forked from OSchip/llvm-project
560 lines
20 KiB
C++
560 lines
20 KiB
C++
//===- Symbols.h ------------------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines various types of Symbols.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLD_ELF_SYMBOLS_H
|
|
#define LLD_ELF_SYMBOLS_H
|
|
|
|
#include "InputFiles.h"
|
|
#include "InputSection.h"
|
|
#include "lld/Common/LLVM.h"
|
|
#include "lld/Common/Strings.h"
|
|
#include "llvm/Object/Archive.h"
|
|
#include "llvm/Object/ELF.h"
|
|
|
|
namespace lld {
|
|
namespace elf {
|
|
class CommonSymbol;
|
|
class Defined;
|
|
class InputFile;
|
|
class LazyArchive;
|
|
class LazyObject;
|
|
class SharedSymbol;
|
|
class Symbol;
|
|
class Undefined;
|
|
} // namespace elf
|
|
|
|
std::string toString(const elf::Symbol &);
|
|
|
|
// There are two different ways to convert an Archive::Symbol to a string:
|
|
// One for Microsoft name mangling and one for Itanium name mangling.
|
|
// Call the functions toCOFFString and toELFString, not just toString.
|
|
std::string toELFString(const elf::Archive::Symbol &);
|
|
|
|
namespace elf {
|
|
|
|
// This is a StringRef-like container that doesn't run strlen().
|
|
//
|
|
// ELF string tables contain a lot of null-terminated strings. Most of them
|
|
// are not necessary for the linker because they are names of local symbols,
|
|
// and the linker doesn't use local symbol names for name resolution. So, we
|
|
// use this class to represents strings read from string tables.
|
|
struct StringRefZ {
|
|
StringRefZ(const char *s) : data(s), size(-1) {}
|
|
StringRefZ(StringRef s) : data(s.data()), size(s.size()) {}
|
|
|
|
const char *data;
|
|
const uint32_t size;
|
|
};
|
|
|
|
// The base class for real symbol classes.
|
|
class Symbol {
|
|
public:
|
|
enum Kind {
|
|
PlaceholderKind,
|
|
DefinedKind,
|
|
CommonKind,
|
|
SharedKind,
|
|
UndefinedKind,
|
|
LazyArchiveKind,
|
|
LazyObjectKind,
|
|
};
|
|
|
|
Kind kind() const { return static_cast<Kind>(symbolKind); }
|
|
|
|
// The file from which this symbol was created.
|
|
InputFile *file;
|
|
|
|
protected:
|
|
const char *nameData;
|
|
mutable uint32_t nameSize;
|
|
|
|
public:
|
|
uint32_t dynsymIndex = 0;
|
|
uint32_t gotIndex = -1;
|
|
uint32_t pltIndex = -1;
|
|
|
|
uint32_t globalDynIndex = -1;
|
|
|
|
// This field is a index to the symbol's version definition.
|
|
uint32_t verdefIndex = -1;
|
|
|
|
// Version definition index.
|
|
uint16_t versionId;
|
|
|
|
// An index into the .branch_lt section on PPC64.
|
|
uint16_t ppc64BranchltIndex = -1;
|
|
|
|
// Symbol binding. This is not overwritten by replace() to track
|
|
// changes during resolution. In particular:
|
|
// - An undefined weak is still weak when it resolves to a shared library.
|
|
// - An undefined weak will not fetch archive members, but we have to
|
|
// remember it is weak.
|
|
uint8_t binding;
|
|
|
|
// The following fields have the same meaning as the ELF symbol attributes.
|
|
uint8_t type; // symbol type
|
|
uint8_t stOther; // st_other field value
|
|
|
|
uint8_t symbolKind;
|
|
|
|
// Symbol visibility. This is the computed minimum visibility of all
|
|
// observed non-DSO symbols.
|
|
unsigned visibility : 2;
|
|
|
|
// True if the symbol was used for linking and thus need to be added to the
|
|
// output file's symbol table. This is true for all symbols except for
|
|
// unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
|
|
// are unreferenced except by other bitcode objects.
|
|
unsigned isUsedInRegularObj : 1;
|
|
|
|
// If this flag is true and the symbol has protected or default visibility, it
|
|
// will appear in .dynsym. This flag is set by interposable DSO symbols in
|
|
// executables, by most symbols in DSOs and executables built with
|
|
// --export-dynamic, and by dynamic lists.
|
|
unsigned exportDynamic : 1;
|
|
|
|
// False if LTO shouldn't inline whatever this symbol points to. If a symbol
|
|
// is overwritten after LTO, LTO shouldn't inline the symbol because it
|
|
// doesn't know the final contents of the symbol.
|
|
unsigned canInline : 1;
|
|
|
|
// Used by Undefined and SharedSymbol to track if there has been at least one
|
|
// undefined reference to the symbol. The binding may change to STB_WEAK if
|
|
// the first undefined reference from a non-shared object is weak.
|
|
unsigned referenced : 1;
|
|
|
|
// True if this symbol is specified by --trace-symbol option.
|
|
unsigned traced : 1;
|
|
|
|
inline void replace(const Symbol &New);
|
|
|
|
bool includeInDynsym() const;
|
|
uint8_t computeBinding() const;
|
|
bool isWeak() const { return binding == llvm::ELF::STB_WEAK; }
|
|
|
|
bool isUndefined() const { return symbolKind == UndefinedKind; }
|
|
bool isCommon() const { return symbolKind == CommonKind; }
|
|
bool isDefined() const { return symbolKind == DefinedKind; }
|
|
bool isShared() const { return symbolKind == SharedKind; }
|
|
bool isPlaceholder() const { return symbolKind == PlaceholderKind; }
|
|
|
|
bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; }
|
|
|
|
bool isLazy() const {
|
|
return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind;
|
|
}
|
|
|
|
// True if this is an undefined weak symbol. This only works once
|
|
// all input files have been added.
|
|
bool isUndefWeak() const {
|
|
// See comment on lazy symbols for details.
|
|
return isWeak() && (isUndefined() || isLazy());
|
|
}
|
|
|
|
StringRef getName() const {
|
|
if (nameSize == (uint32_t)-1)
|
|
nameSize = strlen(nameData);
|
|
return {nameData, nameSize};
|
|
}
|
|
|
|
void setName(StringRef s) {
|
|
nameData = s.data();
|
|
nameSize = s.size();
|
|
}
|
|
|
|
void parseSymbolVersion();
|
|
|
|
bool isInGot() const { return gotIndex != -1U; }
|
|
bool isInPlt() const { return pltIndex != -1U; }
|
|
bool isInPPC64Branchlt() const { return ppc64BranchltIndex != 0xffff; }
|
|
|
|
uint64_t getVA(int64_t addend = 0) const;
|
|
|
|
uint64_t getGotOffset() const;
|
|
uint64_t getGotVA() const;
|
|
uint64_t getGotPltOffset() const;
|
|
uint64_t getGotPltVA() const;
|
|
uint64_t getPltVA() const;
|
|
uint64_t getPPC64LongBranchTableVA() const;
|
|
uint64_t getPPC64LongBranchOffset() const;
|
|
uint64_t getSize() const;
|
|
OutputSection *getOutputSection() const;
|
|
|
|
// The following two functions are used for symbol resolution.
|
|
//
|
|
// You are expected to call mergeProperties for all symbols in input
|
|
// files so that attributes that are attached to names rather than
|
|
// indivisual symbol (such as visibility) are merged together.
|
|
//
|
|
// Every time you read a new symbol from an input, you are supposed
|
|
// to call resolve() with the new symbol. That function replaces
|
|
// "this" object as a result of name resolution if the new symbol is
|
|
// more appropriate to be included in the output.
|
|
//
|
|
// For example, if "this" is an undefined symbol and a new symbol is
|
|
// a defined symbol, "this" is replaced with the new symbol.
|
|
void mergeProperties(const Symbol &other);
|
|
void resolve(const Symbol &other);
|
|
|
|
// If this is a lazy symbol, fetch an input file and add the symbol
|
|
// in the file to the symbol table. Calling this function on
|
|
// non-lazy object causes a runtime error.
|
|
void fetch() const;
|
|
|
|
private:
|
|
static bool isExportDynamic(Kind k, uint8_t visibility) {
|
|
if (k == SharedKind)
|
|
return visibility == llvm::ELF::STV_DEFAULT;
|
|
return config->shared || config->exportDynamic;
|
|
}
|
|
|
|
void resolveUndefined(const Undefined &other);
|
|
void resolveCommon(const CommonSymbol &other);
|
|
void resolveDefined(const Defined &other);
|
|
template <class LazyT> void resolveLazy(const LazyT &other);
|
|
void resolveShared(const SharedSymbol &other);
|
|
|
|
int compare(const Symbol *other) const;
|
|
|
|
inline size_t getSymbolSize() const;
|
|
|
|
protected:
|
|
Symbol(Kind k, InputFile *file, StringRefZ name, uint8_t binding,
|
|
uint8_t stOther, uint8_t type)
|
|
: file(file), nameData(name.data), nameSize(name.size), binding(binding),
|
|
type(type), stOther(stOther), symbolKind(k), visibility(stOther & 3),
|
|
isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind),
|
|
exportDynamic(isExportDynamic(k, visibility)), canInline(false),
|
|
referenced(false), traced(false), needsPltAddr(false), isInIplt(false),
|
|
gotInIgot(false), isPreemptible(false), used(!config->gcSections),
|
|
needsTocRestore(false), scriptDefined(false) {}
|
|
|
|
public:
|
|
// True the symbol should point to its PLT entry.
|
|
// For SharedSymbol only.
|
|
unsigned needsPltAddr : 1;
|
|
|
|
// True if this symbol is in the Iplt sub-section of the Plt and the Igot
|
|
// sub-section of the .got.plt or .got.
|
|
unsigned isInIplt : 1;
|
|
|
|
// True if this symbol needs a GOT entry and its GOT entry is actually in
|
|
// Igot. This will be true only for certain non-preemptible ifuncs.
|
|
unsigned gotInIgot : 1;
|
|
|
|
// True if this symbol is preemptible at load time.
|
|
unsigned isPreemptible : 1;
|
|
|
|
// True if an undefined or shared symbol is used from a live section.
|
|
unsigned used : 1;
|
|
|
|
// True if a call to this symbol needs to be followed by a restore of the
|
|
// PPC64 toc pointer.
|
|
unsigned needsTocRestore : 1;
|
|
|
|
// True if this symbol is defined by a linker script.
|
|
unsigned scriptDefined : 1;
|
|
|
|
// The partition whose dynamic symbol table contains this symbol's definition.
|
|
uint8_t partition = 1;
|
|
|
|
bool isSection() const { return type == llvm::ELF::STT_SECTION; }
|
|
bool isTls() const { return type == llvm::ELF::STT_TLS; }
|
|
bool isFunc() const { return type == llvm::ELF::STT_FUNC; }
|
|
bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; }
|
|
bool isObject() const { return type == llvm::ELF::STT_OBJECT; }
|
|
bool isFile() const { return type == llvm::ELF::STT_FILE; }
|
|
};
|
|
|
|
// Represents a symbol that is defined in the current output file.
|
|
class Defined : public Symbol {
|
|
public:
|
|
Defined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
|
|
uint8_t type, uint64_t value, uint64_t size, SectionBase *section)
|
|
: Symbol(DefinedKind, file, name, binding, stOther, type), value(value),
|
|
size(size), section(section) {}
|
|
|
|
static bool classof(const Symbol *s) { return s->isDefined(); }
|
|
|
|
uint64_t value;
|
|
uint64_t size;
|
|
SectionBase *section;
|
|
};
|
|
|
|
// Represents a common symbol.
|
|
//
|
|
// On Unix, it is traditionally allowed to write variable definitions
|
|
// without initialization expressions (such as "int foo;") to header
|
|
// files. Such definition is called "tentative definition".
|
|
//
|
|
// Using tentative definition is usually considered a bad practice
|
|
// because you should write only declarations (such as "extern int
|
|
// foo;") to header files. Nevertheless, the linker and the compiler
|
|
// have to do something to support bad code by allowing duplicate
|
|
// definitions for this particular case.
|
|
//
|
|
// Common symbols represent variable definitions without initializations.
|
|
// The compiler creates common symbols when it sees varaible definitions
|
|
// without initialization (you can suppress this behavior and let the
|
|
// compiler create a regular defined symbol by -fno-common).
|
|
//
|
|
// The linker allows common symbols to be replaced by regular defined
|
|
// symbols. If there are remaining common symbols after name resolution is
|
|
// complete, they are converted to regular defined symbols in a .bss
|
|
// section. (Therefore, the later passes don't see any CommonSymbols.)
|
|
class CommonSymbol : public Symbol {
|
|
public:
|
|
CommonSymbol(InputFile *file, StringRefZ name, uint8_t binding,
|
|
uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size)
|
|
: Symbol(CommonKind, file, name, binding, stOther, type),
|
|
alignment(alignment), size(size) {}
|
|
|
|
static bool classof(const Symbol *s) { return s->isCommon(); }
|
|
|
|
uint32_t alignment;
|
|
uint64_t size;
|
|
};
|
|
|
|
class Undefined : public Symbol {
|
|
public:
|
|
Undefined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
|
|
uint8_t type, uint32_t discardedSecIdx = 0)
|
|
: Symbol(UndefinedKind, file, name, binding, stOther, type),
|
|
discardedSecIdx(discardedSecIdx) {}
|
|
|
|
static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
|
|
|
|
// The section index if in a discarded section, 0 otherwise.
|
|
uint32_t discardedSecIdx;
|
|
};
|
|
|
|
class SharedSymbol : public Symbol {
|
|
public:
|
|
static bool classof(const Symbol *s) { return s->kind() == SharedKind; }
|
|
|
|
SharedSymbol(InputFile &file, StringRef name, uint8_t binding,
|
|
uint8_t stOther, uint8_t type, uint64_t value, uint64_t size,
|
|
uint32_t alignment, uint32_t verdefIndex)
|
|
: Symbol(SharedKind, &file, name, binding, stOther, type), value(value),
|
|
size(size), alignment(alignment) {
|
|
this->verdefIndex = verdefIndex;
|
|
// GNU ifunc is a mechanism to allow user-supplied functions to
|
|
// resolve PLT slot values at load-time. This is contrary to the
|
|
// regular symbol resolution scheme in which symbols are resolved just
|
|
// by name. Using this hook, you can program how symbols are solved
|
|
// for you program. For example, you can make "memcpy" to be resolved
|
|
// to a SSE-enabled version of memcpy only when a machine running the
|
|
// program supports the SSE instruction set.
|
|
//
|
|
// Naturally, such symbols should always be called through their PLT
|
|
// slots. What GNU ifunc symbols point to are resolver functions, and
|
|
// calling them directly doesn't make sense (unless you are writing a
|
|
// loader).
|
|
//
|
|
// For DSO symbols, we always call them through PLT slots anyway.
|
|
// So there's no difference between GNU ifunc and regular function
|
|
// symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
|
|
if (this->type == llvm::ELF::STT_GNU_IFUNC)
|
|
this->type = llvm::ELF::STT_FUNC;
|
|
}
|
|
|
|
SharedFile &getFile() const { return *cast<SharedFile>(file); }
|
|
|
|
uint64_t value; // st_value
|
|
uint64_t size; // st_size
|
|
uint32_t alignment;
|
|
};
|
|
|
|
// LazyArchive and LazyObject represent a symbols that is not yet in the link,
|
|
// but we know where to find it if needed. If the resolver finds both Undefined
|
|
// and Lazy for the same name, it will ask the Lazy to load a file.
|
|
//
|
|
// A special complication is the handling of weak undefined symbols. They should
|
|
// not load a file, but we have to remember we have seen both the weak undefined
|
|
// and the lazy. We represent that with a lazy symbol with a weak binding. This
|
|
// means that code looking for undefined symbols normally also has to take lazy
|
|
// symbols into consideration.
|
|
|
|
// This class represents a symbol defined in an archive file. It is
|
|
// created from an archive file header, and it knows how to load an
|
|
// object file from an archive to replace itself with a defined
|
|
// symbol.
|
|
class LazyArchive : public Symbol {
|
|
public:
|
|
LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s)
|
|
: Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL,
|
|
llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE),
|
|
sym(s) {}
|
|
|
|
static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }
|
|
|
|
MemoryBufferRef getMemberBuffer();
|
|
|
|
const llvm::object::Archive::Symbol sym;
|
|
};
|
|
|
|
// LazyObject symbols represents symbols in object files between
|
|
// --start-lib and --end-lib options.
|
|
class LazyObject : public Symbol {
|
|
public:
|
|
LazyObject(InputFile &file, StringRef name)
|
|
: Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL,
|
|
llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {}
|
|
|
|
static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
|
|
};
|
|
|
|
// Some linker-generated symbols need to be created as
|
|
// Defined symbols.
|
|
struct ElfSym {
|
|
// __bss_start
|
|
static Defined *bss;
|
|
|
|
// etext and _etext
|
|
static Defined *etext1;
|
|
static Defined *etext2;
|
|
|
|
// edata and _edata
|
|
static Defined *edata1;
|
|
static Defined *edata2;
|
|
|
|
// end and _end
|
|
static Defined *end1;
|
|
static Defined *end2;
|
|
|
|
// The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
|
|
// be at some offset from the base of the .got section, usually 0 or
|
|
// the end of the .got.
|
|
static Defined *globalOffsetTable;
|
|
|
|
// _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
|
|
static Defined *mipsGp;
|
|
static Defined *mipsGpDisp;
|
|
static Defined *mipsLocalGp;
|
|
|
|
// __rel{,a}_iplt_{start,end} symbols.
|
|
static Defined *relaIpltStart;
|
|
static Defined *relaIpltEnd;
|
|
|
|
// __global_pointer$ for RISC-V.
|
|
static Defined *riscvGlobalPointer;
|
|
|
|
// _TLS_MODULE_BASE_ on targets that support TLSDESC.
|
|
static Defined *tlsModuleBase;
|
|
};
|
|
|
|
// A buffer class that is large enough to hold any Symbol-derived
|
|
// object. We allocate memory using this class and instantiate a symbol
|
|
// using the placement new.
|
|
union SymbolUnion {
|
|
alignas(Defined) char a[sizeof(Defined)];
|
|
alignas(CommonSymbol) char b[sizeof(CommonSymbol)];
|
|
alignas(Undefined) char c[sizeof(Undefined)];
|
|
alignas(SharedSymbol) char d[sizeof(SharedSymbol)];
|
|
alignas(LazyArchive) char e[sizeof(LazyArchive)];
|
|
alignas(LazyObject) char f[sizeof(LazyObject)];
|
|
};
|
|
|
|
// It is important to keep the size of SymbolUnion small for performance and
|
|
// memory usage reasons. 80 bytes is a soft limit based on the size of Defined
|
|
// on a 64-bit system.
|
|
static_assert(sizeof(SymbolUnion) <= 80, "SymbolUnion too large");
|
|
|
|
template <typename T> struct AssertSymbol {
|
|
static_assert(std::is_trivially_destructible<T>(),
|
|
"Symbol types must be trivially destructible");
|
|
static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
|
|
static_assert(alignof(T) <= alignof(SymbolUnion),
|
|
"SymbolUnion not aligned enough");
|
|
};
|
|
|
|
static inline void assertSymbols() {
|
|
AssertSymbol<Defined>();
|
|
AssertSymbol<CommonSymbol>();
|
|
AssertSymbol<Undefined>();
|
|
AssertSymbol<SharedSymbol>();
|
|
AssertSymbol<LazyArchive>();
|
|
AssertSymbol<LazyObject>();
|
|
}
|
|
|
|
void printTraceSymbol(const Symbol *sym);
|
|
|
|
size_t Symbol::getSymbolSize() const {
|
|
switch (kind()) {
|
|
case CommonKind:
|
|
return sizeof(CommonSymbol);
|
|
case DefinedKind:
|
|
return sizeof(Defined);
|
|
case LazyArchiveKind:
|
|
return sizeof(LazyArchive);
|
|
case LazyObjectKind:
|
|
return sizeof(LazyObject);
|
|
case SharedKind:
|
|
return sizeof(SharedSymbol);
|
|
case UndefinedKind:
|
|
return sizeof(Undefined);
|
|
case PlaceholderKind:
|
|
return sizeof(Symbol);
|
|
}
|
|
llvm_unreachable("unknown symbol kind");
|
|
}
|
|
|
|
// replace() replaces "this" object with a given symbol by memcpy'ing
|
|
// it over to "this". This function is called as a result of name
|
|
// resolution, e.g. to replace an undefind symbol with a defined symbol.
|
|
void Symbol::replace(const Symbol &New) {
|
|
using llvm::ELF::STT_TLS;
|
|
|
|
// Symbols representing thread-local variables must be referenced by
|
|
// TLS-aware relocations, and non-TLS symbols must be reference by
|
|
// non-TLS relocations, so there's a clear distinction between TLS
|
|
// and non-TLS symbols. It is an error if the same symbol is defined
|
|
// as a TLS symbol in one file and as a non-TLS symbol in other file.
|
|
if (symbolKind != PlaceholderKind && !isLazy() && !New.isLazy()) {
|
|
bool tlsMismatch = (type == STT_TLS && New.type != STT_TLS) ||
|
|
(type != STT_TLS && New.type == STT_TLS);
|
|
if (tlsMismatch)
|
|
error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " +
|
|
toString(New.file) + "\n>>> defined in " + toString(file));
|
|
}
|
|
|
|
Symbol old = *this;
|
|
memcpy(this, &New, New.getSymbolSize());
|
|
|
|
versionId = old.versionId;
|
|
visibility = old.visibility;
|
|
isUsedInRegularObj = old.isUsedInRegularObj;
|
|
exportDynamic = old.exportDynamic;
|
|
canInline = old.canInline;
|
|
referenced = old.referenced;
|
|
traced = old.traced;
|
|
isPreemptible = old.isPreemptible;
|
|
scriptDefined = old.scriptDefined;
|
|
partition = old.partition;
|
|
|
|
// Symbol length is computed lazily. If we already know a symbol length,
|
|
// propagate it.
|
|
if (nameData == old.nameData && nameSize == 0 && old.nameSize != 0)
|
|
nameSize = old.nameSize;
|
|
|
|
// Print out a log message if --trace-symbol was specified.
|
|
// This is for debugging.
|
|
if (traced)
|
|
printTraceSymbol(this);
|
|
}
|
|
|
|
void maybeWarnUnorderableSymbol(const Symbol *sym);
|
|
} // namespace elf
|
|
} // namespace lld
|
|
|
|
#endif
|