forked from OSchip/llvm-project
1687 lines
66 KiB
C++
1687 lines
66 KiB
C++
//===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/CodeGen/BackendUtil.h"
|
|
#include "clang/Basic/CodeGenOptions.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/TargetOptions.h"
|
|
#include "clang/Frontend/FrontendDiagnostic.h"
|
|
#include "clang/Frontend/Utils.h"
|
|
#include "clang/Lex/HeaderSearchOptions.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Bitcode/BitcodeReader.h"
|
|
#include "llvm/Bitcode/BitcodeWriter.h"
|
|
#include "llvm/Bitcode/BitcodeWriterPass.h"
|
|
#include "llvm/CodeGen/RegAllocRegistry.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/IRPrintingPasses.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ModuleSummaryIndex.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/LTO/LTOBackend.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/SubtargetFeature.h"
|
|
#include "llvm/Passes/PassBuilder.h"
|
|
#include "llvm/Passes/PassPlugin.h"
|
|
#include "llvm/Support/BuryPointer.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/PrettyStackTrace.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/TimeProfiler.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Transforms/Coroutines.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/IPO/AlwaysInliner.h"
|
|
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
|
|
#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombine.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
|
|
#include "llvm/Transforms/Instrumentation/BoundsChecking.h"
|
|
#include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
|
|
#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
|
|
#include "llvm/Transforms/Instrumentation/InstrProfiling.h"
|
|
#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
|
|
#include "llvm/Transforms/Instrumentation/SanitizerCoverage.h"
|
|
#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
|
|
#include "llvm/Transforms/ObjCARC.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/GVN.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/CanonicalizeAliases.h"
|
|
#include "llvm/Transforms/Utils/EntryExitInstrumenter.h"
|
|
#include "llvm/Transforms/Utils/NameAnonGlobals.h"
|
|
#include "llvm/Transforms/Utils/SymbolRewriter.h"
|
|
#include <memory>
|
|
using namespace clang;
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
// Default filename used for profile generation.
|
|
static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw";
|
|
|
|
class EmitAssemblyHelper {
|
|
DiagnosticsEngine &Diags;
|
|
const HeaderSearchOptions &HSOpts;
|
|
const CodeGenOptions &CodeGenOpts;
|
|
const clang::TargetOptions &TargetOpts;
|
|
const LangOptions &LangOpts;
|
|
Module *TheModule;
|
|
|
|
Timer CodeGenerationTime;
|
|
|
|
std::unique_ptr<raw_pwrite_stream> OS;
|
|
|
|
TargetIRAnalysis getTargetIRAnalysis() const {
|
|
if (TM)
|
|
return TM->getTargetIRAnalysis();
|
|
|
|
return TargetIRAnalysis();
|
|
}
|
|
|
|
void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM);
|
|
|
|
/// Generates the TargetMachine.
|
|
/// Leaves TM unchanged if it is unable to create the target machine.
|
|
/// Some of our clang tests specify triples which are not built
|
|
/// into clang. This is okay because these tests check the generated
|
|
/// IR, and they require DataLayout which depends on the triple.
|
|
/// In this case, we allow this method to fail and not report an error.
|
|
/// When MustCreateTM is used, we print an error if we are unable to load
|
|
/// the requested target.
|
|
void CreateTargetMachine(bool MustCreateTM);
|
|
|
|
/// Add passes necessary to emit assembly or LLVM IR.
|
|
///
|
|
/// \return True on success.
|
|
bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
|
|
raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
|
|
|
|
std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
|
|
std::error_code EC;
|
|
auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC,
|
|
llvm::sys::fs::OF_None);
|
|
if (EC) {
|
|
Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
|
|
F.reset();
|
|
}
|
|
return F;
|
|
}
|
|
|
|
public:
|
|
EmitAssemblyHelper(DiagnosticsEngine &_Diags,
|
|
const HeaderSearchOptions &HeaderSearchOpts,
|
|
const CodeGenOptions &CGOpts,
|
|
const clang::TargetOptions &TOpts,
|
|
const LangOptions &LOpts, Module *M)
|
|
: Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
|
|
TargetOpts(TOpts), LangOpts(LOpts), TheModule(M),
|
|
CodeGenerationTime("codegen", "Code Generation Time") {}
|
|
|
|
~EmitAssemblyHelper() {
|
|
if (CodeGenOpts.DisableFree)
|
|
BuryPointer(std::move(TM));
|
|
}
|
|
|
|
std::unique_ptr<TargetMachine> TM;
|
|
|
|
void EmitAssembly(BackendAction Action,
|
|
std::unique_ptr<raw_pwrite_stream> OS);
|
|
|
|
void EmitAssemblyWithNewPassManager(BackendAction Action,
|
|
std::unique_ptr<raw_pwrite_stream> OS);
|
|
};
|
|
|
|
// We need this wrapper to access LangOpts and CGOpts from extension functions
|
|
// that we add to the PassManagerBuilder.
|
|
class PassManagerBuilderWrapper : public PassManagerBuilder {
|
|
public:
|
|
PassManagerBuilderWrapper(const Triple &TargetTriple,
|
|
const CodeGenOptions &CGOpts,
|
|
const LangOptions &LangOpts)
|
|
: PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts),
|
|
LangOpts(LangOpts) {}
|
|
const Triple &getTargetTriple() const { return TargetTriple; }
|
|
const CodeGenOptions &getCGOpts() const { return CGOpts; }
|
|
const LangOptions &getLangOpts() const { return LangOpts; }
|
|
|
|
private:
|
|
const Triple &TargetTriple;
|
|
const CodeGenOptions &CGOpts;
|
|
const LangOptions &LangOpts;
|
|
};
|
|
}
|
|
|
|
static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
|
|
if (Builder.OptLevel > 0)
|
|
PM.add(createObjCARCAPElimPass());
|
|
}
|
|
|
|
static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
|
|
if (Builder.OptLevel > 0)
|
|
PM.add(createObjCARCExpandPass());
|
|
}
|
|
|
|
static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
|
|
if (Builder.OptLevel > 0)
|
|
PM.add(createObjCARCOptPass());
|
|
}
|
|
|
|
static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
PM.add(createAddDiscriminatorsPass());
|
|
}
|
|
|
|
static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
PM.add(createBoundsCheckingLegacyPass());
|
|
}
|
|
|
|
static SanitizerCoverageOptions
|
|
getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) {
|
|
SanitizerCoverageOptions Opts;
|
|
Opts.CoverageType =
|
|
static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
|
|
Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
|
|
Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
|
|
Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
|
|
Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
|
|
Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
|
|
Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
|
|
Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
|
|
Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
|
|
Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
|
|
Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
|
|
Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
|
|
Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
|
|
return Opts;
|
|
}
|
|
|
|
static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
const PassManagerBuilderWrapper &BuilderWrapper =
|
|
static_cast<const PassManagerBuilderWrapper &>(Builder);
|
|
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
|
|
auto Opts = getSancovOptsFromCGOpts(CGOpts);
|
|
PM.add(createModuleSanitizerCoverageLegacyPassPass(Opts));
|
|
PM.add(createSanitizerCoverageLegacyPassPass(Opts));
|
|
}
|
|
|
|
// Check if ASan should use GC-friendly instrumentation for globals.
|
|
// First of all, there is no point if -fdata-sections is off (expect for MachO,
|
|
// where this is not a factor). Also, on ELF this feature requires an assembler
|
|
// extension that only works with -integrated-as at the moment.
|
|
static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
|
|
if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
|
|
return false;
|
|
switch (T.getObjectFormat()) {
|
|
case Triple::MachO:
|
|
case Triple::COFF:
|
|
return true;
|
|
case Triple::ELF:
|
|
return CGOpts.DataSections && !CGOpts.DisableIntegratedAS;
|
|
case Triple::XCOFF:
|
|
llvm::report_fatal_error("ASan not implemented for XCOFF.");
|
|
case Triple::Wasm:
|
|
case Triple::UnknownObjectFormat:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
const PassManagerBuilderWrapper &BuilderWrapper =
|
|
static_cast<const PassManagerBuilderWrapper&>(Builder);
|
|
const Triple &T = BuilderWrapper.getTargetTriple();
|
|
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
|
|
bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address);
|
|
bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope;
|
|
bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator;
|
|
bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts);
|
|
PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover,
|
|
UseAfterScope));
|
|
PM.add(createModuleAddressSanitizerLegacyPassPass(
|
|
/*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator));
|
|
}
|
|
|
|
static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
PM.add(createAddressSanitizerFunctionPass(
|
|
/*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false));
|
|
PM.add(createModuleAddressSanitizerLegacyPassPass(
|
|
/*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true,
|
|
/*UseOdrIndicator*/ false));
|
|
}
|
|
|
|
static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
const PassManagerBuilderWrapper &BuilderWrapper =
|
|
static_cast<const PassManagerBuilderWrapper &>(Builder);
|
|
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
|
|
bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
|
|
PM.add(
|
|
createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover));
|
|
}
|
|
|
|
static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
PM.add(createHWAddressSanitizerLegacyPassPass(
|
|
/*CompileKernel*/ true, /*Recover*/ true));
|
|
}
|
|
|
|
static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM,
|
|
bool CompileKernel) {
|
|
const PassManagerBuilderWrapper &BuilderWrapper =
|
|
static_cast<const PassManagerBuilderWrapper&>(Builder);
|
|
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
|
|
int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins;
|
|
bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory);
|
|
PM.add(createMemorySanitizerLegacyPassPass(
|
|
MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel}));
|
|
|
|
// MemorySanitizer inserts complex instrumentation that mostly follows
|
|
// the logic of the original code, but operates on "shadow" values.
|
|
// It can benefit from re-running some general purpose optimization passes.
|
|
if (Builder.OptLevel > 0) {
|
|
PM.add(createEarlyCSEPass());
|
|
PM.add(createReassociatePass());
|
|
PM.add(createLICMPass());
|
|
PM.add(createGVNPass());
|
|
PM.add(createInstructionCombiningPass());
|
|
PM.add(createDeadStoreEliminationPass());
|
|
}
|
|
}
|
|
|
|
static void addMemorySanitizerPass(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false);
|
|
}
|
|
|
|
static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true);
|
|
}
|
|
|
|
static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
PM.add(createThreadSanitizerLegacyPassPass());
|
|
}
|
|
|
|
static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
const PassManagerBuilderWrapper &BuilderWrapper =
|
|
static_cast<const PassManagerBuilderWrapper&>(Builder);
|
|
const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
|
|
PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles));
|
|
}
|
|
|
|
static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
|
|
const CodeGenOptions &CodeGenOpts) {
|
|
TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
|
|
if (!CodeGenOpts.SimplifyLibCalls)
|
|
TLII->disableAllFunctions();
|
|
else {
|
|
// Disable individual libc/libm calls in TargetLibraryInfo.
|
|
LibFunc F;
|
|
for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs())
|
|
if (TLII->getLibFunc(FuncName, F))
|
|
TLII->setUnavailable(F);
|
|
}
|
|
|
|
switch (CodeGenOpts.getVecLib()) {
|
|
case CodeGenOptions::Accelerate:
|
|
TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate);
|
|
break;
|
|
case CodeGenOptions::MASSV:
|
|
TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV);
|
|
break;
|
|
case CodeGenOptions::SVML:
|
|
TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return TLII;
|
|
}
|
|
|
|
static void addSymbolRewriterPass(const CodeGenOptions &Opts,
|
|
legacy::PassManager *MPM) {
|
|
llvm::SymbolRewriter::RewriteDescriptorList DL;
|
|
|
|
llvm::SymbolRewriter::RewriteMapParser MapParser;
|
|
for (const auto &MapFile : Opts.RewriteMapFiles)
|
|
MapParser.parse(MapFile, &DL);
|
|
|
|
MPM->add(createRewriteSymbolsPass(DL));
|
|
}
|
|
|
|
static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) {
|
|
switch (CodeGenOpts.OptimizationLevel) {
|
|
default:
|
|
llvm_unreachable("Invalid optimization level!");
|
|
case 0:
|
|
return CodeGenOpt::None;
|
|
case 1:
|
|
return CodeGenOpt::Less;
|
|
case 2:
|
|
return CodeGenOpt::Default; // O2/Os/Oz
|
|
case 3:
|
|
return CodeGenOpt::Aggressive;
|
|
}
|
|
}
|
|
|
|
static Optional<llvm::CodeModel::Model>
|
|
getCodeModel(const CodeGenOptions &CodeGenOpts) {
|
|
unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
|
|
.Case("tiny", llvm::CodeModel::Tiny)
|
|
.Case("small", llvm::CodeModel::Small)
|
|
.Case("kernel", llvm::CodeModel::Kernel)
|
|
.Case("medium", llvm::CodeModel::Medium)
|
|
.Case("large", llvm::CodeModel::Large)
|
|
.Case("default", ~1u)
|
|
.Default(~0u);
|
|
assert(CodeModel != ~0u && "invalid code model!");
|
|
if (CodeModel == ~1u)
|
|
return None;
|
|
return static_cast<llvm::CodeModel::Model>(CodeModel);
|
|
}
|
|
|
|
static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) {
|
|
if (Action == Backend_EmitObj)
|
|
return TargetMachine::CGFT_ObjectFile;
|
|
else if (Action == Backend_EmitMCNull)
|
|
return TargetMachine::CGFT_Null;
|
|
else {
|
|
assert(Action == Backend_EmitAssembly && "Invalid action!");
|
|
return TargetMachine::CGFT_AssemblyFile;
|
|
}
|
|
}
|
|
|
|
static void initTargetOptions(llvm::TargetOptions &Options,
|
|
const CodeGenOptions &CodeGenOpts,
|
|
const clang::TargetOptions &TargetOpts,
|
|
const LangOptions &LangOpts,
|
|
const HeaderSearchOptions &HSOpts) {
|
|
Options.ThreadModel =
|
|
llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel)
|
|
.Case("posix", llvm::ThreadModel::POSIX)
|
|
.Case("single", llvm::ThreadModel::Single);
|
|
|
|
// Set float ABI type.
|
|
assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
|
|
CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
|
|
"Invalid Floating Point ABI!");
|
|
Options.FloatABIType =
|
|
llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
|
|
.Case("soft", llvm::FloatABI::Soft)
|
|
.Case("softfp", llvm::FloatABI::Soft)
|
|
.Case("hard", llvm::FloatABI::Hard)
|
|
.Default(llvm::FloatABI::Default);
|
|
|
|
// Set FP fusion mode.
|
|
switch (LangOpts.getDefaultFPContractMode()) {
|
|
case LangOptions::FPC_Off:
|
|
// Preserve any contraction performed by the front-end. (Strict performs
|
|
// splitting of the muladd intrinsic in the backend.)
|
|
Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
|
|
break;
|
|
case LangOptions::FPC_On:
|
|
Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
|
|
break;
|
|
case LangOptions::FPC_Fast:
|
|
Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
|
|
break;
|
|
}
|
|
|
|
Options.UseInitArray = CodeGenOpts.UseInitArray;
|
|
Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
|
|
Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections();
|
|
Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations;
|
|
|
|
// Set EABI version.
|
|
Options.EABIVersion = TargetOpts.EABIVersion;
|
|
|
|
if (LangOpts.SjLjExceptions)
|
|
Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
|
|
if (LangOpts.SEHExceptions)
|
|
Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
|
|
if (LangOpts.DWARFExceptions)
|
|
Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
|
|
|
|
Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath;
|
|
Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath;
|
|
Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
|
|
Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath;
|
|
Options.StackAlignmentOverride = CodeGenOpts.StackAlignment;
|
|
Options.FunctionSections = CodeGenOpts.FunctionSections;
|
|
Options.DataSections = CodeGenOpts.DataSections;
|
|
Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
|
|
Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
|
|
Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS;
|
|
Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
|
|
Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
|
|
Options.EmitAddrsig = CodeGenOpts.Addrsig;
|
|
Options.EnableDebugEntryValues = CodeGenOpts.EnableDebugEntryValues;
|
|
|
|
Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
|
|
Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
|
|
Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
|
|
Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm;
|
|
Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
|
|
Options.MCOptions.MCIncrementalLinkerCompatible =
|
|
CodeGenOpts.IncrementalLinkerCompatible;
|
|
Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations;
|
|
Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
|
|
Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn;
|
|
Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
|
|
Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
|
|
Options.MCOptions.ABIName = TargetOpts.ABI;
|
|
for (const auto &Entry : HSOpts.UserEntries)
|
|
if (!Entry.IsFramework &&
|
|
(Entry.Group == frontend::IncludeDirGroup::Quoted ||
|
|
Entry.Group == frontend::IncludeDirGroup::Angled ||
|
|
Entry.Group == frontend::IncludeDirGroup::System))
|
|
Options.MCOptions.IASSearchPaths.push_back(
|
|
Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
|
|
}
|
|
static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) {
|
|
if (CodeGenOpts.DisableGCov)
|
|
return None;
|
|
if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes)
|
|
return None;
|
|
// Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
|
|
// LLVM's -default-gcov-version flag is set to something invalid.
|
|
GCOVOptions Options;
|
|
Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
|
|
Options.EmitData = CodeGenOpts.EmitGcovArcs;
|
|
llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
|
|
Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum;
|
|
Options.NoRedZone = CodeGenOpts.DisableRedZone;
|
|
Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData;
|
|
Options.Filter = CodeGenOpts.ProfileFilterFiles;
|
|
Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
|
|
Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody;
|
|
return Options;
|
|
}
|
|
|
|
static Optional<InstrProfOptions>
|
|
getInstrProfOptions(const CodeGenOptions &CodeGenOpts,
|
|
const LangOptions &LangOpts) {
|
|
if (!CodeGenOpts.hasProfileClangInstr())
|
|
return None;
|
|
InstrProfOptions Options;
|
|
Options.NoRedZone = CodeGenOpts.DisableRedZone;
|
|
Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
|
|
|
|
// TODO: Surface the option to emit atomic profile counter increments at
|
|
// the driver level.
|
|
Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread);
|
|
return Options;
|
|
}
|
|
|
|
void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM,
|
|
legacy::FunctionPassManager &FPM) {
|
|
// Handle disabling of all LLVM passes, where we want to preserve the
|
|
// internal module before any optimization.
|
|
if (CodeGenOpts.DisableLLVMPasses)
|
|
return;
|
|
|
|
// Figure out TargetLibraryInfo. This needs to be added to MPM and FPM
|
|
// manually (and not via PMBuilder), since some passes (eg. InstrProfiling)
|
|
// are inserted before PMBuilder ones - they'd get the default-constructed
|
|
// TLI with an unknown target otherwise.
|
|
Triple TargetTriple(TheModule->getTargetTriple());
|
|
std::unique_ptr<TargetLibraryInfoImpl> TLII(
|
|
createTLII(TargetTriple, CodeGenOpts));
|
|
|
|
PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts);
|
|
|
|
// At O0 and O1 we only run the always inliner which is more efficient. At
|
|
// higher optimization levels we run the normal inliner.
|
|
if (CodeGenOpts.OptimizationLevel <= 1) {
|
|
bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 &&
|
|
!CodeGenOpts.DisableLifetimeMarkers);
|
|
PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics);
|
|
} else {
|
|
// We do not want to inline hot callsites for SamplePGO module-summary build
|
|
// because profile annotation will happen again in ThinLTO backend, and we
|
|
// want the IR of the hot path to match the profile.
|
|
PMBuilder.Inliner = createFunctionInliningPass(
|
|
CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize,
|
|
(!CodeGenOpts.SampleProfileFile.empty() &&
|
|
CodeGenOpts.PrepareForThinLTO));
|
|
}
|
|
|
|
PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel;
|
|
PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
|
|
PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
|
|
PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;
|
|
|
|
PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
|
|
// Loop interleaving in the loop vectorizer has historically been set to be
|
|
// enabled when loop unrolling is enabled.
|
|
PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops;
|
|
PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
|
|
PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
|
|
PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO;
|
|
PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;
|
|
|
|
MPM.add(new TargetLibraryInfoWrapperPass(*TLII));
|
|
|
|
if (TM)
|
|
TM->adjustPassManager(PMBuilder);
|
|
|
|
if (CodeGenOpts.DebugInfoForProfiling ||
|
|
!CodeGenOpts.SampleProfileFile.empty())
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
|
|
addAddDiscriminatorsPass);
|
|
|
|
// In ObjC ARC mode, add the main ARC optimization passes.
|
|
if (LangOpts.ObjCAutoRefCount) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
|
|
addObjCARCExpandPass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
|
|
addObjCARCAPElimPass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
|
|
addObjCARCOptPass);
|
|
}
|
|
|
|
if (LangOpts.Coroutines)
|
|
addCoroutinePassesToExtensionPoints(PMBuilder);
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
|
|
addBoundsCheckingPass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addBoundsCheckingPass);
|
|
}
|
|
|
|
if (CodeGenOpts.SanitizeCoverageType ||
|
|
CodeGenOpts.SanitizeCoverageIndirectCalls ||
|
|
CodeGenOpts.SanitizeCoverageTraceCmp) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addSanitizerCoveragePass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addSanitizerCoveragePass);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addAddressSanitizerPasses);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addAddressSanitizerPasses);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addKernelAddressSanitizerPasses);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addKernelAddressSanitizerPasses);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addHWAddressSanitizerPasses);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addHWAddressSanitizerPasses);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addKernelHWAddressSanitizerPasses);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addKernelHWAddressSanitizerPasses);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addMemorySanitizerPass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addMemorySanitizerPass);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addKernelMemorySanitizerPass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addKernelMemorySanitizerPass);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addThreadSanitizerPass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addThreadSanitizerPass);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addDataFlowSanitizerPass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addDataFlowSanitizerPass);
|
|
}
|
|
|
|
// Set up the per-function pass manager.
|
|
FPM.add(new TargetLibraryInfoWrapperPass(*TLII));
|
|
if (CodeGenOpts.VerifyModule)
|
|
FPM.add(createVerifierPass());
|
|
|
|
// Set up the per-module pass manager.
|
|
if (!CodeGenOpts.RewriteMapFiles.empty())
|
|
addSymbolRewriterPass(CodeGenOpts, &MPM);
|
|
|
|
if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) {
|
|
MPM.add(createGCOVProfilerPass(*Options));
|
|
if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo)
|
|
MPM.add(createStripSymbolsPass(true));
|
|
}
|
|
|
|
if (Optional<InstrProfOptions> Options =
|
|
getInstrProfOptions(CodeGenOpts, LangOpts))
|
|
MPM.add(createInstrProfilingLegacyPass(*Options, false));
|
|
|
|
bool hasIRInstr = false;
|
|
if (CodeGenOpts.hasProfileIRInstr()) {
|
|
PMBuilder.EnablePGOInstrGen = true;
|
|
hasIRInstr = true;
|
|
}
|
|
if (CodeGenOpts.hasProfileCSIRInstr()) {
|
|
assert(!CodeGenOpts.hasProfileCSIRUse() &&
|
|
"Cannot have both CSProfileUse pass and CSProfileGen pass at the "
|
|
"same time");
|
|
assert(!hasIRInstr &&
|
|
"Cannot have both ProfileGen pass and CSProfileGen pass at the "
|
|
"same time");
|
|
PMBuilder.EnablePGOCSInstrGen = true;
|
|
hasIRInstr = true;
|
|
}
|
|
if (hasIRInstr) {
|
|
if (!CodeGenOpts.InstrProfileOutput.empty())
|
|
PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput;
|
|
else
|
|
PMBuilder.PGOInstrGen = DefaultProfileGenName;
|
|
}
|
|
if (CodeGenOpts.hasProfileIRUse()) {
|
|
PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath;
|
|
PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse();
|
|
}
|
|
|
|
if (!CodeGenOpts.SampleProfileFile.empty())
|
|
PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile;
|
|
|
|
PMBuilder.populateFunctionPassManager(FPM);
|
|
PMBuilder.populateModulePassManager(MPM);
|
|
}
|
|
|
|
static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
|
|
SmallVector<const char *, 16> BackendArgs;
|
|
BackendArgs.push_back("clang"); // Fake program name.
|
|
if (!CodeGenOpts.DebugPass.empty()) {
|
|
BackendArgs.push_back("-debug-pass");
|
|
BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
|
|
}
|
|
if (!CodeGenOpts.LimitFloatPrecision.empty()) {
|
|
BackendArgs.push_back("-limit-float-precision");
|
|
BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
|
|
}
|
|
BackendArgs.push_back(nullptr);
|
|
llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
|
|
BackendArgs.data());
|
|
}
|
|
|
|
void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
|
|
// Create the TargetMachine for generating code.
|
|
std::string Error;
|
|
std::string Triple = TheModule->getTargetTriple();
|
|
const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
|
|
if (!TheTarget) {
|
|
if (MustCreateTM)
|
|
Diags.Report(diag::err_fe_unable_to_create_target) << Error;
|
|
return;
|
|
}
|
|
|
|
Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts);
|
|
std::string FeaturesStr =
|
|
llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
|
|
llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
|
|
CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts);
|
|
|
|
llvm::TargetOptions Options;
|
|
initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts);
|
|
TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
|
|
Options, RM, CM, OptLevel));
|
|
}
|
|
|
|
bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
|
|
BackendAction Action,
|
|
raw_pwrite_stream &OS,
|
|
raw_pwrite_stream *DwoOS) {
|
|
// Add LibraryInfo.
|
|
llvm::Triple TargetTriple(TheModule->getTargetTriple());
|
|
std::unique_ptr<TargetLibraryInfoImpl> TLII(
|
|
createTLII(TargetTriple, CodeGenOpts));
|
|
CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
|
|
|
|
// Normal mode, emit a .s or .o file by running the code generator. Note,
|
|
// this also adds codegenerator level optimization passes.
|
|
TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action);
|
|
|
|
// Add ObjC ARC final-cleanup optimizations. This is done as part of the
|
|
// "codegen" passes so that it isn't run multiple times when there is
|
|
// inlining happening.
|
|
if (CodeGenOpts.OptimizationLevel > 0)
|
|
CodeGenPasses.add(createObjCARCContractPass());
|
|
|
|
if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
|
|
/*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
|
|
Diags.Report(diag::err_fe_unable_to_interface_with_target);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void EmitAssemblyHelper::EmitAssembly(BackendAction Action,
|
|
std::unique_ptr<raw_pwrite_stream> OS) {
|
|
TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr);
|
|
|
|
setCommandLineOpts(CodeGenOpts);
|
|
|
|
bool UsesCodeGen = (Action != Backend_EmitNothing &&
|
|
Action != Backend_EmitBC &&
|
|
Action != Backend_EmitLL);
|
|
CreateTargetMachine(UsesCodeGen);
|
|
|
|
if (UsesCodeGen && !TM)
|
|
return;
|
|
if (TM)
|
|
TheModule->setDataLayout(TM->createDataLayout());
|
|
|
|
legacy::PassManager PerModulePasses;
|
|
PerModulePasses.add(
|
|
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
|
|
|
|
legacy::FunctionPassManager PerFunctionPasses(TheModule);
|
|
PerFunctionPasses.add(
|
|
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
|
|
|
|
CreatePasses(PerModulePasses, PerFunctionPasses);
|
|
|
|
legacy::PassManager CodeGenPasses;
|
|
CodeGenPasses.add(
|
|
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
|
|
|
|
std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
|
|
|
|
switch (Action) {
|
|
case Backend_EmitNothing:
|
|
break;
|
|
|
|
case Backend_EmitBC:
|
|
if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
|
|
if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
|
|
ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
|
|
if (!ThinLinkOS)
|
|
return;
|
|
}
|
|
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
|
|
CodeGenOpts.EnableSplitLTOUnit);
|
|
PerModulePasses.add(createWriteThinLTOBitcodePass(
|
|
*OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
|
|
} else {
|
|
// Emit a module summary by default for Regular LTO except for ld64
|
|
// targets
|
|
bool EmitLTOSummary =
|
|
(CodeGenOpts.PrepareForLTO &&
|
|
!CodeGenOpts.DisableLLVMPasses &&
|
|
llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
|
|
llvm::Triple::Apple);
|
|
if (EmitLTOSummary) {
|
|
if (!TheModule->getModuleFlag("ThinLTO"))
|
|
TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
|
|
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
|
|
uint32_t(1));
|
|
}
|
|
|
|
PerModulePasses.add(createBitcodeWriterPass(
|
|
*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
|
|
}
|
|
break;
|
|
|
|
case Backend_EmitLL:
|
|
PerModulePasses.add(
|
|
createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
|
|
break;
|
|
|
|
default:
|
|
if (!CodeGenOpts.SplitDwarfOutput.empty()) {
|
|
DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
|
|
if (!DwoOS)
|
|
return;
|
|
}
|
|
if (!AddEmitPasses(CodeGenPasses, Action, *OS,
|
|
DwoOS ? &DwoOS->os() : nullptr))
|
|
return;
|
|
}
|
|
|
|
// Before executing passes, print the final values of the LLVM options.
|
|
cl::PrintOptionValues();
|
|
|
|
// Run passes. For now we do all passes at once, but eventually we
|
|
// would like to have the option of streaming code generation.
|
|
|
|
{
|
|
PrettyStackTraceString CrashInfo("Per-function optimization");
|
|
|
|
PerFunctionPasses.doInitialization();
|
|
for (Function &F : *TheModule)
|
|
if (!F.isDeclaration())
|
|
PerFunctionPasses.run(F);
|
|
PerFunctionPasses.doFinalization();
|
|
}
|
|
|
|
{
|
|
PrettyStackTraceString CrashInfo("Per-module optimization passes");
|
|
PerModulePasses.run(*TheModule);
|
|
}
|
|
|
|
{
|
|
PrettyStackTraceString CrashInfo("Code generation");
|
|
CodeGenPasses.run(*TheModule);
|
|
}
|
|
|
|
if (ThinLinkOS)
|
|
ThinLinkOS->keep();
|
|
if (DwoOS)
|
|
DwoOS->keep();
|
|
}
|
|
|
|
static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
|
|
switch (Opts.OptimizationLevel) {
|
|
default:
|
|
llvm_unreachable("Invalid optimization level!");
|
|
|
|
case 1:
|
|
return PassBuilder::O1;
|
|
|
|
case 2:
|
|
switch (Opts.OptimizeSize) {
|
|
default:
|
|
llvm_unreachable("Invalid optimization level for size!");
|
|
|
|
case 0:
|
|
return PassBuilder::O2;
|
|
|
|
case 1:
|
|
return PassBuilder::Os;
|
|
|
|
case 2:
|
|
return PassBuilder::Oz;
|
|
}
|
|
|
|
case 3:
|
|
return PassBuilder::O3;
|
|
}
|
|
}
|
|
|
|
static void addSanitizersAtO0(ModulePassManager &MPM,
|
|
const Triple &TargetTriple,
|
|
const LangOptions &LangOpts,
|
|
const CodeGenOptions &CodeGenOpts) {
|
|
auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
|
|
MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>());
|
|
bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass(
|
|
CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope)));
|
|
bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
|
|
MPM.addPass(
|
|
ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope,
|
|
CodeGenOpts.SanitizeAddressUseOdrIndicator));
|
|
};
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
|
|
ASanPass(SanitizerKind::Address, /*CompileKernel=*/false);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
|
|
ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({})));
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) {
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(
|
|
MemorySanitizerPass({0, false, /*Kernel=*/true})));
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
|
|
}
|
|
}
|
|
|
|
/// A clean version of `EmitAssembly` that uses the new pass manager.
|
|
///
|
|
/// Not all features are currently supported in this system, but where
|
|
/// necessary it falls back to the legacy pass manager to at least provide
|
|
/// basic functionality.
|
|
///
|
|
/// This API is planned to have its functionality finished and then to replace
|
|
/// `EmitAssembly` at some point in the future when the default switches.
|
|
void EmitAssemblyHelper::EmitAssemblyWithNewPassManager(
|
|
BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) {
|
|
TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr);
|
|
setCommandLineOpts(CodeGenOpts);
|
|
|
|
bool RequiresCodeGen = (Action != Backend_EmitNothing &&
|
|
Action != Backend_EmitBC &&
|
|
Action != Backend_EmitLL);
|
|
CreateTargetMachine(RequiresCodeGen);
|
|
|
|
if (RequiresCodeGen && !TM)
|
|
return;
|
|
if (TM)
|
|
TheModule->setDataLayout(TM->createDataLayout());
|
|
|
|
Optional<PGOOptions> PGOOpt;
|
|
|
|
if (CodeGenOpts.hasProfileIRInstr())
|
|
// -fprofile-generate.
|
|
PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty()
|
|
? DefaultProfileGenName
|
|
: CodeGenOpts.InstrProfileOutput,
|
|
"", "", PGOOptions::IRInstr, PGOOptions::NoCSAction,
|
|
CodeGenOpts.DebugInfoForProfiling);
|
|
else if (CodeGenOpts.hasProfileIRUse()) {
|
|
// -fprofile-use.
|
|
auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse
|
|
: PGOOptions::NoCSAction;
|
|
PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "",
|
|
CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse,
|
|
CSAction, CodeGenOpts.DebugInfoForProfiling);
|
|
} else if (!CodeGenOpts.SampleProfileFile.empty())
|
|
// -fprofile-sample-use
|
|
PGOOpt =
|
|
PGOOptions(CodeGenOpts.SampleProfileFile, "",
|
|
CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse,
|
|
PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling);
|
|
else if (CodeGenOpts.DebugInfoForProfiling)
|
|
// -fdebug-info-for-profiling
|
|
PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction,
|
|
PGOOptions::NoCSAction, true);
|
|
|
|
// Check to see if we want to generate a CS profile.
|
|
if (CodeGenOpts.hasProfileCSIRInstr()) {
|
|
assert(!CodeGenOpts.hasProfileCSIRUse() &&
|
|
"Cannot have both CSProfileUse pass and CSProfileGen pass at "
|
|
"the same time");
|
|
if (PGOOpt.hasValue()) {
|
|
assert(PGOOpt->Action != PGOOptions::IRInstr &&
|
|
PGOOpt->Action != PGOOptions::SampleUse &&
|
|
"Cannot run CSProfileGen pass with ProfileGen or SampleUse "
|
|
" pass");
|
|
PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty()
|
|
? DefaultProfileGenName
|
|
: CodeGenOpts.InstrProfileOutput;
|
|
PGOOpt->CSAction = PGOOptions::CSIRInstr;
|
|
} else
|
|
PGOOpt = PGOOptions("",
|
|
CodeGenOpts.InstrProfileOutput.empty()
|
|
? DefaultProfileGenName
|
|
: CodeGenOpts.InstrProfileOutput,
|
|
"", PGOOptions::NoAction, PGOOptions::CSIRInstr,
|
|
CodeGenOpts.DebugInfoForProfiling);
|
|
}
|
|
|
|
PipelineTuningOptions PTO;
|
|
PTO.LoopUnrolling = CodeGenOpts.UnrollLoops;
|
|
// For historical reasons, loop interleaving is set to mirror setting for loop
|
|
// unrolling.
|
|
PTO.LoopInterleaving = CodeGenOpts.UnrollLoops;
|
|
PTO.LoopVectorization = CodeGenOpts.VectorizeLoop;
|
|
PTO.SLPVectorization = CodeGenOpts.VectorizeSLP;
|
|
|
|
PassBuilder PB(TM.get(), PTO, PGOOpt);
|
|
|
|
// Attempt to load pass plugins and register their callbacks with PB.
|
|
for (auto &PluginFN : CodeGenOpts.PassPlugins) {
|
|
auto PassPlugin = PassPlugin::Load(PluginFN);
|
|
if (PassPlugin) {
|
|
PassPlugin->registerPassBuilderCallbacks(PB);
|
|
} else {
|
|
Diags.Report(diag::err_fe_unable_to_load_plugin)
|
|
<< PluginFN << toString(PassPlugin.takeError());
|
|
}
|
|
}
|
|
|
|
LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager);
|
|
FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager);
|
|
CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager);
|
|
ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager);
|
|
|
|
// Register the AA manager first so that our version is the one used.
|
|
FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); });
|
|
|
|
// Register the target library analysis directly and give it a customized
|
|
// preset TLI.
|
|
Triple TargetTriple(TheModule->getTargetTriple());
|
|
std::unique_ptr<TargetLibraryInfoImpl> TLII(
|
|
createTLII(TargetTriple, CodeGenOpts));
|
|
FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
|
|
MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
|
|
|
|
// Register all the basic analyses with the managers.
|
|
PB.registerModuleAnalyses(MAM);
|
|
PB.registerCGSCCAnalyses(CGAM);
|
|
PB.registerFunctionAnalyses(FAM);
|
|
PB.registerLoopAnalyses(LAM);
|
|
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
|
|
|
|
ModulePassManager MPM(CodeGenOpts.DebugPassManager);
|
|
|
|
if (!CodeGenOpts.DisableLLVMPasses) {
|
|
bool IsThinLTO = CodeGenOpts.PrepareForThinLTO;
|
|
bool IsLTO = CodeGenOpts.PrepareForLTO;
|
|
|
|
if (CodeGenOpts.OptimizationLevel == 0) {
|
|
if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts))
|
|
MPM.addPass(GCOVProfilerPass(*Options));
|
|
if (Optional<InstrProfOptions> Options =
|
|
getInstrProfOptions(CodeGenOpts, LangOpts))
|
|
MPM.addPass(InstrProfiling(*Options, false));
|
|
|
|
// Build a minimal pipeline based on the semantics required by Clang,
|
|
// which is just that always inlining occurs. Further, disable generating
|
|
// lifetime intrinsics to avoid enabling further optimizations during
|
|
// code generation.
|
|
MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/false));
|
|
|
|
// At -O0, we can still do PGO. Add all the requested passes for
|
|
// instrumentation PGO, if requested.
|
|
if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr ||
|
|
PGOOpt->Action == PGOOptions::IRUse))
|
|
PB.addPGOInstrPassesForO0(
|
|
MPM, CodeGenOpts.DebugPassManager,
|
|
/* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr),
|
|
/* IsCS */ false, PGOOpt->ProfileFile,
|
|
PGOOpt->ProfileRemappingFile);
|
|
|
|
// At -O0 we directly run necessary sanitizer passes.
|
|
if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass()));
|
|
|
|
// Lastly, add semantically necessary passes for LTO.
|
|
if (IsLTO || IsThinLTO) {
|
|
MPM.addPass(CanonicalizeAliasesPass());
|
|
MPM.addPass(NameAnonGlobalPass());
|
|
}
|
|
} else {
|
|
// Map our optimization levels into one of the distinct levels used to
|
|
// configure the pipeline.
|
|
PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts);
|
|
|
|
PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) {
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(
|
|
EntryExitInstrumenterPass(/*PostInlining=*/false)));
|
|
});
|
|
|
|
if (CodeGenOpts.SanitizeCoverageType ||
|
|
CodeGenOpts.SanitizeCoverageIndirectCalls ||
|
|
CodeGenOpts.SanitizeCoverageTraceCmp) {
|
|
auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts);
|
|
PB.registerPipelineStartEPCallback(
|
|
[SancovOpts](ModulePassManager &MPM) {
|
|
MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts));
|
|
});
|
|
PB.registerOptimizerLastEPCallback(
|
|
[SancovOpts](FunctionPassManager &FPM,
|
|
PassBuilder::OptimizationLevel Level) {
|
|
FPM.addPass(SanitizerCoveragePass(SancovOpts));
|
|
});
|
|
}
|
|
|
|
// Register callbacks to schedule sanitizer passes at the appropriate part of
|
|
// the pipeline.
|
|
// FIXME: either handle asan/the remaining sanitizers or error out
|
|
if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
|
|
PB.registerScalarOptimizerLateEPCallback(
|
|
[](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
|
|
FPM.addPass(BoundsCheckingPass());
|
|
});
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Memory))
|
|
PB.registerOptimizerLastEPCallback(
|
|
[](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
|
|
FPM.addPass(MemorySanitizerPass({}));
|
|
});
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Thread))
|
|
PB.registerOptimizerLastEPCallback(
|
|
[](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
|
|
FPM.addPass(ThreadSanitizerPass());
|
|
});
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
|
|
PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) {
|
|
MPM.addPass(
|
|
RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>());
|
|
});
|
|
bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address);
|
|
bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope;
|
|
PB.registerOptimizerLastEPCallback(
|
|
[Recover, UseAfterScope](FunctionPassManager &FPM,
|
|
PassBuilder::OptimizationLevel Level) {
|
|
FPM.addPass(AddressSanitizerPass(
|
|
/*CompileKernel=*/false, Recover, UseAfterScope));
|
|
});
|
|
bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
|
|
bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator;
|
|
PB.registerPipelineStartEPCallback(
|
|
[Recover, ModuleUseAfterScope,
|
|
UseOdrIndicator](ModulePassManager &MPM) {
|
|
MPM.addPass(ModuleAddressSanitizerPass(
|
|
/*CompileKernel=*/false, Recover, ModuleUseAfterScope,
|
|
UseOdrIndicator));
|
|
});
|
|
}
|
|
if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts))
|
|
PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) {
|
|
MPM.addPass(GCOVProfilerPass(*Options));
|
|
});
|
|
if (Optional<InstrProfOptions> Options =
|
|
getInstrProfOptions(CodeGenOpts, LangOpts))
|
|
PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) {
|
|
MPM.addPass(InstrProfiling(*Options, false));
|
|
});
|
|
|
|
if (IsThinLTO) {
|
|
MPM = PB.buildThinLTOPreLinkDefaultPipeline(
|
|
Level, CodeGenOpts.DebugPassManager);
|
|
MPM.addPass(CanonicalizeAliasesPass());
|
|
MPM.addPass(NameAnonGlobalPass());
|
|
} else if (IsLTO) {
|
|
MPM = PB.buildLTOPreLinkDefaultPipeline(Level,
|
|
CodeGenOpts.DebugPassManager);
|
|
MPM.addPass(CanonicalizeAliasesPass());
|
|
MPM.addPass(NameAnonGlobalPass());
|
|
} else {
|
|
MPM = PB.buildPerModuleDefaultPipeline(Level,
|
|
CodeGenOpts.DebugPassManager);
|
|
}
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
|
|
bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
|
|
MPM.addPass(HWAddressSanitizerPass(
|
|
/*CompileKernel=*/false, Recover));
|
|
}
|
|
if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) {
|
|
MPM.addPass(HWAddressSanitizerPass(
|
|
/*CompileKernel=*/true, /*Recover=*/true));
|
|
}
|
|
|
|
if (CodeGenOpts.OptimizationLevel == 0) {
|
|
if (CodeGenOpts.SanitizeCoverageType ||
|
|
CodeGenOpts.SanitizeCoverageIndirectCalls ||
|
|
CodeGenOpts.SanitizeCoverageTraceCmp) {
|
|
auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts);
|
|
MPM.addPass(ModuleSanitizerCoveragePass(SancovOpts));
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(
|
|
SanitizerCoveragePass(SancovOpts)));
|
|
}
|
|
|
|
addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts);
|
|
}
|
|
}
|
|
|
|
// FIXME: We still use the legacy pass manager to do code generation. We
|
|
// create that pass manager here and use it as needed below.
|
|
legacy::PassManager CodeGenPasses;
|
|
bool NeedCodeGen = false;
|
|
std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
|
|
|
|
// Append any output we need to the pass manager.
|
|
switch (Action) {
|
|
case Backend_EmitNothing:
|
|
break;
|
|
|
|
case Backend_EmitBC:
|
|
if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
|
|
if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
|
|
ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
|
|
if (!ThinLinkOS)
|
|
return;
|
|
}
|
|
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
|
|
CodeGenOpts.EnableSplitLTOUnit);
|
|
MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os()
|
|
: nullptr));
|
|
} else {
|
|
// Emit a module summary by default for Regular LTO except for ld64
|
|
// targets
|
|
bool EmitLTOSummary =
|
|
(CodeGenOpts.PrepareForLTO &&
|
|
!CodeGenOpts.DisableLLVMPasses &&
|
|
llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
|
|
llvm::Triple::Apple);
|
|
if (EmitLTOSummary) {
|
|
if (!TheModule->getModuleFlag("ThinLTO"))
|
|
TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
|
|
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
|
|
CodeGenOpts.EnableSplitLTOUnit);
|
|
}
|
|
MPM.addPass(
|
|
BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
|
|
}
|
|
break;
|
|
|
|
case Backend_EmitLL:
|
|
MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
|
|
break;
|
|
|
|
case Backend_EmitAssembly:
|
|
case Backend_EmitMCNull:
|
|
case Backend_EmitObj:
|
|
NeedCodeGen = true;
|
|
CodeGenPasses.add(
|
|
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
|
|
if (!CodeGenOpts.SplitDwarfOutput.empty()) {
|
|
DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
|
|
if (!DwoOS)
|
|
return;
|
|
}
|
|
if (!AddEmitPasses(CodeGenPasses, Action, *OS,
|
|
DwoOS ? &DwoOS->os() : nullptr))
|
|
// FIXME: Should we handle this error differently?
|
|
return;
|
|
break;
|
|
}
|
|
|
|
// Before executing passes, print the final values of the LLVM options.
|
|
cl::PrintOptionValues();
|
|
|
|
// Now that we have all of the passes ready, run them.
|
|
{
|
|
PrettyStackTraceString CrashInfo("Optimizer");
|
|
MPM.run(*TheModule, MAM);
|
|
}
|
|
|
|
// Now if needed, run the legacy PM for codegen.
|
|
if (NeedCodeGen) {
|
|
PrettyStackTraceString CrashInfo("Code generation");
|
|
CodeGenPasses.run(*TheModule);
|
|
}
|
|
|
|
if (ThinLinkOS)
|
|
ThinLinkOS->keep();
|
|
if (DwoOS)
|
|
DwoOS->keep();
|
|
}
|
|
|
|
Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) {
|
|
Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef);
|
|
if (!BMsOrErr)
|
|
return BMsOrErr.takeError();
|
|
|
|
// The bitcode file may contain multiple modules, we want the one that is
|
|
// marked as being the ThinLTO module.
|
|
if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr))
|
|
return *Bm;
|
|
|
|
return make_error<StringError>("Could not find module summary",
|
|
inconvertibleErrorCode());
|
|
}
|
|
|
|
BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) {
|
|
for (BitcodeModule &BM : BMs) {
|
|
Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo();
|
|
if (LTOInfo && LTOInfo->IsThinLTO)
|
|
return &BM;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M,
|
|
const HeaderSearchOptions &HeaderOpts,
|
|
const CodeGenOptions &CGOpts,
|
|
const clang::TargetOptions &TOpts,
|
|
const LangOptions &LOpts,
|
|
std::unique_ptr<raw_pwrite_stream> OS,
|
|
std::string SampleProfile,
|
|
std::string ProfileRemapping,
|
|
BackendAction Action) {
|
|
StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
|
|
ModuleToDefinedGVSummaries;
|
|
CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
|
|
|
|
setCommandLineOpts(CGOpts);
|
|
|
|
// We can simply import the values mentioned in the combined index, since
|
|
// we should only invoke this using the individual indexes written out
|
|
// via a WriteIndexesThinBackend.
|
|
FunctionImporter::ImportMapTy ImportList;
|
|
for (auto &GlobalList : *CombinedIndex) {
|
|
// Ignore entries for undefined references.
|
|
if (GlobalList.second.SummaryList.empty())
|
|
continue;
|
|
|
|
auto GUID = GlobalList.first;
|
|
for (auto &Summary : GlobalList.second.SummaryList) {
|
|
// Skip the summaries for the importing module. These are included to
|
|
// e.g. record required linkage changes.
|
|
if (Summary->modulePath() == M->getModuleIdentifier())
|
|
continue;
|
|
// Add an entry to provoke importing by thinBackend.
|
|
ImportList[Summary->modulePath()].insert(GUID);
|
|
}
|
|
}
|
|
|
|
std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports;
|
|
MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap;
|
|
|
|
for (auto &I : ImportList) {
|
|
ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr =
|
|
llvm::MemoryBuffer::getFile(I.first());
|
|
if (!MBOrErr) {
|
|
errs() << "Error loading imported file '" << I.first()
|
|
<< "': " << MBOrErr.getError().message() << "\n";
|
|
return;
|
|
}
|
|
|
|
Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr);
|
|
if (!BMOrErr) {
|
|
handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) {
|
|
errs() << "Error loading imported file '" << I.first()
|
|
<< "': " << EIB.message() << '\n';
|
|
});
|
|
return;
|
|
}
|
|
ModuleMap.insert({I.first(), *BMOrErr});
|
|
|
|
OwnedImports.push_back(std::move(*MBOrErr));
|
|
}
|
|
auto AddStream = [&](size_t Task) {
|
|
return llvm::make_unique<lto::NativeObjectStream>(std::move(OS));
|
|
};
|
|
lto::Config Conf;
|
|
if (CGOpts.SaveTempsFilePrefix != "") {
|
|
if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
|
|
/* UseInputModulePath */ false)) {
|
|
handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
|
|
errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
|
|
<< '\n';
|
|
});
|
|
}
|
|
}
|
|
Conf.CPU = TOpts.CPU;
|
|
Conf.CodeModel = getCodeModel(CGOpts);
|
|
Conf.MAttrs = TOpts.Features;
|
|
Conf.RelocModel = CGOpts.RelocationModel;
|
|
Conf.CGOptLevel = getCGOptLevel(CGOpts);
|
|
Conf.OptLevel = CGOpts.OptimizationLevel;
|
|
initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
|
|
Conf.SampleProfile = std::move(SampleProfile);
|
|
|
|
// Context sensitive profile.
|
|
if (CGOpts.hasProfileCSIRInstr()) {
|
|
Conf.RunCSIRInstr = true;
|
|
Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput);
|
|
} else if (CGOpts.hasProfileCSIRUse()) {
|
|
Conf.RunCSIRInstr = false;
|
|
Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath);
|
|
}
|
|
|
|
Conf.ProfileRemapping = std::move(ProfileRemapping);
|
|
Conf.UseNewPM = CGOpts.ExperimentalNewPassManager;
|
|
Conf.DebugPassManager = CGOpts.DebugPassManager;
|
|
Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
|
|
Conf.RemarksFilename = CGOpts.OptRecordFile;
|
|
Conf.RemarksPasses = CGOpts.OptRecordPasses;
|
|
Conf.RemarksFormat = CGOpts.OptRecordFormat;
|
|
Conf.SplitDwarfFile = CGOpts.SplitDwarfFile;
|
|
Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput;
|
|
switch (Action) {
|
|
case Backend_EmitNothing:
|
|
Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) {
|
|
return false;
|
|
};
|
|
break;
|
|
case Backend_EmitLL:
|
|
Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
|
|
M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
|
|
return false;
|
|
};
|
|
break;
|
|
case Backend_EmitBC:
|
|
Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
|
|
WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
|
|
return false;
|
|
};
|
|
break;
|
|
default:
|
|
Conf.CGFileType = getCodeGenFileType(Action);
|
|
break;
|
|
}
|
|
if (Error E = thinBackend(
|
|
Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
|
|
ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) {
|
|
handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
|
|
errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
|
|
});
|
|
}
|
|
}
|
|
|
|
void clang::EmitBackendOutput(DiagnosticsEngine &Diags,
|
|
const HeaderSearchOptions &HeaderOpts,
|
|
const CodeGenOptions &CGOpts,
|
|
const clang::TargetOptions &TOpts,
|
|
const LangOptions &LOpts,
|
|
const llvm::DataLayout &TDesc, Module *M,
|
|
BackendAction Action,
|
|
std::unique_ptr<raw_pwrite_stream> OS) {
|
|
|
|
llvm::TimeTraceScope TimeScope("Backend", StringRef(""));
|
|
|
|
std::unique_ptr<llvm::Module> EmptyModule;
|
|
if (!CGOpts.ThinLTOIndexFile.empty()) {
|
|
// If we are performing a ThinLTO importing compile, load the function index
|
|
// into memory and pass it into runThinLTOBackend, which will run the
|
|
// function importer and invoke LTO passes.
|
|
Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr =
|
|
llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile,
|
|
/*IgnoreEmptyThinLTOIndexFile*/true);
|
|
if (!IndexOrErr) {
|
|
logAllUnhandledErrors(IndexOrErr.takeError(), errs(),
|
|
"Error loading index file '" +
|
|
CGOpts.ThinLTOIndexFile + "': ");
|
|
return;
|
|
}
|
|
std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr);
|
|
// A null CombinedIndex means we should skip ThinLTO compilation
|
|
// (LLVM will optionally ignore empty index files, returning null instead
|
|
// of an error).
|
|
if (CombinedIndex) {
|
|
if (!CombinedIndex->skipModuleByDistributedBackend()) {
|
|
runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts,
|
|
LOpts, std::move(OS), CGOpts.SampleProfileFile,
|
|
CGOpts.ProfileRemappingFile, Action);
|
|
return;
|
|
}
|
|
// Distributed indexing detected that nothing from the module is needed
|
|
// for the final linking. So we can skip the compilation. We sill need to
|
|
// output an empty object file to make sure that a linker does not fail
|
|
// trying to read it. Also for some features, like CFI, we must skip
|
|
// the compilation as CombinedIndex does not contain all required
|
|
// information.
|
|
EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext());
|
|
EmptyModule->setTargetTriple(M->getTargetTriple());
|
|
M = EmptyModule.get();
|
|
}
|
|
}
|
|
|
|
EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M);
|
|
|
|
if (CGOpts.ExperimentalNewPassManager)
|
|
AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS));
|
|
else
|
|
AsmHelper.EmitAssembly(Action, std::move(OS));
|
|
|
|
// Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
|
|
// DataLayout.
|
|
if (AsmHelper.TM) {
|
|
std::string DLDesc = M->getDataLayout().getStringRepresentation();
|
|
if (DLDesc != TDesc.getStringRepresentation()) {
|
|
unsigned DiagID = Diags.getCustomDiagID(
|
|
DiagnosticsEngine::Error, "backend data layout '%0' does not match "
|
|
"expected target description '%1'");
|
|
Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation();
|
|
}
|
|
}
|
|
}
|
|
|
|
static const char* getSectionNameForBitcode(const Triple &T) {
|
|
switch (T.getObjectFormat()) {
|
|
case Triple::MachO:
|
|
return "__LLVM,__bitcode";
|
|
case Triple::COFF:
|
|
case Triple::ELF:
|
|
case Triple::Wasm:
|
|
case Triple::UnknownObjectFormat:
|
|
return ".llvmbc";
|
|
case Triple::XCOFF:
|
|
llvm_unreachable("XCOFF is not yet implemented");
|
|
break;
|
|
}
|
|
llvm_unreachable("Unimplemented ObjectFormatType");
|
|
}
|
|
|
|
static const char* getSectionNameForCommandline(const Triple &T) {
|
|
switch (T.getObjectFormat()) {
|
|
case Triple::MachO:
|
|
return "__LLVM,__cmdline";
|
|
case Triple::COFF:
|
|
case Triple::ELF:
|
|
case Triple::Wasm:
|
|
case Triple::UnknownObjectFormat:
|
|
return ".llvmcmd";
|
|
case Triple::XCOFF:
|
|
llvm_unreachable("XCOFF is not yet implemented");
|
|
break;
|
|
}
|
|
llvm_unreachable("Unimplemented ObjectFormatType");
|
|
}
|
|
|
|
// With -fembed-bitcode, save a copy of the llvm IR as data in the
|
|
// __LLVM,__bitcode section.
|
|
void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
|
|
llvm::MemoryBufferRef Buf) {
|
|
if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
|
|
return;
|
|
|
|
// Save llvm.compiler.used and remote it.
|
|
SmallVector<Constant*, 2> UsedArray;
|
|
SmallPtrSet<GlobalValue*, 4> UsedGlobals;
|
|
Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0);
|
|
GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true);
|
|
for (auto *GV : UsedGlobals) {
|
|
if (GV->getName() != "llvm.embedded.module" &&
|
|
GV->getName() != "llvm.cmdline")
|
|
UsedArray.push_back(
|
|
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
|
|
}
|
|
if (Used)
|
|
Used->eraseFromParent();
|
|
|
|
// Embed the bitcode for the llvm module.
|
|
std::string Data;
|
|
ArrayRef<uint8_t> ModuleData;
|
|
Triple T(M->getTargetTriple());
|
|
// Create a constant that contains the bitcode.
|
|
// In case of embedding a marker, ignore the input Buf and use the empty
|
|
// ArrayRef. It is also legal to create a bitcode marker even Buf is empty.
|
|
if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) {
|
|
if (!isBitcode((const unsigned char *)Buf.getBufferStart(),
|
|
(const unsigned char *)Buf.getBufferEnd())) {
|
|
// If the input is LLVM Assembly, bitcode is produced by serializing
|
|
// the module. Use-lists order need to be perserved in this case.
|
|
llvm::raw_string_ostream OS(Data);
|
|
llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true);
|
|
ModuleData =
|
|
ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
|
|
} else
|
|
// If the input is LLVM bitcode, write the input byte stream directly.
|
|
ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
|
|
Buf.getBufferSize());
|
|
}
|
|
llvm::Constant *ModuleConstant =
|
|
llvm::ConstantDataArray::get(M->getContext(), ModuleData);
|
|
llvm::GlobalVariable *GV = new llvm::GlobalVariable(
|
|
*M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
|
|
ModuleConstant);
|
|
GV->setSection(getSectionNameForBitcode(T));
|
|
UsedArray.push_back(
|
|
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
|
|
if (llvm::GlobalVariable *Old =
|
|
M->getGlobalVariable("llvm.embedded.module", true)) {
|
|
assert(Old->hasOneUse() &&
|
|
"llvm.embedded.module can only be used once in llvm.compiler.used");
|
|
GV->takeName(Old);
|
|
Old->eraseFromParent();
|
|
} else {
|
|
GV->setName("llvm.embedded.module");
|
|
}
|
|
|
|
// Skip if only bitcode needs to be embedded.
|
|
if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) {
|
|
// Embed command-line options.
|
|
ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()),
|
|
CGOpts.CmdArgs.size());
|
|
llvm::Constant *CmdConstant =
|
|
llvm::ConstantDataArray::get(M->getContext(), CmdData);
|
|
GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
CmdConstant);
|
|
GV->setSection(getSectionNameForCommandline(T));
|
|
UsedArray.push_back(
|
|
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
|
|
if (llvm::GlobalVariable *Old =
|
|
M->getGlobalVariable("llvm.cmdline", true)) {
|
|
assert(Old->hasOneUse() &&
|
|
"llvm.cmdline can only be used once in llvm.compiler.used");
|
|
GV->takeName(Old);
|
|
Old->eraseFromParent();
|
|
} else {
|
|
GV->setName("llvm.cmdline");
|
|
}
|
|
}
|
|
|
|
if (UsedArray.empty())
|
|
return;
|
|
|
|
// Recreate llvm.compiler.used.
|
|
ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
|
|
auto *NewUsed = new GlobalVariable(
|
|
*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
|
|
llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
|
|
NewUsed->setSection("llvm.metadata");
|
|
}
|