead class");
|
|
|
|
CongruenceClass *EClass;
|
|
if (const auto *VE = dyn_cast<VariableExpression>(E)) {
|
|
EClass = ValueToClass[VE->getVariableValue()];
|
|
} else {
|
|
auto lookupResult = ExpressionToClass.insert({E, nullptr});
|
|
|
|
// If it's not in the value table, create a new congruence class.
|
|
if (lookupResult.second) {
|
|
CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
|
|
auto place = lookupResult.first;
|
|
place->second = NewClass;
|
|
|
|
// Constants and variables should always be made the leader.
|
|
if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
|
|
NewClass->RepLeader = CE->getConstantValue();
|
|
} else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
|
|
StoreInst *SI = SE->getStoreInst();
|
|
NewClass->RepLeader =
|
|
lookupOperandLeader(SI->getValueOperand(), SI, SI->getParent());
|
|
} else {
|
|
NewClass->RepLeader = I;
|
|
}
|
|
assert(!isa<VariableExpression>(E) &&
|
|
"VariableExpression should have been handled already");
|
|
|
|
EClass = NewClass;
|
|
DEBUG(dbgs() << "Created new congruence class for " << *I
|
|
<< " using expression " << *E << " at " << NewClass->ID
|
|
<< " and leader " << *(NewClass->RepLeader) << "\n");
|
|
DEBUG(dbgs() << "Hash value was " << E->getHashValue() << "\n");
|
|
} else {
|
|
EClass = lookupResult.first->second;
|
|
if (isa<ConstantExpression>(E))
|
|
assert(isa<Constant>(EClass->RepLeader) &&
|
|
"Any class with a constant expression should have a "
|
|
"constant leader");
|
|
|
|
assert(EClass && "Somehow don't have an eclass");
|
|
|
|
assert(!EClass->Dead && "We accidentally looked up a dead class");
|
|
}
|
|
}
|
|
bool ClassChanged = IClass != EClass;
|
|
bool LeaderChanged = LeaderChanges.erase(I);
|
|
if (ClassChanged || LeaderChanged) {
|
|
DEBUG(dbgs() << "Found class " << EClass->ID << " for expression " << E
|
|
<< "\n");
|
|
|
|
if (ClassChanged)
|
|
moveValueToNewCongruenceClass(I, IClass, EClass);
|
|
markUsersTouched(I);
|
|
if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) {
|
|
// If this is a MemoryDef, we need to update the equivalence table. If
|
|
// we determined the expression is congruent to a different memory
|
|
// state, use that different memory state. If we determined it didn't,
|
|
// we update that as well. Right now, we only support store
|
|
// expressions.
|
|
if (!isa<MemoryUse>(MA) && isa<StoreExpression>(E) &&
|
|
EClass->Members.size() != 1) {
|
|
auto *DefAccess = cast<StoreExpression>(E)->getDefiningAccess();
|
|
setMemoryAccessEquivTo(MA, DefAccess != MA ? DefAccess : nullptr);
|
|
} else {
|
|
setMemoryAccessEquivTo(MA, nullptr);
|
|
}
|
|
markMemoryUsersTouched(MA);
|
|
}
|
|
} else if (auto *SI = dyn_cast<StoreInst>(I)) {
|
|
// There is, sadly, one complicating thing for stores. Stores do not
|
|
// produce values, only consume them. However, in order to make loads and
|
|
// stores value number the same, we ignore the value operand of the store.
|
|
// But the value operand will still be the leader of our class, and thus, it
|
|
// may change. Because the store is a use, the store will get reprocessed,
|
|
// but nothing will change about it, and so nothing above will catch it
|
|
// (since the class will not change). In order to make sure everything ends
|
|
// up okay, we need to recheck the leader of the class. Since stores of
|
|
// different values value number differently due to different memorydefs, we
|
|
// are guaranteed the leader is always the same between stores in the same
|
|
// class.
|
|
DEBUG(dbgs() << "Checking store leader\n");
|
|
auto ProperLeader =
|
|
lookupOperandLeader(SI->getValueOperand(), SI, SI->getParent());
|
|
if (EClass->RepLeader != ProperLeader) {
|
|
DEBUG(dbgs() << "Store leader changed, fixing\n");
|
|
EClass->RepLeader = ProperLeader;
|
|
markLeaderChangeTouched(EClass);
|
|
markMemoryUsersTouched(MSSA->getMemoryAccess(SI));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process the fact that Edge (from, to) is reachable, including marking
|
|
// any newly reachable blocks and instructions for processing.
|
|
void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
|
|
// Check if the Edge was reachable before.
|
|
if (ReachableEdges.insert({From, To}).second) {
|
|
// If this block wasn't reachable before, all instructions are touched.
|
|
if (ReachableBlocks.insert(To).second) {
|
|
DEBUG(dbgs() << "Block " << getBlockName(To) << " marked reachable\n");
|
|
const auto &InstRange = BlockInstRange.lookup(To);
|
|
TouchedInstructions.set(InstRange.first, InstRange.second);
|
|
} else {
|
|
DEBUG(dbgs() << "Block " << getBlockName(To)
|
|
<< " was reachable, but new edge {" << getBlockName(From)
|
|
<< "," << getBlockName(To) << "} to it found\n");
|
|
|
|
// We've made an edge reachable to an existing block, which may
|
|
// impact predicates. Otherwise, only mark the phi nodes as touched, as
|
|
// they are the only thing that depend on new edges. Anything using their
|
|
// values will get propagated to if necessary.
|
|
if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(To))
|
|
TouchedInstructions.set(InstrDFS.lookup(MemPhi));
|
|
|
|
auto BI = To->begin();
|
|
while (isa<PHINode>(BI)) {
|
|
TouchedInstructions.set(InstrDFS.lookup(&*BI));
|
|
++BI;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Given a predicate condition (from a switch, cmp, or whatever) and a block,
|
|
// see if we know some constant value for it already.
|
|
Value *NewGVN::findConditionEquivalence(Value *Cond, BasicBlock *B) const {
|
|
auto Result = lookupOperandLeader(Cond, nullptr, B);
|
|
if (isa<Constant>(Result))
|
|
return Result;
|
|
return nullptr;
|
|
}
|
|
|
|
// Process the outgoing edges of a block for reachability.
|
|
void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) {
|
|
// Evaluate reachability of terminator instruction.
|
|
BranchInst *BR;
|
|
if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
|
|
Value *Cond = BR->getCondition();
|
|
Value *CondEvaluated = findConditionEquivalence(Cond, B);
|
|
if (!CondEvaluated) {
|
|
if (auto *I = dyn_cast<Instruction>(Cond)) {
|
|
const Expression *E = createExpression(I, B);
|
|
if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
|
|
CondEvaluated = CE->getConstantValue();
|
|
}
|
|
} else if (isa<ConstantInt>(Cond)) {
|
|
CondEvaluated = Cond;
|
|
}
|
|
}
|
|
ConstantInt *CI;
|
|
BasicBlock *TrueSucc = BR->getSuccessor(0);
|
|
BasicBlock *FalseSucc = BR->getSuccessor(1);
|
|
if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
|
|
if (CI->isOne()) {
|
|
DEBUG(dbgs() << "Condition for Terminator " << *TI
|
|
<< " evaluated to true\n");
|
|
updateReachableEdge(B, TrueSucc);
|
|
} else if (CI->isZero()) {
|
|
DEBUG(dbgs() << "Condition for Terminator " << *TI
|
|
<< " evaluated to false\n");
|
|
updateReachableEdge(B, FalseSucc);
|
|
}
|
|
} else {
|
|
updateReachableEdge(B, TrueSucc);
|
|
updateReachableEdge(B, FalseSucc);
|
|
}
|
|
} else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
|
|
// For switches, propagate the case values into the case
|
|
// destinations.
|
|
|
|
// Remember how many outgoing edges there are to every successor.
|
|
SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
|
|
|
|
Value *SwitchCond = SI->getCondition();
|
|
Value *CondEvaluated = findConditionEquivalence(SwitchCond, B);
|
|
// See if we were able to turn this switch statement into a constant.
|
|
if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
|
|
auto *CondVal = cast<ConstantInt>(CondEvaluated);
|
|
// We should be able to get case value for this.
|
|
auto CaseVal = SI->findCaseValue(CondVal);
|
|
if (CaseVal.getCaseSuccessor() == SI->getDefaultDest()) {
|
|
// We proved the value is outside of the range of the case.
|
|
// We can't do anything other than mark the default dest as reachable,
|
|
// and go home.
|
|
updateReachableEdge(B, SI->getDefaultDest());
|
|
return;
|
|
}
|
|
// Now get where it goes and mark it reachable.
|
|
BasicBlock *TargetBlock = CaseVal.getCaseSuccessor();
|
|
updateReachableEdge(B, TargetBlock);
|
|
} else {
|
|
for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
|
|
BasicBlock *TargetBlock = SI->getSuccessor(i);
|
|
++SwitchEdges[TargetBlock];
|
|
updateReachableEdge(B, TargetBlock);
|
|
}
|
|
}
|
|
} else {
|
|
// Otherwise this is either unconditional, or a type we have no
|
|
// idea about. Just mark successors as reachable.
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
|
|
BasicBlock *TargetBlock = TI->getSuccessor(i);
|
|
updateReachableEdge(B, TargetBlock);
|
|
}
|
|
|
|
// This also may be a memory defining terminator, in which case, set it
|
|
// equivalent to nothing.
|
|
if (MemoryAccess *MA = MSSA->getMemoryAccess(TI))
|
|
setMemoryAccessEquivTo(MA, nullptr);
|
|
}
|
|
}
|
|
|
|
// The algorithm initially places the values of the routine in the INITIAL
|
|
// congruence
|
|
// class. The leader of INITIAL is the undetermined value `TOP`.
|
|
// When the algorithm has finished, values still in INITIAL are unreachable.
|
|
void NewGVN::initializeCongruenceClasses(Function &F) {
|
|
// FIXME now i can't remember why this is 2
|
|
NextCongruenceNum = 2;
|
|
// Initialize all other instructions to be in INITIAL class.
|
|
CongruenceClass::MemberSet InitialValues;
|
|
InitialClass = createCongruenceClass(nullptr, nullptr);
|
|
for (auto &B : F) {
|
|
if (auto *MP = MSSA->getMemoryAccess(&B))
|
|
MemoryAccessEquiv.insert({MP, MSSA->getLiveOnEntryDef()});
|
|
|
|
for (auto &I : B) {
|
|
InitialValues.insert(&I);
|
|
ValueToClass[&I] = InitialClass;
|
|
// All memory accesses are equivalent to live on entry to start. They must
|
|
// be initialized to something so that initial changes are noticed. For
|
|
// the maximal answer, we initialize them all to be the same as
|
|
// liveOnEntry. Note that to save time, we only initialize the
|
|
// MemoryDef's for stores and all MemoryPhis to be equal. Right now, no
|
|
// other expression can generate a memory equivalence. If we start
|
|
// handling memcpy/etc, we can expand this.
|
|
if (isa<StoreInst>(&I)) {
|
|
MemoryAccessEquiv.insert(
|
|
{MSSA->getMemoryAccess(&I), MSSA->getLiveOnEntryDef()});
|
|
++InitialClass->StoreCount;
|
|
assert(InitialClass->StoreCount > 0);
|
|
}
|
|
}
|
|
}
|
|
InitialClass->Members.swap(InitialValues);
|
|
|
|
// Initialize arguments to be in their own unique congruence classes
|
|
for (auto &FA : F.args())
|
|
createSingletonCongruenceClass(&FA);
|
|
}
|
|
|
|
void NewGVN::cleanupTables() {
|
|
for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
|
|
DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->ID << " has "
|
|
<< CongruenceClasses[i]->Members.size() << " members\n");
|
|
// Make sure we delete the congruence class (probably worth switching to
|
|
// a unique_ptr at some point.
|
|
delete CongruenceClasses[i];
|
|
CongruenceClasses[i] = nullptr;
|
|
}
|
|
|
|
ValueToClass.clear();
|
|
ArgRecycler.clear(ExpressionAllocator);
|
|
ExpressionAllocator.Reset();
|
|
CongruenceClasses.clear();
|
|
ExpressionToClass.clear();
|
|
ValueToExpression.clear();
|
|
ReachableBlocks.clear();
|
|
ReachableEdges.clear();
|
|
#ifndef NDEBUG
|
|
ProcessedCount.clear();
|
|
#endif
|
|
InstrDFS.clear();
|
|
InstructionsToErase.clear();
|
|
|
|
DFSToInstr.clear();
|
|
BlockInstRange.clear();
|
|
TouchedInstructions.clear();
|
|
DominatedInstRange.clear();
|
|
MemoryAccessEquiv.clear();
|
|
}
|
|
|
|
std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
|
|
unsigned Start) {
|
|
unsigned End = Start;
|
|
if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(B)) {
|
|
InstrDFS[MemPhi] = End++;
|
|
DFSToInstr.emplace_back(MemPhi);
|
|
}
|
|
|
|
for (auto &I : *B) {
|
|
InstrDFS[&I] = End++;
|
|
DFSToInstr.emplace_back(&I);
|
|
}
|
|
|
|
// All of the range functions taken half-open ranges (open on the end side).
|
|
// So we do not subtract one from count, because at this point it is one
|
|
// greater than the last instruction.
|
|
return std::make_pair(Start, End);
|
|
}
|
|
|
|
void NewGVN::updateProcessedCount(Value *V) {
|
|
#ifndef NDEBUG
|
|
if (ProcessedCount.count(V) == 0) {
|
|
ProcessedCount.insert({V, 1});
|
|
} else {
|
|
++ProcessedCount[V];
|
|
assert(ProcessedCount[V] < 100 &&
|
|
"Seem to have processed the same Value a lot");
|
|
}
|
|
#endif
|
|
}
|
|
// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
|
|
void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
|
|
// If all the arguments are the same, the MemoryPhi has the same value as the
|
|
// argument.
|
|
// Filter out unreachable blocks from our operands.
|
|
auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
|
|
return ReachableBlocks.count(MP->getIncomingBlock(U));
|
|
});
|
|
|
|
assert(Filtered.begin() != Filtered.end() &&
|
|
"We should not be processing a MemoryPhi in a completely "
|
|
"unreachable block");
|
|
|
|
// Transform the remaining operands into operand leaders.
|
|
// FIXME: mapped_iterator should have a range version.
|
|
auto LookupFunc = [&](const Use &U) {
|
|
return lookupMemoryAccessEquiv(cast<MemoryAccess>(U));
|
|
};
|
|
auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
|
|
auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
|
|
|
|
// and now check if all the elements are equal.
|
|
// Sadly, we can't use std::equals since these are random access iterators.
|
|
MemoryAccess *AllSameValue = *MappedBegin;
|
|
++MappedBegin;
|
|
bool AllEqual = std::all_of(
|
|
MappedBegin, MappedEnd,
|
|
[&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
|
|
|
|
if (AllEqual)
|
|
DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue << "\n");
|
|
else
|
|
DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
|
|
|
|
if (setMemoryAccessEquivTo(MP, AllEqual ? AllSameValue : nullptr))
|
|
markMemoryUsersTouched(MP);
|
|
}
|
|
|
|
// Value number a single instruction, symbolically evaluating, performing
|
|
// congruence finding, and updating mappings.
|
|
void NewGVN::valueNumberInstruction(Instruction *I) {
|
|
DEBUG(dbgs() << "Processing instruction " << *I << "\n");
|
|
if (isInstructionTriviallyDead(I, TLI)) {
|
|
DEBUG(dbgs() << "Skipping unused instruction\n");
|
|
markInstructionForDeletion(I);
|
|
return;
|
|
}
|
|
if (!I->isTerminator()) {
|
|
const auto *Symbolized = performSymbolicEvaluation(I, I->getParent());
|
|
// If we couldn't come up with a symbolic expression, use the unknown
|
|
// expression
|
|
if (Symbolized == nullptr)
|
|
Symbolized = createUnknownExpression(I);
|
|
performCongruenceFinding(I, Symbolized);
|
|
} else {
|
|
// Handle terminators that return values. All of them produce values we
|
|
// don't currently understand.
|
|
if (!I->getType()->isVoidTy()) {
|
|
auto *Symbolized = createUnknownExpression(I);
|
|
performCongruenceFinding(I, Symbolized);
|
|
}
|
|
processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent());
|
|
}
|
|
}
|
|
|
|
// Check if there is a path, using single or equal argument phi nodes, from
|
|
// First to Second.
|
|
bool NewGVN::singleReachablePHIPath(const MemoryAccess *First,
|
|
const MemoryAccess *Second) const {
|
|
if (First == Second)
|
|
return true;
|
|
|
|
if (auto *FirstDef = dyn_cast<MemoryUseOrDef>(First)) {
|
|
auto *DefAccess = FirstDef->getDefiningAccess();
|
|
return singleReachablePHIPath(DefAccess, Second);
|
|
} else {
|
|
auto *MP = cast<MemoryPhi>(First);
|
|
auto ReachableOperandPred = [&](const Use &U) {
|
|
return ReachableBlocks.count(MP->getIncomingBlock(U));
|
|
};
|
|
auto FilteredPhiArgs =
|
|
make_filter_range(MP->operands(), ReachableOperandPred);
|
|
SmallVector<const Value *, 32> OperandList;
|
|
std::copy(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
|
|
std::back_inserter(OperandList));
|
|
bool Okay = OperandList.size() == 1;
|
|
if (!Okay)
|
|
Okay = std::equal(OperandList.begin(), OperandList.end(),
|
|
OperandList.begin());
|
|
if (Okay)
|
|
return singleReachablePHIPath(cast<MemoryAccess>(OperandList[0]), Second);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Verify the that the memory equivalence table makes sense relative to the
|
|
// congruence classes. Note that this checking is not perfect, and is currently
|
|
// subject to very rare false negatives. It is only useful for
|
|
// testing/debugging.
|
|
void NewGVN::verifyMemoryCongruency() const {
|
|
// Anything equivalent in the memory access table should be in the same
|
|
// congruence class.
|
|
|
|
// Filter out the unreachable and trivially dead entries, because they may
|
|
// never have been updated if the instructions were not processed.
|
|
auto ReachableAccessPred =
|
|
[&](const std::pair<const MemoryAccess *, MemoryAccess *> Pair) {
|
|
bool Result = ReachableBlocks.count(Pair.first->getBlock());
|
|
if (!Result)
|
|
return false;
|
|
if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
|
|
return !isInstructionTriviallyDead(MemDef->getMemoryInst());
|
|
return true;
|
|
};
|
|
|
|
auto Filtered = make_filter_range(MemoryAccessEquiv, ReachableAccessPred);
|
|
for (auto KV : Filtered) {
|
|
assert(KV.first != KV.second &&
|
|
"We added a useless equivalence to the memory equivalence table");
|
|
// Unreachable instructions may not have changed because we never process
|
|
// them.
|
|
if (!ReachableBlocks.count(KV.first->getBlock()))
|
|
continue;
|
|
if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
|
|
auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second);
|
|
if (FirstMUD && SecondMUD)
|
|
assert((singleReachablePHIPath(FirstMUD, SecondMUD) ||
|
|
ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
|
|
ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
|
|
"The instructions for these memory operations should have "
|
|
"been in the same congruence class or reachable through"
|
|
"a single argument phi");
|
|
} else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
|
|
|
|
// We can only sanely verify that MemoryDefs in the operand list all have
|
|
// the same class.
|
|
auto ReachableOperandPred = [&](const Use &U) {
|
|
return ReachableBlocks.count(FirstMP->getIncomingBlock(U)) &&
|
|
isa<MemoryDef>(U);
|
|
|
|
};
|
|
// All arguments should in the same class, ignoring unreachable arguments
|
|
auto FilteredPhiArgs =
|
|
make_filter_range(FirstMP->operands(), ReachableOperandPred);
|
|
SmallVector<const CongruenceClass *, 16> PhiOpClasses;
|
|
std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
|
|
std::back_inserter(PhiOpClasses), [&](const Use &U) {
|
|
const MemoryDef *MD = cast<MemoryDef>(U);
|
|
return ValueToClass.lookup(MD->getMemoryInst());
|
|
});
|
|
assert(std::equal(PhiOpClasses.begin(), PhiOpClasses.end(),
|
|
PhiOpClasses.begin()) &&
|
|
"All MemoryPhi arguments should be in the same class");
|
|
}
|
|
}
|
|
}
|
|
|
|
// This is the main transformation entry point.
|
|
bool NewGVN::runGVN(Function &F, DominatorTree *_DT, AssumptionCache *_AC,
|
|
TargetLibraryInfo *_TLI, AliasAnalysis *_AA,
|
|
MemorySSA *_MSSA) {
|
|
bool Changed = false;
|
|
DT = _DT;
|
|
AC = _AC;
|
|
TLI = _TLI;
|
|
AA = _AA;
|
|
MSSA = _MSSA;
|
|
DL = &F.getParent()->getDataLayout();
|
|
MSSAWalker = MSSA->getWalker();
|
|
|
|
// Count number of instructions for sizing of hash tables, and come
|
|
// up with a global dfs numbering for instructions.
|
|
unsigned ICount = 1;
|
|
// Add an empty instruction to account for the fact that we start at 1
|
|
DFSToInstr.emplace_back(nullptr);
|
|
// Note: We want RPO traversal of the blocks, which is not quite the same as
|
|
// dominator tree order, particularly with regard whether backedges get
|
|
// visited first or second, given a block with multiple successors.
|
|
// If we visit in the wrong order, we will end up performing N times as many
|
|
// iterations.
|
|
// The dominator tree does guarantee that, for a given dom tree node, it's
|
|
// parent must occur before it in the RPO ordering. Thus, we only need to sort
|
|
// the siblings.
|
|
DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
|
|
ReversePostOrderTraversal<Function *> RPOT(&F);
|
|
unsigned Counter = 0;
|
|
for (auto &B : RPOT) {
|
|
auto *Node = DT->getNode(B);
|
|
assert(Node && "RPO and Dominator tree should have same reachability");
|
|
RPOOrdering[Node] = ++Counter;
|
|
}
|
|
// Sort dominator tree children arrays into RPO.
|
|
for (auto &B : RPOT) {
|
|
auto *Node = DT->getNode(B);
|
|
if (Node->getChildren().size() > 1)
|
|
std::sort(Node->begin(), Node->end(),
|
|
[&RPOOrdering](const DomTreeNode *A, const DomTreeNode *B) {
|
|
return RPOOrdering[A] < RPOOrdering[B];
|
|
});
|
|
}
|
|
|
|
// Now a standard depth first ordering of the domtree is equivalent to RPO.
|
|
auto DFI = df_begin(DT->getRootNode());
|
|
for (auto DFE = df_end(DT->getRootNode()); DFI != DFE; ++DFI) {
|
|
BasicBlock *B = DFI->getBlock();
|
|
const auto &BlockRange = assignDFSNumbers(B, ICount);
|
|
BlockInstRange.insert({B, BlockRange});
|
|
ICount += BlockRange.second - BlockRange.first;
|
|
}
|
|
|
|
// Handle forward unreachable blocks and figure out which blocks
|
|
// have single preds.
|
|
for (auto &B : F) {
|
|
// Assign numbers to unreachable blocks.
|
|
if (!DFI.nodeVisited(DT->getNode(&B))) {
|
|
const auto &BlockRange = assignDFSNumbers(&B, ICount);
|
|
BlockInstRange.insert({&B, BlockRange});
|
|
ICount += BlockRange.second - BlockRange.first;
|
|
}
|
|
}
|
|
|
|
TouchedInstructions.resize(ICount);
|
|
DominatedInstRange.reserve(F.size());
|
|
// Ensure we don't end up resizing the expressionToClass map, as
|
|
// that can be quite expensive. At most, we have one expression per
|
|
// instruction.
|
|
ExpressionToClass.reserve(ICount);
|
|
|
|
// Initialize the touched instructions to include the entry block.
|
|
const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
|
|
TouchedInstructions.set(InstRange.first, InstRange.second);
|
|
ReachableBlocks.insert(&F.getEntryBlock());
|
|
|
|
initializeCongruenceClasses(F);
|
|
|
|
unsigned int Iterations = 0;
|
|
// We start out in the entry block.
|
|
BasicBlock *LastBlock = &F.getEntryBlock();
|
|
while (TouchedInstructions.any()) {
|
|
++Iterations;
|
|
// Walk through all the instructions in all the blocks in RPO.
|
|
for (int InstrNum = TouchedInstructions.find_first(); InstrNum != -1;
|
|
InstrNum = TouchedInstructions.find_next(InstrNum)) {
|
|
assert(InstrNum != 0 && "Bit 0 should never be set, something touched an "
|
|
"instruction not in the lookup table");
|
|
Value *V = DFSToInstr[InstrNum];
|
|
BasicBlock *CurrBlock = nullptr;
|
|
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
CurrBlock = I->getParent();
|
|
else if (auto *MP = dyn_cast<MemoryPhi>(V))
|
|
CurrBlock = MP->getBlock();
|
|
else
|
|
llvm_unreachable("DFSToInstr gave us an unknown type of instruction");
|
|
|
|
// If we hit a new block, do reachability processing.
|
|
if (CurrBlock != LastBlock) {
|
|
LastBlock = CurrBlock;
|
|
bool BlockReachable = ReachableBlocks.count(CurrBlock);
|
|
const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
|
|
|
|
// If it's not reachable, erase any touched instructions and move on.
|
|
if (!BlockReachable) {
|
|
TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
|
|
DEBUG(dbgs() << "Skipping instructions in block "
|
|
<< getBlockName(CurrBlock)
|
|
<< " because it is unreachable\n");
|
|
continue;
|
|
}
|
|
updateProcessedCount(CurrBlock);
|
|
}
|
|
|
|
if (auto *MP = dyn_cast<MemoryPhi>(V)) {
|
|
DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
|
|
valueNumberMemoryPhi(MP);
|
|
} else if (auto *I = dyn_cast<Instruction>(V)) {
|
|
valueNumberInstruction(I);
|
|
} else {
|
|
llvm_unreachable("Should have been a MemoryPhi or Instruction");
|
|
}
|
|
updateProcessedCount(V);
|
|
// Reset after processing (because we may mark ourselves as touched when
|
|
// we propagate equalities).
|
|
TouchedInstructions.reset(InstrNum);
|
|
}
|
|
}
|
|
NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
|
|
#ifndef NDEBUG
|
|
verifyMemoryCongruency();
|
|
#endif
|
|
Changed |= eliminateInstructions(F);
|
|
|
|
// Delete all instructions marked for deletion.
|
|
for (Instruction *ToErase : InstructionsToErase) {
|
|
if (!ToErase->use_empty())
|
|
ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
|
|
|
|
ToErase->eraseFromParent();
|
|
}
|
|
|
|
// Delete all unreachable blocks.
|
|
auto UnreachableBlockPred = [&](const BasicBlock &BB) {
|
|
return !ReachableBlocks.count(&BB);
|
|
};
|
|
|
|
for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
|
|
DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
|
|
<< " is unreachable\n");
|
|
deleteInstructionsInBlock(&BB);
|
|
Changed = true;
|
|
}
|
|
|
|
cleanupTables();
|
|
return Changed;
|
|
}
|
|
|
|
bool NewGVN::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
return runGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
|
|
&getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
|
|
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
|
|
&getAnalysis<AAResultsWrapperPass>().getAAResults(),
|
|
&getAnalysis<MemorySSAWrapperPass>().getMSSA());
|
|
}
|
|
|
|
PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
|
|
NewGVN Impl;
|
|
|
|
// Apparently the order in which we get these results matter for
|
|
// the old GVN (see Chandler's comment in GVN.cpp). I'll keep
|
|
// the same order here, just in case.
|
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto &AA = AM.getResult<AAManager>(F);
|
|
auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
|
|
bool Changed = Impl.runGVN(F, &DT, &AC, &TLI, &AA, &MSSA);
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
PA.preserve<GlobalsAA>();
|
|
return PA;
|
|
}
|
|
|
|
// Return true if V is a value that will always be available (IE can
|
|
// be placed anywhere) in the function. We don't do globals here
|
|
// because they are often worse to put in place.
|
|
// TODO: Separate cost from availability
|
|
static bool alwaysAvailable(Value *V) {
|
|
return isa<Constant>(V) || isa<Argument>(V);
|
|
}
|
|
|
|
// Get the basic block from an instruction/value.
|
|
static BasicBlock *getBlockForValue(Value *V) {
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
return I->getParent();
|
|
return nullptr;
|
|
}
|
|
|
|
struct NewGVN::ValueDFS {
|
|
int DFSIn = 0;
|
|
int DFSOut = 0;
|
|
int LocalNum = 0;
|
|
// Only one of these will be set.
|
|
Value *Val = nullptr;
|
|
Use *U = nullptr;
|
|
|
|
bool operator<(const ValueDFS &Other) const {
|
|
// It's not enough that any given field be less than - we have sets
|
|
// of fields that need to be evaluated together to give a proper ordering.
|
|
// For example, if you have;
|
|
// DFS (1, 3)
|
|
// Val 0
|
|
// DFS (1, 2)
|
|
// Val 50
|
|
// We want the second to be less than the first, but if we just go field
|
|
// by field, we will get to Val 0 < Val 50 and say the first is less than
|
|
// the second. We only want it to be less than if the DFS orders are equal.
|
|
//
|
|
// Each LLVM instruction only produces one value, and thus the lowest-level
|
|
// differentiator that really matters for the stack (and what we use as as a
|
|
// replacement) is the local dfs number.
|
|
// Everything else in the structure is instruction level, and only affects
|
|
// the order in which we will replace operands of a given instruction.
|
|
//
|
|
// For a given instruction (IE things with equal dfsin, dfsout, localnum),
|
|
// the order of replacement of uses does not matter.
|
|
// IE given,
|
|
// a = 5
|
|
// b = a + a
|
|
// When you hit b, you will have two valuedfs with the same dfsin, out, and
|
|
// localnum.
|
|
// The .val will be the same as well.
|
|
// The .u's will be different.
|
|
// You will replace both, and it does not matter what order you replace them
|
|
// in (IE whether you replace operand 2, then operand 1, or operand 1, then
|
|
// operand 2).
|
|
// Similarly for the case of same dfsin, dfsout, localnum, but different
|
|
// .val's
|
|
// a = 5
|
|
// b = 6
|
|
// c = a + b
|
|
// in c, we will a valuedfs for a, and one for b,with everything the same
|
|
// but .val and .u.
|
|
// It does not matter what order we replace these operands in.
|
|
// You will always end up with the same IR, and this is guaranteed.
|
|
return std::tie(DFSIn, DFSOut, LocalNum, Val, U) <
|
|
std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Val,
|
|
Other.U);
|
|
}
|
|
};
|
|
|
|
void NewGVN::convertDenseToDFSOrdered(
|
|
CongruenceClass::MemberSet &Dense,
|
|
SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
|
|
for (auto D : Dense) {
|
|
// First add the value.
|
|
BasicBlock *BB = getBlockForValue(D);
|
|
// Constants are handled prior to ever calling this function, so
|
|
// we should only be left with instructions as members.
|
|
assert(BB && "Should have figured out a basic block for value");
|
|
ValueDFS VD;
|
|
|
|
DomTreeNode *DomNode = DT->getNode(BB);
|
|
VD.DFSIn = DomNode->getDFSNumIn();
|
|
VD.DFSOut = DomNode->getDFSNumOut();
|
|
VD.Val = D;
|
|
// If it's an instruction, use the real local dfs number.
|
|
if (auto *I = dyn_cast<Instruction>(D))
|
|
VD.LocalNum = InstrDFS.lookup(I);
|
|
else
|
|
llvm_unreachable("Should have been an instruction");
|
|
|
|
DFSOrderedSet.emplace_back(VD);
|
|
|
|
// Now add the uses.
|
|
for (auto &U : D->uses()) {
|
|
if (auto *I = dyn_cast<Instruction>(U.getUser())) {
|
|
ValueDFS VD;
|
|
// Put the phi node uses in the incoming block.
|
|
BasicBlock *IBlock;
|
|
if (auto *P = dyn_cast<PHINode>(I)) {
|
|
IBlock = P->getIncomingBlock(U);
|
|
// Make phi node users appear last in the incoming block
|
|
// they are from.
|
|
VD.LocalNum = InstrDFS.size() + 1;
|
|
} else {
|
|
IBlock = I->getParent();
|
|
VD.LocalNum = InstrDFS.lookup(I);
|
|
}
|
|
DomTreeNode *DomNode = DT->getNode(IBlock);
|
|
VD.DFSIn = DomNode->getDFSNumIn();
|
|
VD.DFSOut = DomNode->getDFSNumOut();
|
|
VD.U = &U;
|
|
DFSOrderedSet.emplace_back(VD);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void patchReplacementInstruction(Instruction *I, Value *Repl) {
|
|
// Patch the replacement so that it is not more restrictive than the value
|
|
// being replaced.
|
|
auto *Op = dyn_cast<BinaryOperator>(I);
|
|
auto *ReplOp = dyn_cast<BinaryOperator>(Repl);
|
|
|
|
if (Op && ReplOp)
|
|
ReplOp->andIRFlags(Op);
|
|
|
|
if (auto *ReplInst = dyn_cast<Instruction>(Repl)) {
|
|
// FIXME: If both the original and replacement value are part of the
|
|
// same control-flow region (meaning that the execution of one
|
|
// guarentees the executation of the other), then we can combine the
|
|
// noalias scopes here and do better than the general conservative
|
|
// answer used in combineMetadata().
|
|
|
|
// In general, GVN unifies expressions over different control-flow
|
|
// regions, and so we need a conservative combination of the noalias
|
|
// scopes.
|
|
unsigned KnownIDs[] = {
|
|
LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
|
|
LLVMContext::MD_noalias, LLVMContext::MD_range,
|
|
LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
|
|
LLVMContext::MD_invariant_group};
|
|
combineMetadata(ReplInst, I, KnownIDs);
|
|
}
|
|
}
|
|
|
|
static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
|
|
patchReplacementInstruction(I, Repl);
|
|
I->replaceAllUsesWith(Repl);
|
|
}
|
|
|
|
void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
|
|
DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
|
|
++NumGVNBlocksDeleted;
|
|
|
|
// Check to see if there are non-terminating instructions to delete.
|
|
if (isa<TerminatorInst>(BB->begin()))
|
|
return;
|
|
|
|
// Delete the instructions backwards, as it has a reduced likelihood of having
|
|
// to update as many def-use and use-def chains. Start after the terminator.
|
|
auto StartPoint = BB->rbegin();
|
|
++StartPoint;
|
|
// Note that we explicitly recalculate BB->rend() on each iteration,
|
|
// as it may change when we remove the first instruction.
|
|
for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
|
|
Instruction &Inst = *I++;
|
|
if (!Inst.use_empty())
|
|
Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
|
|
if (isa<LandingPadInst>(Inst))
|
|
continue;
|
|
|
|
Inst.eraseFromParent();
|
|
++NumGVNInstrDeleted;
|
|
}
|
|
}
|
|
|
|
void NewGVN::markInstructionForDeletion(Instruction *I) {
|
|
DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
|
|
InstructionsToErase.insert(I);
|
|
}
|
|
|
|
void NewGVN::replaceInstruction(Instruction *I, Value *V) {
|
|
|
|
DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
|
|
patchAndReplaceAllUsesWith(I, V);
|
|
// We save the actual erasing to avoid invalidating memory
|
|
// dependencies until we are done with everything.
|
|
markInstructionForDeletion(I);
|
|
}
|
|
|
|
namespace {
|
|
|
|
// This is a stack that contains both the value and dfs info of where
|
|
// that value is valid.
|
|
class ValueDFSStack {
|
|
public:
|
|
Value *back() const { return ValueStack.back(); }
|
|
std::pair<int, int> dfs_back() const { return DFSStack.back(); }
|
|
|
|
void push_back(Value *V, int DFSIn, int DFSOut) {
|
|
ValueStack.emplace_back(V);
|
|
DFSStack.emplace_back(DFSIn, DFSOut);
|
|
}
|
|
bool empty() const { return DFSStack.empty(); }
|
|
bool isInScope(int DFSIn, int DFSOut) const {
|
|
if (empty())
|
|
return false;
|
|
return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
|
|
}
|
|
|
|
void popUntilDFSScope(int DFSIn, int DFSOut) {
|
|
|
|
// These two should always be in sync at this point.
|
|
assert(ValueStack.size() == DFSStack.size() &&
|
|
"Mismatch between ValueStack and DFSStack");
|
|
while (
|
|
!DFSStack.empty() &&
|
|
!(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
|
|
DFSStack.pop_back();
|
|
ValueStack.pop_back();
|
|
}
|
|
}
|
|
|
|
private:
|
|
SmallVector<Value *, 8> ValueStack;
|
|
SmallVector<std::pair<int, int>, 8> DFSStack;
|
|
};
|
|
}
|
|
|
|
bool NewGVN::eliminateInstructions(Function &F) {
|
|
// This is a non-standard eliminator. The normal way to eliminate is
|
|
// to walk the dominator tree in order, keeping track of available
|
|
// values, and eliminating them. However, this is mildly
|
|
// pointless. It requires doing lookups on every instruction,
|
|
// regardless of whether we will ever eliminate it. For
|
|
// instructions part of most singleton congruence classes, we know we
|
|
// will never eliminate them.
|
|
|
|
// Instead, this eliminator looks at the congruence classes directly, sorts
|
|
// them into a DFS ordering of the dominator tree, and then we just
|
|
// perform elimination straight on the sets by walking the congruence
|
|
// class member uses in order, and eliminate the ones dominated by the
|
|
// last member. This is worst case O(E log E) where E = number of
|
|
// instructions in a single congruence class. In theory, this is all
|
|
// instructions. In practice, it is much faster, as most instructions are
|
|
// either in singleton congruence classes or can't possibly be eliminated
|
|
// anyway (if there are no overlapping DFS ranges in class).
|
|
// When we find something not dominated, it becomes the new leader
|
|
// for elimination purposes.
|
|
// TODO: If we wanted to be faster, We could remove any members with no
|
|
// overlapping ranges while sorting, as we will never eliminate anything
|
|
// with those members, as they don't dominate anything else in our set.
|
|
|
|
bool AnythingReplaced = false;
|
|
|
|
// Since we are going to walk the domtree anyway, and we can't guarantee the
|
|
// DFS numbers are updated, we compute some ourselves.
|
|
DT->updateDFSNumbers();
|
|
|
|
for (auto &B : F) {
|
|
if (!ReachableBlocks.count(&B)) {
|
|
for (const auto S : successors(&B)) {
|
|
for (auto II = S->begin(); isa<PHINode>(II); ++II) {
|
|
auto &Phi = cast<PHINode>(*II);
|
|
DEBUG(dbgs() << "Replacing incoming value of " << *II << " for block "
|
|
<< getBlockName(&B)
|
|
<< " with undef due to it being unreachable\n");
|
|
for (auto &Operand : Phi.incoming_values())
|
|
if (Phi.getIncomingBlock(Operand) == &B)
|
|
Operand.set(UndefValue::get(Phi.getType()));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (CongruenceClass *CC : CongruenceClasses) {
|
|
// FIXME: We should eventually be able to replace everything still
|
|
// in the initial class with undef, as they should be unreachable.
|
|
// Right now, initial still contains some things we skip value
|
|
// numbering of (UNREACHABLE's, for example).
|
|
if (CC == InitialClass || CC->Dead)
|
|
continue;
|
|
assert(CC->RepLeader && "We should have had a leader");
|
|
|
|
// If this is a leader that is always available, and it's a
|
|
// constant or has no equivalences, just replace everything with
|
|
// it. We then update the congruence class with whatever members
|
|
// are left.
|
|
if (alwaysAvailable(CC->RepLeader)) {
|
|
SmallPtrSet<Value *, 4> MembersLeft;
|
|
for (auto M : CC->Members) {
|
|
|
|
Value *Member = M;
|
|
|
|
// Void things have no uses we can replace.
|
|
if (Member == CC->RepLeader || Member->getType()->isVoidTy()) {
|
|
MembersLeft.insert(Member);
|
|
continue;
|
|
}
|
|
|
|
DEBUG(dbgs() << "Found replacement " << *(CC->RepLeader) << " for "
|
|
<< *Member << "\n");
|
|
// Due to equality propagation, these may not always be
|
|
// instructions, they may be real values. We don't really
|
|
// care about trying to replace the non-instructions.
|
|
if (auto *I = dyn_cast<Instruction>(Member)) {
|
|
assert(CC->RepLeader != I &&
|
|
"About to accidentally remove our leader");
|
|
replaceInstruction(I, CC->RepLeader);
|
|
AnythingReplaced = true;
|
|
|
|
continue;
|
|
} else {
|
|
MembersLeft.insert(I);
|
|
}
|
|
}
|
|
CC->Members.swap(MembersLeft);
|
|
|
|
} else {
|
|
DEBUG(dbgs() << "Eliminating in congruence class " << CC->ID << "\n");
|
|
// If this is a singleton, we can skip it.
|
|
if (CC->Members.size() != 1) {
|
|
|
|
// This is a stack because equality replacement/etc may place
|
|
// constants in the middle of the member list, and we want to use
|
|
// those constant values in preference to the current leader, over
|
|
// the scope of those constants.
|
|
ValueDFSStack EliminationStack;
|
|
|
|
// Convert the members to DFS ordered sets and then merge them.
|
|
SmallVector<ValueDFS, 8> DFSOrderedSet;
|
|
convertDenseToDFSOrdered(CC->Members, DFSOrderedSet);
|
|
|
|
// Sort the whole thing.
|
|
std::sort(DFSOrderedSet.begin(), DFSOrderedSet.end());
|
|
|
|
for (auto &VD : DFSOrderedSet) {
|
|
int MemberDFSIn = VD.DFSIn;
|
|
int MemberDFSOut = VD.DFSOut;
|
|
Value *Member = VD.Val;
|
|
Use *MemberUse = VD.U;
|
|
|
|
if (Member) {
|
|
// We ignore void things because we can't get a value from them.
|
|
// FIXME: We could actually use this to kill dead stores that are
|
|
// dominated by equivalent earlier stores.
|
|
if (Member->getType()->isVoidTy())
|
|
continue;
|
|
}
|
|
|
|
if (EliminationStack.empty()) {
|
|
DEBUG(dbgs() << "Elimination Stack is empty\n");
|
|
} else {
|
|
DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
|
|
<< EliminationStack.dfs_back().first << ","
|
|
<< EliminationStack.dfs_back().second << ")\n");
|
|
}
|
|
|
|
DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
|
|
<< MemberDFSOut << ")\n");
|
|
// First, we see if we are out of scope or empty. If so,
|
|
// and there equivalences, we try to replace the top of
|
|
// stack with equivalences (if it's on the stack, it must
|
|
// not have been eliminated yet).
|
|
// Then we synchronize to our current scope, by
|
|
// popping until we are back within a DFS scope that
|
|
// dominates the current member.
|
|
// Then, what happens depends on a few factors
|
|
// If the stack is now empty, we need to push
|
|
// If we have a constant or a local equivalence we want to
|
|
// start using, we also push.
|
|
// Otherwise, we walk along, processing members who are
|
|
// dominated by this scope, and eliminate them.
|
|
bool ShouldPush =
|
|
Member && (EliminationStack.empty() || isa<Constant>(Member));
|
|
bool OutOfScope =
|
|
!EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
|
|
|
|
if (OutOfScope || ShouldPush) {
|
|
// Sync to our current scope.
|
|
EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
|
|
ShouldPush |= Member && EliminationStack.empty();
|
|
if (ShouldPush) {
|
|
EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
|
|
}
|
|
}
|
|
|
|
// If we get to this point, and the stack is empty we must have a use
|
|
// with nothing we can use to eliminate it, just skip it.
|
|
if (EliminationStack.empty())
|
|
continue;
|
|
|
|
// Skip the Value's, we only want to eliminate on their uses.
|
|
if (Member)
|
|
continue;
|
|
Value *Result = EliminationStack.back();
|
|
|
|
// Don't replace our existing users with ourselves.
|
|
if (MemberUse->get() == Result)
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "Found replacement " << *Result << " for "
|
|
<< *MemberUse->get() << " in " << *(MemberUse->getUser())
|
|
<< "\n");
|
|
|
|
// If we replaced something in an instruction, handle the patching of
|
|
// metadata.
|
|
if (auto *ReplacedInst = dyn_cast<Instruction>(MemberUse->get()))
|
|
patchReplacementInstruction(ReplacedInst, Result);
|
|
|
|
assert(isa<Instruction>(MemberUse->getUser()));
|
|
MemberUse->set(Result);
|
|
AnythingReplaced = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Cleanup the congruence class.
|
|
SmallPtrSet<Value *, 4> MembersLeft;
|
|
for (Value *Member : CC->Members) {
|
|
if (Member->getType()->isVoidTy()) {
|
|
MembersLeft.insert(Member);
|
|
continue;
|
|
}
|
|
|
|
if (auto *MemberInst = dyn_cast<Instruction>(Member)) {
|
|
if (isInstructionTriviallyDead(MemberInst)) {
|
|
// TODO: Don't mark loads of undefs.
|
|
markInstructionForDeletion(MemberInst);
|
|
continue;
|
|
}
|
|
}
|
|
MembersLeft.insert(Member);
|
|
}
|
|
CC->Members.swap(MembersLeft);
|
|
}
|
|
|
|
return AnythingReplaced;
|
|
}
|